Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/109314
Información del item - Informació de l'item - Item information
Title: Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support
Authors: Navarro-González, Francisco J. | Villacampa, Yolanda | Cortés-Molina, Mónica | Ivorra, Salvador
Research Group/s: Modelización Matemática de Sistemas | Grupo de Ensayo, Simulación y Modelización de Estructuras (GRESMES)
Center, Department or Service: Universidad de Alicante. Departamento de Matemática Aplicada | Universidad de Alicante. Departamento de Ingeniería Civil
Keywords: Numerical modelling | Algorithm | Radial kernels | Local mesh support | Non-linear models
Knowledge Area: Matemática Aplicada | Mecánica de Medios Contínuos y Teoría de Estructuras
Issue Date: 17-Sep-2020
Publisher: MDPI
Citation: Navarro-González FJ, Villacampa Y, Cortés-Molina M, Ivorra S. Numerical Non-Linear Modelling Algorithm Using Radial Kernels on Local Mesh Support. Mathematics. 2020; 8(9):1600. https://doi.org/10.3390/math8091600
Abstract: Estimation problems are frequent in several fields such as engineering, economics, and physics, etc. Linear and non-linear regression are powerful techniques based on optimizing an error defined over a dataset. Although they have a strong theoretical background, the need of supposing an analytical expression sometimes makes them impractical. Consequently, a group of other approaches and methodologies are available, from neural networks to random forest, etc. This work presents a new methodology to increase the number of available numerical techniques and corresponds to a natural evolution of the previous algorithms for regression based on finite elements developed by the authors improving the computational behavior and allowing the study of problems with a greater number of points. It possesses an interesting characteristic: Its direct and clear geometrical meaning. The modelling problem is presented from the point of view of the statistical analysis of the data noise considered as a random field. The goodness of fit of the generated models has been tested and compared with some other methodologies validating the results with some experimental campaigns obtained from bibliography in the engineering field, showing good approximation. In addition, a small variation on the data estimation algorithm allows studying overfitting in a model, that it is a problematic fact when numerical methods are used to model experimental values.
Sponsor: This research has been partially funded by the Spanish Ministry of Science, Innovation and Universities, grant number RTI2018-101148-B-I00.
URI: http://hdl.handle.net/10045/109314
ISSN: 2227-7390
DOI: 10.3390/math8091600
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/math8091600
Appears in Collections:INV - MMS - Artículos de Revistas
INV - GRESMES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailNavarro-Gonzalez_etal_2020_Mathematics.pdf1,51 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons