A comprehensive methodology to construct standardised datasets for Science and Technology Parks

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/144922
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorProcesamiento del Lenguaje y Sistemas de Información (GPLSI)es_ES
dc.contributor.authorFrancés, Olga-
dc.contributor.authorFernández Martínez, Javier-
dc.contributor.authorAbreu Salas, José Ignacio-
dc.contributor.authorGutiérrez, Yoan-
dc.contributor.authorPalomar, Manuel-
dc.contributor.otherUniversidad de Alicante. Departamento de Lenguajes y Sistemas Informáticoses_ES
dc.date.accessioned2024-07-09T11:38:00Z-
dc.date.available2024-07-09T11:38:00Z-
dc.date.issued2024-06-18-
dc.identifier.citationData & Knowledge Engineering. 2024, 153: 102338. https://doi.org/10.1016/j.datak.2024.102338es_ES
dc.identifier.issn0169-023X (Print)-
dc.identifier.issn1872-6933 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/144922-
dc.description.abstractThis work presents a standardised approach to create datasets for Science and Technology Parks (STPs), facilitating future analysis of STP characteristics, trends and performance. STPs are the most representative examples of innovation ecosystems. The ETL (extraction-transformation-load) structure was adapted to a global field study of STPs. A selection stage and quality check were incorporated, and the methodology was applied to Spanish STPs. This study applies diverse techniques such as expert labelling and information extraction which uses language technologies. A novel methodology for building quality and standardised STP datasets was designed and applied to a Spanish STP case study with 49 STPs. An updatable dataset and a list of the main features impacting STPs are presented. Twenty-one (n = 21) core features were refined and selected, with fifteen of them (71.4 %) being robust enough for developing further quality analysis. The methodology presented integrates different sources with heterogeneous information that is often decentralised, disaggregated and in different formats: excel files, and unstructured information in HTML or PDF format. The existence of this updatable dataset and the defined methodology will enable powerful AI tools to be applied that focus on more sophisticated analysis, such as taxonomy, monitoring, and predictive and prescriptive analytics in the innovation ecosystems field.es_ES
dc.description.sponsorshipThis research is supported by the University of Alicante, the Spanish Ministry of Science and Innovation, the Generalitat Valenciana, and the European Regional Development Fund (ERDF) through the following projects: At national level, the following projects were granted: TRIVIAL(PID2021–122263OB-C22); and CORTEX(PID2021–123956OB-I00), funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union” or by the “European Union NextGenerationEU/PRTR”. At regional level, the Generalitat Valenciana (Conselleria d'Educació, Investigació, Cultura i Esport), granted project for NL4DISMIS (CIPROM/2021/21). Moreover, it was backed by the work of two COST Actions: CA19134 - “Distributed Knowledge Graphs” and CA19142 - “Leading Platform for European Citizens, Industries, Academia and Policymakers in Media Accessibility”.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.subjectStandardised datasetes_ES
dc.subjectScience and Technology Park (STP)es_ES
dc.subjectData sciencees_ES
dc.subjectInformation retrievales_ES
dc.subjectMethodologies and toolses_ES
dc.titleA comprehensive methodology to construct standardised datasets for Science and Technology Parkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.datak.2024.102338-
dc.relation.publisherversionhttps://doi.org/10.1016/j.datak.2024.102338es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122263OB-C22es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123956OB-I00es_ES
Appears in Collections:INV - GPLSI - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailFrances_etal_2024_DataKnowlEng.pdf8,59 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.