Intelligent Ensembling of Auto-ML System Outputs for Solving Classification Problems
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/125532
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | Procesamiento del Lenguaje y Sistemas de Información (GPLSI) | es_ES |
dc.contributor.author | Consuegra-Ayala, Juan Pablo | - |
dc.contributor.author | Gutiérrez, Yoan | - |
dc.contributor.author | Almeida-Cruz, Yudivian | - |
dc.contributor.author | Palomar, Manuel | - |
dc.contributor.other | Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos | es_ES |
dc.contributor.other | Universidad de Alicante. Instituto Universitario de Investigación Informática | es_ES |
dc.date.accessioned | 2022-07-25T06:54:13Z | - |
dc.date.available | 2022-07-25T06:54:13Z | - |
dc.date.issued | 2022-07-18 | - |
dc.identifier.citation | Information Sciences. 2022, 609: 766-780. https://doi.org/10.1016/j.ins.2022.07.061 | es_ES |
dc.identifier.issn | 0020-0255 (Print) | - |
dc.identifier.issn | 1872-6291 (Online) | - |
dc.identifier.uri | http://hdl.handle.net/10045/125532 | - |
dc.description.abstract | Automatic Machine Learning (Auto-ML) tools enable the automatic solution of real-world problems through machine learning techniques. These tools tend to be more time consuming than standard machine learning libraries, therefore, exploiting all the available resources to the full is a valuable feature. This paper presents a two-phase optimization system for solving classification problems. The system is designed to produce more robust classifiers by exploiting the different architectures that are generated while solving classification problems with Auto-ML tools, particularly AutoGOAL. In the first phase, the system follows a probabilistic strategy to find the best combination of algorithms and hyperparameters to generate a collection of base models according to certain diversity criteria; and in the second, it follows similar Auto-ML strategies to ensemble those models. The HAHA 2019 challenge corpus and the Adult dataset were used to evaluate the system. The experimental results show that: i) a better solution can be built by ensembling a subset of the already tested models; ii) the performance of ensemble methods depends on the collection of base models used; and, iii) ensuring diversity using the double-fault measure produces better results than the disagreement measure. The source code is available online for the research community. | es_ES |
dc.description.sponsorship | This research has been partially funded by the University of Alicante and the University of Havana, the Generalitat Valenciana (Conselleria d’Educació, Investigació, Cultura i Esport) and the Spanish Government through the projects LIVING-LANG (RTI2018-094653-B-C22), INTEGER (RTI2018-094649-B-I00) and SIIA (PROMETEO/2018/089, PROMETEU/2018/089). Moreover, it has been backed by the work of both COST Actions: CA19134 - “Distributed Knowledge Graphs” and CA19142 - “Leading Platform for European Citizens, Industries, Academia and Policymakers in Media Accessibility”. | es_ES |
dc.language | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | © 2022 Elsevier Inc. | es_ES |
dc.subject | Ensemble Methods | es_ES |
dc.subject | Auto-ML | es_ES |
dc.subject | Grammatical Evolution | es_ES |
dc.subject | Supervised Learning | es_ES |
dc.title | Intelligent Ensembling of Auto-ML System Outputs for Solving Classification Problems | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.peerreviewed | si | es_ES |
dc.identifier.doi | 10.1016/j.ins.2022.07.061 | - |
dc.relation.publisherversion | https://doi.org/10.1016/j.ins.2022.07.061 | es_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094653-B-C22 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094649-B-I00 | es_ES |
Appears in Collections: | INV - GPLSI - Artículos de Revistas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | Accepted Manuscript (acceso abierto) | 776,39 kB | Adobe PDF | Open Preview |
![]() | Versión final (acceso restringido) | 1,03 MB | Adobe PDF | Open Request a copy |
Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.