A novel information theory method for filter feature selection

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/23400
Información del item - Informació de l'item - Item information
Title: A novel information theory method for filter feature selection
Authors: Bonev, Boyan | Escolano, Francisco | Cazorla, Miguel
Research Group/s: Robótica y Visión Tridimensional (RoViT) | Laboratorio de Investigación en Visión Móvil (MVRLab)
Center, Department or Service: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Keywords: Filter feature selection | Information theory method | Mutual information estimation | Entropy estimation
Knowledge Area: Ciencia de la Computación e Inteligencia Artificial
Issue Date: 2007
Publisher: Springer Berlin / Heidelberg
Citation: BONEV, Boyan; ESCOLANO, Francisco; CAZORLA, Miguel Ángel. "A novel information theory method for filter feature selection". En: MICAI 2007: Advances in Artificial Intelligence 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007, Proceedings / Alexander Gelbukh, Ángel Fernando Kuri Morales (Eds.). Berlin : Springer, 2007. (Lecture Notes in Computer Science; 4827). ISBN 978-3-540-76630-8, pp. 431-440
Abstract: In this paper, we propose a novel filter for feature selection. Such filter relies on the estimation of the mutual information between features and classes. We bypass the estimation of the probability density function with the aid of the entropic-graphs approximation of Rényi entropy, and the subsequent approximation of the Shannon one. The complexity of such bypassing process does not depend on the number of dimensions but on the number of patterns/samples, and thus the curse of dimensionality is circumvented. We show that it is then possible to outperform a greedy algorithm based on the maximal relevance and minimal redundancy criterion. We successfully test our method both in the contexts of image classification and microarray data classification.
Sponsor: This research is funded by the project DPI2005-01280 from the Spanish Government.
URI: http://hdl.handle.net/10045/23400
ISBN: 978-3-540-76630-8
ISSN: 0302-9743 (Print) | 1611-3349 (Online)
DOI: 10.1007/978-3-540-76631-5_41
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Rights: The original publication is available at www.springerlink.com
Peer Review: si
Publisher version: http://dx.doi.org/10.1007/978-3-540-76631-5_41
Appears in Collections:INV - RoViT - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2007_Cazorla_etal_MICAI.pdfVersión revisada (acceso abierto)668,65 kBAdobe PDFOpen Preview
Thumbnail2007_Cazorla_etal_MICAI_final.pdfVersión final (acceso restringido)965,06 kBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.