Three-dimensional and long-term landslide displacement estimation by fusing C- and L-band SAR observations: A case study in Gongjue County, Tibet, China

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/119366
Información del item - Informació de l'item - Item information
Título: Three-dimensional and long-term landslide displacement estimation by fusing C- and L-band SAR observations: A case study in Gongjue County, Tibet, China
Autor/es: Liu, Xiaojie | Zhao, Chaoying | Zhang, Qin | Yin, Yueping | Lu, Zhong | Samsonov, Sergey | Yang, Chengsheng | Wang, Meng | Tomás, Roberto
Grupo/s de investigación o GITE: Ingeniería del Terreno y sus Estructuras (InTerEs)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Civil
Palabras clave: Landslide | Jinsha River | Tibet | InSAR | 3D displacements | Long-term displacement time series
Área/s de conocimiento: Ingeniería del Terreno
Fecha de publicación: 21-oct-2021
Editor: Elsevier
Cita bibliográfica: Remote Sensing of Environment. 2021, 267: 112745. https://doi.org/10.1016/j.rse.2021.112745
Resumen: Recently, a large number of synthetic aperture radar (SAR) images has been introduced into landslide investigations with the growing launch of new SAR satellites, such as ALOS/PALSAR-2 and Sentinel-1. Therefore, it is appropriate to develop new approaches to retrieve three-dimensional (3D) displacements and long-term (> 10 years) displacement time series to investigate the spatio-temporal evolution and creep behavior of landslides. In this study, a new approach for the estimation of 3D and long-term displacement time series of landslides, based on the fusion of C- and L-band SAR observations, is presented. This method is applied to map 3D and long-term displacements (nearly 12 years) of the landslides in Gongjue County, Tibet in China; four sets of SAR images from different platforms (i.e., L-band ascending ALOS/PALSAR-1, C-band descending ENVISAT, and C-band ascending and descending Sentinel-1 SAR datasets) covering the period of January 2007 to November 2018 were collected and exploited. First, the assumption that the landslide moves parallel to its ground surface is used to produce 3D displacement rates and time series by fusing ascending and descending Sentinel-1 SAR images, from which the optimal sliding direction for each pixel of the slope is well estimated. Then, the long-term displacement time-series of the landslide between January 2007 and October 2018 in the estimated sliding direction is recovered by fusing L-band ALOS/PALSAR-1 and C-band Sentinel-1 SAR images. In order to fill the time gap of nearly four years between ALOS/PALSAR-1 and Sentinel-1 SAR images, the Tikhonov regularization (TR) method is developed to establish the observational equation. Moreover, to solve the problem arising from ALOS/PALSAR-1 and Sentinel-1 images with different wavelengths, incidence angles and flight directions, the measurements from ALOS/PALSAR-1 and Sentinel-1 images are both projected to the estimated optimal sliding direction to achieve a unified displacement datum. Our results from ascending and descending Sentinel-1 images suggest that the maximum displacement rates of the study area in the vertical and east-west directions from December 2016 to October 2018 were greater than 70 and 80 mm/year, respectively, and 2D displacement results reveal that the displacement patterns and movement characteristics of all the detected landslides are not identical in the study area. Specifically, the 3D displacement results successfully revealed the spatiotemporal displacement patterns and movement direction of each block of the Shadong landslide, and long-term displacement time series showed for the first time that the maximum cumulative displacement exceeds 1.3 m from January 2007 to October 2018. Moreover, the kinematic evolution and possible driving factors of landslides were investigated using 2D and 3D and long-term displacement results, coupled with hydrological factors and unidimensional constitutive models of the rocks.
Patrocinador/es: This research was financially funded by the Natural Science Foundation of China (Grant Nos. 41874005, 41929001, 41731066), the Fundamental Research Funds for the Central University (Grant Nos. 300102269712 and 300102269303), and China Geological Survey Project (DD20190637 and DD20190647). This research was also supported by a Chinese Scholarship Council studentship awarded to Xiaojie Liu (Ref. 202006560031). Roberto Tomás was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO), the State Agency of Research (AEI) and European Funds for Regional Development (FEDER) under project TEMUSA (TEC2017-85244-C2-1-P).
URI: http://hdl.handle.net/10045/119366
ISSN: 0034-4257 (Print) | 1879-0704 (Online)
DOI: 10.1016/j.rse.2021.112745
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 Elsevier Inc.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.rse.2021.112745
Aparece en las colecciones:INV - INTERES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLiu_etal_2021_RemoteSensEnviron_final.pdfVersión final (acceso restringido)36,97 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailLiu_etal_2021_RemoteSensEnviron_preprint.pdfPreprint (acceso abierto)3,34 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.