Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/2471
Información del item - Informació de l'item - Item information
Title: Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire
Authors: Beléndez, Augusto | Hernández Prados, Antonio | Beléndez, Tarsicio | Alvarez, Mariela L. | Gallego, Sergi | Ortuño, Manuel | Neipp, Cristian
Research Group/s: Grupo de Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Keywords: Nonlinear oscillator | Approximate solutions | Harmonic balance method
Knowledge Area: Física Aplicada | Ingeniería de Sistemas y Automática | Teoría de la Señal y Comunicaciones
Date Created: 2007
Issue Date: 22-May-2007
Publisher: Elsevier
Citation: BELÉNDEZ VÁZQUEZ, Augusto, et al. "Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire". Journal of Sound and Vibration. Vol. 302, Issues 4-5 (22 May 2007). ISSN 0022-460X, pp. 1018-1029
Abstract: The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency–amplitude relations for a conservative nonlinear oscillatory system in which the restoring force has an irrational form. This system corresponds to the motion of a mass attached to a stretched wire. Two procedures are used to approximately solve the nonlinear differential equation. In the first, the differential equation is rewritten in a form that does not contain the square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the second approximate frequency and the exact one never exceeds 2.2%.
Sponsor: This work was supported by the "Ministerio de Educación y Ciencia", Spain, under project FIS2005-05881-C02-02, and by the "Generalitat Valenciana", Spain, under project ACOMP06/007.
URI: http://hdl.handle.net/10045/2471
ISSN: 0022-460X
DOI: 10.1016/j.jsv.2006.12.011
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.jsv.2006.12.011
Appears in Collections:INV - GHPO - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailJSV_2007_02.pdfVersión final (acceso restringido)210,99 kBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.