Large scale SLAM with visual features

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Large scale SLAM with visual features
Authors: Cazorla, Miguel | Hernández Gutiérrez, Andrés | Nieto, Juan | Nebot, Eduardo | Viejo Hernando, Diego
Research Group/s: Robótica y Visión Tridimensional (RoViT)
Center, Department or Service: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Keywords: Computer vision | Mobile robotics
Knowledge Area: Ciencia de la Computación e Inteligencia Artificial
Issue Date: Sep-2009
Abstract: Several works deal with 3D data in SLAM problem but many of them are focused on short scale maps. In this paper, we propose a method that can be used for computing the 6DoF trajectory performed by a robot from the stereo images captured during a large scale trajectory. The method transforms robust 2D features extracted from the reference stereo images to the 3D space. This 3D features are then used for obtaining the correct robot movement. Both Sift and Surf methods for feature extraction have been used. Also, a comparison between our method and the results of the ICP algorithm have been performed.
Description: Comunicación presentada en el X Workshop of Physical Agents, Cáceres, 10-11 septiembre 2009.
Sponsor: This work has been supported by grant JC08-00077 from Ministerio de Ciencia e Innovación of the Spanish Government.
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Peer Review: si
Appears in Collections:INV - RoViT - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2009_Romero_Cazorla_Workshop_Agentes_Fisicos_Caceres_2.pdf741,7 kBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.