A Multistep Method for Integration of Perturbed and Damped Second-Order ODE Systems

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/144923
Información del item - Informació de l'item - Item information
Title: A Multistep Method for Integration of Perturbed and Damped Second-Order ODE Systems
Authors: García-Alonso, Fernando | Reyes, José Antonio | Cortés-Molina, Mónica
Research Group/s: Modelización Matemática de Sistemas
Center, Department or Service: Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Explicit and implicit multistep methods | Predictor–corrector method | Harmonic oscillator | Quasi-periodic orbit | Earthquake | Equatorial satellite
Issue Date: 28-Jun-2024
Publisher: MDPI
Citation: Mathematics. 2024, 12(13): 2018. https://doi.org/10.3390/math12132018
Abstract: Based on the Ψ-functions series method, a new numerical integration method for perturbed and damped second-order systems of differential equations is presented. This multistep method is defined for variable step and variable order (VSVO) and maintains the good properties of the Ψ-functions series method. In addition, it incorporates a recurring algebraic procedure to calculate the algorithm’s coefficients, which facilitates its implementation on the computer. The construction of Ψ-functions and the Ψ-functions series method are presented to address the construction of both explicit and implicit multistep methods and a predictor–corrector method. Three problems analogous to those solved by the Ψ-functions series method are analyzed, contrasting the results obtained with the exact solution of the problem or with its first integral. The first example is the integration of a quasi-periodic orbit. The second example is a Structural Dynamics problem associated with an earthquake, and the third example studies an equatorial satellite with perturbation J2. This allows us to compare the good behavior of the new code with other prestige codes.
URI: http://hdl.handle.net/10045/144923
ISSN: 2227-7390
DOI: 10.3390/math12132018
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/math12132018
Appears in Collections:INV - MMS - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailGarcia-Alonso_etal_2024_Mathematics.pdf4,08 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.