Sequential and parallel synchronous alternating iterative methods
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/25282
Title: | Sequential and parallel synchronous alternating iterative methods |
---|---|
Authors: | Climent, Joan-Josep | Perea Marco, Mari Carmen | Tortosa, Leandro | Zamora, Antonio |
Research Group/s: | Criptología y Seguridad Computacional |
Center, Department or Service: | Universidad de Alicante. Departamento de Estadística e Investigación Operativa | Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial |
Keywords: | Nonsingular matrix | Iterative method | Spectral radius | Splitting | Multisplitting | Alternating method | Stationary method | Nonstationary method | Convergence conditions | Comparison conditions |
Knowledge Area: | Álgebra | Ciencia de la Computación e Inteligencia Artificial |
Issue Date: | 24-Nov-2003 |
Publisher: | American Mathematical Society |
Citation: | CLIMENT, Joan-Josep, et al. “Sequential and parallel synchronous alternating iterative methods”. Mathematics of Computation. Vol. 73, No. 246 (2003). ISSN 0025-5718, pp. 691-717 |
Abstract: | The so-called parallel multisplitting nonstationary iterative Model A was introduced by Bru, Elsner, and Neumann [Linear Algebra and its Applications 103:175-192 (1988)] for solving a nonsingular linear system Ax = b using a weak nonnegative multisplitting of the first type. In this paper new results are introduced when A is a monotone matrix using a weak nonnegative multisplitting of the second type and when A is a symmetric positive definite matrix using a P -regular multisplitting. Also, nonstationary alternating iterative methods are studied. Finally, combining Model A and alternating iterative methods, two new models of parallel multisplitting nonstationary iterations are introduced. When matrix A is monotone and the multisplittings are weak nonnegative of the first or of the second type, both models lead to convergent schemes. Also, when matrix A is symmetric positive definite and the multisplittings are P -regular, the schemes are also convergent. |
URI: | http://hdl.handle.net/10045/25282 |
ISSN: | 0025-5718 (Print) | 1088-6842 (Online) |
DOI: | 10.1090/S0025-5718-03-01607-7 |
Language: | eng |
Type: | info:eu-repo/semantics/article |
Rights: | First published in Math. Comp. 73 (2004), published by the American Mathematical Society. |
Peer Review: | si |
Publisher version: | http://dx.doi.org/10.1090/S0025-5718-03-01607-7 |
Appears in Collections: | INV - CSC - Artículos de Revistas INV - GAG - Artículos de Revistas INV - ANVIDA - Artículos de Revistas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | 287,74 kB | Adobe PDF | Open Preview | |
Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.