An AI-based Ventilation KPI using embedded IoT devices

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/131520
Información del item - Informació de l'item - Item information
Título: An AI-based Ventilation KPI using embedded IoT devices
Autor/es: Maciá Pérez, Francisco | Lorenzo Fonseca, Iren | Berna-Martinez, Jose Vicente
Grupo/s de investigación o GITE: GrupoM. Redes y Middleware
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Palabras clave: Key performance indicator | Smart University | AI | ANN | Embedded sensors | IoT
Fecha de publicación: 19-ene-2024
Editor: IEEE
Cita bibliográfica: IEEE Embedded Systems Letters. 2024. https://doi.org/10.1109/LES.2023.3238284
Resumen: The air ventilation of enclosed premises has a direct impact on the occupants well-being. If not properly regulated, the air ventilation can originate a multitude of diseases and pathologies. The present study proposes a new KPI (ventilation KPI) adapted to Smart Cities. It is especially designed for academic environments (Smart Universities) in which community members spend a long time gathered in classrooms, seminars, laboratories, etc. The ventilation KPI (or KPIv) was designed to support decision-making and is based on the estimation of the number of occupants of an enclosed space and the accumulation of existing CO2. Two AI techniques are proposed to perform these estimations, specifically, two regressive neural networks. The resulting models, together with the KPI were implemented through the development of value-added services for the University of Alicantes Smart University platform. The network models were designed to be embedded within the built IoT device prototypes. These prototypes are small and inexpensive. They act as intelligent sensors and are connected via a low consumption and emission network (LoRa). The case study showed that it is possible to take advantage of the pre-existing services and resources of these platforms, and to validate the KPIv.
URI: http://hdl.handle.net/10045/131520
ISSN: 1943-0663 (Print) | 1943-0671 (Online)
DOI: 10.1109/LES.2023.3238284
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Revisión científica: si
Versión del editor: https://doi.org/10.1109/LES.2023.3238284
Aparece en las colecciones:INV - GrupoM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMacia-Perez_etal_2024_IEEE-ESL.pdf245,94 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.