Assessing the Predictive Performance of Probabilistic Caries Risk Assessment Models: The Importance of Calibration

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Assessing the Predictive Performance of Probabilistic Caries Risk Assessment Models: The Importance of Calibration
Authors: Trottini, Mario | Campus, Guglielmo | Corridore, Denise | Cocco, Fabio | Cagetti, Maria Grazia | Vigo, Isabel | Polimeni, Antonella | Bossù, Maurizio
Research Group/s: Geodesia por Satélites para la Observación de la Tierra y el Cambio Climático / Satellite Geodesy for Earth Observation and Climate Studies (SG) | Grupo de Investigación en Ciencias de la Actividad Física y el Deporte (GICAFD)
Center, Department or Service: Universidad de Alicante. Departamento de Matemáticas | Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Caries risk assessment | Cariogram | Calibration | Discrimination
Knowledge Area: Estadística e Investigación Operativa | Matemática Aplicada
Issue Date: Oct-2020
Publisher: Karger
Citation: Caries Research. 2020, 54: 258-265.
Abstract: Probabilistic caries risk assessment models (P-CRA), such as the Cariogram, are promising tools to planning treatments in order to control and prevent caries. The usefulness of these models for informing patients and medical decision-making depends on 2 properties known as discrimination and calibration. Current common assessment of P-CRA models, however, ignores calibration, and this can be misleading. The aim of this paper was to provide tools for a proper assessment of calibration of the P-CRA models and improve calibration when lacking. A combination of standard calibration tools (calibration plot, calibration in-the-large, and calibration slope) and 3 novel measures of calibration (the Calibration Index and 2 related metrics, E50 and E90) are proposed to evaluate if a P-CRA model is well calibrated. Moreover, an approach was proposed and validated using data from a previous follow-up study performed on children evaluated by means of a reduced Cariogram model; Platt scaling and isotonic regression were applied showing a lack of calibration. The use of the Cariogram overestimates the actual risk of new caries for forecast probabilities <0.5 and underestimates the risk for forecast probabilities >0.6. Both Platt scaling and isotonic regression were able to significantly improve the calibration of the reduced Cariogram model, preserving its discrimination properties. The average specificity and sensitivity for both Platt scaling and isotonic regression using the cut-off point p= 0.5 were >83 and their sum well exceeded 160. The benefits of the proposed calibration methods are promising, but further research in this field is required.
ISSN: 0008-6568 (Print) | 1421-976X (Online)
DOI: 10.1159/000507276
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 S. Karger AG, Basel
Peer Review: si
Publisher version:
Appears in Collections:INV - GICAFD - Artículos de Revistas
INV - SG - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailTrottini_etal_2020_CariesRes_final.pdfVersión final (acceso restringido)188,88 kBAdobe PDFOpen    Request a copy
ThumbnailTrottini_etal_2020_CariesRes_preprint.pdfPreprint (acceso abierto)602,56 kBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.