Progress in Ternary Metal Oxides as Photocathodes for Water Splitting Cells: Optimization Strategies

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/120909
Información del item - Informació de l'item - Item information
Título: Progress in Ternary Metal Oxides as Photocathodes for Water Splitting Cells: Optimization Strategies
Autor/es: Díez García, María Isabel | Gómez, Roberto
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Artificial photosynthesis | Doping | Overlayers | Photoelectrochemical cells | Ptype semiconductor materials | Solar hydrogen production | Underlayers | Water splitting
Área/s de conocimiento: Química Física
Fecha de publicación: 28-dic-2021
Editor: Wiley-VCH GmbH
Cita bibliográfica: Solar RRL. 2022, 6(4): 2100871. https://doi.org/10.1002/solr.202100871
Resumen: The conversion of solar energy into fuels and, specifically hydrogen, is a critical process for ensuring the sustainability of the future energy system. Among the different ways of converting solar energy into fuels and chemicals, photoelectrochemical tandem cells, containing two photoactive materials, stand out as they have the potential for direct solar-to-fuel conversion, thus minimizing cost. The implementation of photoelectrolysis for hydrogen generation is hindered by the lack of suitable electrode materials, particularly photocathodes. Among the candidates for photocathodes, ternary (and multinary) transition metal oxides have the advantage of lower cost and, potentially, higher stability than other metal compounds. Herein, the aim is to provide an overview of the current state of the art for ternary oxides (spinels, delafossites, perovskites, etc.), with a focus on the modification strategies that can optimize their behavior and applicability. Both copper-based and iron-based ternary oxides are the most studied and, currently, the most promising. Among the strategies being used for their optimization, doping, the deposition of underlayers and overlayers, and the use of cocatalysts are the most popular. However, it is apparent that both solar-to-hydrogen efficiencies and stability will need to be addressed in the future. Some guidelines in this respect are also provided.
Patrocinador/es: The authors gratefully acknowledge funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 760930 (FotoH2 project).
URI: http://hdl.handle.net/10045/120909
ISSN: 2367-198X
DOI: 10.1002/solr.202100871
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Authors. Solar RRL published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Revisión científica: si
Versión del editor: https://doi.org/10.1002/solr.202100871
Aparece en las colecciones:INV - GFES - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDiez-Garcia_Gomez_2022_SolarRRL.pdf9,16 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons