KD SENSO-MERGER: An architecture for semantic integration of heterogeneous data

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/140267
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorProcesamiento del Lenguaje y Sistemas de Información (GPLSI)es_ES
dc.contributor.authorGutiérrez, Yoan-
dc.contributor.authorAbreu Salas, José Ignacio-
dc.contributor.authorMontoyo, Andres-
dc.contributor.authorMuñoz, Rafael-
dc.contributor.authorEstévez-Velarde, Suilan-
dc.contributor.otherUniversidad de Alicante. Departamento de Lenguajes y Sistemas Informáticoses_ES
dc.date.accessioned2024-01-31T16:19:26Z-
dc.date.available2024-01-31T16:19:26Z-
dc.date.issued2024-01-19-
dc.identifier.citationEngineering Applications of Artificial Intelligence. 2024, 132: 107854. https://doi.org/10.1016/j.engappai.2024.107854es_ES
dc.identifier.issn0952-1976 (Print)-
dc.identifier.issn1873-6769 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/140267-
dc.description.abstractThis paper presents KD SENSO-MERGER, a novel Knowledge Discovery (KD) architecture that is capable of semantically integrating heterogeneous data from various sources of structured and unstructured data (i.e. geolocations, demographic, socio-economic, user reviews, and comments). This goal drives the main design approach of the architecture. It works by building internal representations that adapt and merge knowledge across multiple domains, ensuring that the knowledge base is continuously updated. To deal with the challenge of integrating heterogeneous data, this proposal puts forward the corresponding solutions: (i) knowledge extraction, addressed via a plugin-based architecture of knowledge sensors; (ii) data integrity, tackled by an architecture designed to deal with uncertain or noisy information; (iii) scalability, this is also supported by the plugin-based architecture as only relevant knowledge to the scenario is integrated by switching-off non-relevant sensors. Also, we minimize the expert knowledge required, which may pose a bottleneck when integrating a fast-paced stream of new sources. As proof of concept, we developed a case study that deploys the architecture to integrate population census and economic data, municipal cartography, and Google Reviews to analyze the socio-economic contexts of educational institutions. The knowledge discovered enables us to answer questions that are not possible through individual sources. Thus, companies or public entities can discover patterns of behavior or relationships that would otherwise not be visible and this would allow extracting valuable information for the decision-making process.es_ES
dc.description.sponsorshipThis research is supported by the University of Alicante, Spain, the Spanish Ministry of Science and Innovation, the Generalitat Valenciana, Spain, and the European Regional Development Fund (ERDF) through the following funding: At the national level, the following projects were granted: TRIVIAL (PID2021-122263OB-C22); and CORTEX (PID2021-123956OB-I00), funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by ‘‘ERDF A way of making Europe’’, by the ‘‘European Union’’ or by the ‘‘European Union NextGenerationEU/PRTR’’. At regional level, the Generalitat Valenciana (Conselleria d’Educacio, Investigacio, Cultura i Esport), Spain, granted funding for NL4DISMIS (CIPROM/2021/21).es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.subjectHeterogeneous dataes_ES
dc.subjectKnowledge discoveryes_ES
dc.subjectNERCes_ES
dc.subjectNatural language processinges_ES
dc.subjectOntology and knowledge representationes_ES
dc.subjectSemantic data integrationes_ES
dc.titleKD SENSO-MERGER: An architecture for semantic integration of heterogeneous dataes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.engappai.2024.107854-
dc.relation.publisherversionhttps://doi.org/10.1016/j.engappai.2024.107854es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122263OB-C22es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123956OB-I00es_ES
Appears in Collections:INV - GPLSI - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailGutierrez_etal_2024_EngApplArtificIntellig_final.pdf3,59 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.