Design of CeO2-supported LaNiO3 perovskites as precursors of highly active catalysts for CO2 methanation

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/116663
Información del item - Informació de l'item - Item information
Título: Design of CeO2-supported LaNiO3 perovskites as precursors of highly active catalysts for CO2 methanation
Autor/es: Onrubia-Calvo, Jon A. | Pereda-Ayo, Beñat | González-Marcos, José A. | Bueno López, Agustín | González-Velasco, Juan R.
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: CeO2 | LaNiO3 | Perovskites | Catalysts | CO2 methanation
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 16-jun-2021
Editor: Royal Society of Chemistry
Cita bibliográfica: Catalysis Science & Technology. 2021, 11: 6065-6079. https://doi.org/10.1039/D1CY00659B
Resumen: This work investigates the viability of 10–50% LaNiO3/CeO2 formulations, prepared by combined citric acid and impregnation methods, as precursors of highly active and stable materials for CO2 methanation. The prepared materials were widely characterized before and after the controlled reduction process. XRD and STEM-EDS mapping analysis confirmed the ex-solution of Ni NPs during reduction of LaNiO3/CeO2 formulations, leading to Ni–La2O3/CeO2 formation. Low LaNiO3 loading favored the ex-solution of small-sized Ni NPs (<5 nm) highly dispersed over CeO2 and La2O3 surfaces. H2-TPR experiments revealed that the higher reducibility of the samples prepared with low LaNiO3 loading promoted the H2 activation at lower temperatures. XPS experiments suggest that this promotion is due to the higher accessibility of Ni as well as Ni–ceria interaction. The material obtained after the reduction of the 10% LaNiO3/CeO2 formulation shows a higher concentration of weak–medium basic sites due to a higher accessibility of Ni NPs, La2O3 phase and Ni–CeO2 interface. The easier hydrogenation of CO2 adsorbed on these basic sites, together with the promoted H2-activation, maximized the CO2 methanation in the kinetically controlled region for this catalyst up to 71%. The intensification of Ni, La2O3 and CeO2 interactions also enhanced the CO2 methanation efficiency and the stability of the conventional 8.5% Ni/CeO2 catalyst. Thus, the 10% LaNiO3/CeO2 precursor emerges as a novel formulation to obtain highly active, selective and stable catalysts for CO2 methanation.
Patrocinador/es: Support for this study was provided by the Spanish Ministry of Economy and Competitiveness (Project PID2019-105960RB-C21 and PID2019-105960RB-C22) and the Basque Government (Project IT1297-19). One of the authors (JAOC) acknowledges the post-doctoral research grant (DOCREC20/49) provided by the University of the Basque Country.
URI: http://hdl.handle.net/10045/116663
ISSN: 2044-4753 (Print) | 2044-4761 (Online)
DOI: 10.1039/D1CY00659B
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Royal Society of Chemistry 2021
Revisión científica: si
Versión del editor: https://doi.org/10.1039/D1CY00659B
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailOnrubia-Calvo_etal_2021_CatalSciTechnol_final.pdfVersión final (acceso restringido)5,22 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.