Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/110541
Información del item - Informació de l'item - Item information
Title: Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas
Authors: Villacampa, Yolanda | Navarro-González, Francisco J. | Hernández, Gabriela | Laddaga, Juan | Confalone, Adriana
Research Group/s: Modelización Matemática de Sistemas
Center, Department or Service: Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Prediction model | PAR radiation | Thermal time | Biomass accumulation
Knowledge Area: Matemática Aplicada
Issue Date: 24-Nov-2020
Publisher: MDPI
Citation: Villacampa Y, Navarro-González FJ, Hernández G, Laddaga J, Confalone A. Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas. Sustainability. 2020; 12(23):9829. https://doi.org/10.3390/su12239829
Abstract: The Pampas region is characterized by a high complexity in its productive system planning and faces the challenge of satisfying future food demands, as well as reducing the environmental impact of the activity. Climate change affects crops and farmers should use species capable of adapting to the changed climate. Among these species, faba bean (Vicia faba L.) cv. ‘Alameda’ has shown good adaptation to weather variability and, as a winter legume, it can help maintain the sustainability of agricultural systems in the area. The main purpose of this research was to select the models which describe the production characteristics of the ‘Alameda’ bean by using the least number of variables. Experimental and agrometeorological data from the cultivation of the ‘Alameda’ in Azul, Buenos Aires province, Argentina were used to generate mathematical models. Several modelling methodologies have been applied to study the production characteristics of the faba bean. The prediction of the models generated was analyzed by randomly disturbing the experimental data and analyzing the magnitude of the errors produced. The models obtained will be useful for predicting the biomass production of the faba bean cv. ‘Alameda’ grown in the agroclimatic conditions of Azul, Buenos Aires province, Argentina.
URI: http://hdl.handle.net/10045/110541
ISSN: 2071-1050
DOI: 10.3390/su12239829
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/su12239829
Appears in Collections:INV - MMS - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailVillacampa_etal_2020_Sustainability.pdf4,55 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons