Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/106009
Información del item - Informació de l'item - Item information
Title: Wavelet analysis of land subsidence time-series: Madrid Tertiary aquifer case study
Authors: Tomás, Roberto | Pastor Navarro, José Luis | Béjar Pizarro, Marta | Bonì, Roberta | Ezquerro Martín, Pablo | Fernández-Merodo, José Antonio | Guardiola-Albert, Carolina | Herrera García, Gerardo | Meisina, Claudia | Teatini, Pietro | Zucca, Francesco | Zoccarato, Claudia | Franceschini, Andrea
Research Group/s: Ingeniería del Terreno y sus Estructuras (InTerEs)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil
Keywords: Wavelet analysis | Madrid aquifer | Land subsidence
Knowledge Area: Ingeniería del Terreno
Issue Date: 22-Apr-2020
Publisher: Copernicus Publications
Citation: Proceedings of the International Association of Hydrological Sciences. 2020, 382: 353-359. doi:10.5194/piahs-382-353-2020
Abstract: Interpretation of land subsidence time-series to understand the evolution of the phenomenon and the existing relationships between triggers and measured displacements is a great challenge. Continuous wavelet transform (CWT) is a powerful signal processing method mainly suitable for the analysis of individual nonstationary time-series. CWT expands time-series into the time-frequency space allowing identification of localized nonstationary periodicities. Complementarily, Cross Wavelet Transform (XWT) and Wavelet Coherence (WTC) methods allow the comparison of two time-series that may be expected to be related in order to identify regions in the time-frequency domain that exhibit large common cross-power and wavelet coherence, respectively, and therefore are evocative of causality. In this work we use CWT, XWT and WTC to analyze piezometric and InSAR (interferometric synthetic aperture radar) time-series from the Tertiary aquifer of Madrid (Spain) to illustrate their capabilities for interpreting land subsidence and piezometric time-series information.
Sponsor: This research has been supported by the Spanish Ministry of Economy and Competitiveness, the State Agency of Research and the European Funds for Regional Development (grant no. TEC2017-85244-C2-1-P).
URI: http://hdl.handle.net/10045/106009
ISSN: 2199-899X
DOI: 10.5194/piahs-382-353-2020
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
Peer Review: si
Publisher version: https://doi.org/10.5194/piahs-382-353-2020
Appears in Collections:INV - INTERES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailTomas_etal_2020_ProcIAHS.pdf9,11 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.