Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/111083
Información del item - Informació de l'item - Item information
Título: Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer
Autor/es: Trocino, Stefano | Lo Vecchio, Carmelo | Zignani, Sabrina Campagna | Carbone, Alessandra | Saccà, Ada | Baglio, Vincenzo | Gómez, Roberto | Aricò, Antonino Salvatore
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Water splitting | Photoelectrolysis cell | Photoelectrochemical cell | Carbonaceous gas diffusion layer | Green hydrogen | Dry hydrogen | Semiconductor | Solar fuel | Non-critical raw materials | Solar-to-fuel efficiency
Área/s de conocimiento: Química Física
Fecha de publicación: 13-nov-2020
Editor: MDPI
Cita bibliográfica: Trocino S, Lo Vecchio C, Campagna Zignani S, Carbone A, Saccà A, Baglio V, Gómez R, Aricò AS. Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts. 2020; 10(11):1319. https://doi.org/10.3390/catal10111319
Resumen: A photoelectrochemical tandem cell (PEC) based on a cathodic hydrophobic gas-diffusion backing layer was developed to produce dry hydrogen from solar driven water splitting. The cell consisted of low cost and non-critical raw materials (CRMs). A relatively high-energy gap (2.1 eV) hematite-based photoanode and a low energy gap (1.2 eV) cupric oxide photocathode were deposited on a fluorine-doped tin oxide glass (FTO) and a hydrophobic carbonaceous substrate, respectively. The cell was illuminated from the anode. The electrolyte separator consisted of a transparent hydrophilic anionic solid polymer membrane allowing higher wavelengths not absorbed by the photoanode to be transmitted to the photocathode. To enhance the oxygen evolution rate, a NiFeOX surface promoter was deposited on the anodic semiconductor surface. To investigate the role of the cathodic backing layer, waterproofing and electrical conductivity properties were studied. Two different porous carbonaceous gas diffusion layers were tested (Spectracarb® and Sigracet®). These were also subjected to additional hydrophobisation procedures. The Sigracet 35BC® showed appropriate ex-situ properties for various wettability grades and it was selected as a cathodic substrate for the PEC. The enthalpic and throughput efficiency characteristics were determined, and the results compared to a conventional FTO glass-based cathode substrate. A throughput efficiency of 2% was achieved for the cell based on the hydrophobic backing layer, under a voltage bias of about 0.6 V, compared to 1% for the conventional cell. For the best configuration, an endurance test was carried out under operative conditions. The cells were electrochemically characterised by linear polarisation tests and impedance spectroscopy measurements. X-Ray Diffraction (XRD) patterns and Scanning Electron Microscopy (SEM) micrographs were analysed to assess the structure and morphology of the investigated materials.
Patrocinador/es: Authors gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 760930 (FotoH2 project).
URI: http://hdl.handle.net/10045/111083
ISSN: 2073-4344
DOI: 10.3390/catal10111319
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/catal10111319
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - GFES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailTrocino_etal_2020_Catalysts.pdf4,44 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons