Analysis of Spontaneous Ignition of Grass: Chemical Oxidation and Water Vapor Sorption

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/120197
Información del item - Informació de l'item - Item information
Título: Analysis of Spontaneous Ignition of Grass: Chemical Oxidation and Water Vapor Sorption
Autor/es: Font, Rafael
Grupo/s de investigación o GITE: Residuos, Energía, Medio Ambiente y Nanotecnología (REMAN)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Ignition | Self-heating | Water vapor sorption | Chemical oxidation | Kinetics | Grass
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 16-dic-2021
Editor: Springer Nature
Cita bibliográfica: Fire Technology. 2022, 58: 1363-1390. https://doi.org/10.1007/s10694-021-01202-1
Resumen: Self-heating of biomass by chemical oxidation, which can cause spontaneous ignition, is a safety and management concern. This process can be accelerated by aerobic fermentation and water vapor sorption. The chemical oxidation and water vapor sorption of grass were studied in a laboratory oven, measuring the variations in weight and the internal temperature of a sphere with grass within a flexible polymeric network. Both processes were simulated to prove that the proposed mathematical model could fit the experimental data. It was observed that the water vapor sorption capacity of the grass was high, so the experimental increase in the internal temperature of a spherical body was around 47 K, from 73°C to 120°C. This fact can be very important because the chemical oxidation of grass accelerates at high temperatures. For scaling, simulation programs were used to study the sorption and oxidation processes with an increase in internal temperature in spherical bodies and infinite plane slabs. These results can be used to obtain those of other geometric symmetries by interpolation. It was deduced that at 70°C and with vapor sorption, the ignition time can be around 3 days to 5 days, while without vapor sorption, the ignition times can be around 110 days to 140 days. For 35°C the ignition times with vapor sorption can be around 12 days to 18 days, while without vapor sorption the ignition times can be around 3700 days to 4500 days. These results can be of interest for warehouses of similar biomass and for forestry research and management groups of wildfires.
Patrocinador/es: Funding is from the University of Alicante. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
URI: http://hdl.handle.net/10045/120197
ISSN: 0015-2684 (Print) | 1572-8099 (Online)
DOI: 10.1007/s10694-021-01202-1
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Revisión científica: si
Versión del editor: https://doi.org/10.1007/s10694-021-01202-1
Aparece en las colecciones:INV - REMAN - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailFont_2022_FireTechnol.pdf2,03 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons