Freezing/melting of water in the confined nanospace of carbon materials: Effect of an external stimulus

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/103488
Información del item - Informació de l'item - Item information
Título: Freezing/melting of water in the confined nanospace of carbon materials: Effect of an external stimulus
Autor/es: Cuadrado-Collados, Carlos | Majid, Ahmad A.A. | Martinez-Escandell, Manuel | Daemen, Luke L. | Missyul, Alexander | Koh, Carolyn | Silvestre-Albero, Joaquín
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Freezing/melting | Water | Confined nanospace | Carbon materials | External stimulus
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: mar-2020
Editor: Elsevier
Cita bibliográfica: Carbon. 2020, 158: 346-355. doi:10.1016/j.carbon.2019.10.081
Resumen: Freezing/melting behavior of water confined in the nanopores of activated carbon materials has been evaluated using differential scanning calorimetry (DSC) at different water loadings, and after the application of an external stimulus. Under atmospheric pressure conditions, the DSC scans show a depression in the freezing/melting point of confined water compared to the bulk system. Interestingly, water confined in narrow micropores (pores below 0.7 nm) does not exhibit any phase transition, i.e. it is non-freezable water. Inelastic neutron scattering (INS) data confirm the presence of a distorted molecular assembly in narrow micropores, whereas synchrotron X-ray powder diffraction data (SXRPD) demonstrate the non-freezable nature of the water confined in these narrow-constrictions. Similar experiments under high-pressure CH4 give rise to a completely different scenario. Under high-pressure conditions methane hydrates are formed with a water-to-hydrate yield of 100% for the under-saturated and saturated samples, i.e. in the presence of an external stimulus even water in narrow micropores is prone to experience a liquid-to-solid phase transition. These results confirm the beneficial role of carbon as a host structure to promote nucleation and growth of methane hydrates with faster kinetics and a higher yield compared to the bulk system and to other porous materials.
Patrocinador/es: The authors would like to acknowledge financial support from the MINECO (MAT2016-80285-p), Generalitat Valenciana (PROMETEOII/2014/004), H2020 (MSCA-RISE-2016/NanoMed Project), Spanish ALBA synchrotron (Projects 2018022707 & 2019023322) and Oak Ridge beam time availability (Project IPTS-20843.1).
URI: http://hdl.handle.net/10045/103488
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2019.10.081
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.carbon.2019.10.081
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2020_Cuadrado-Collados_etal_Carbon_final.pdfVersión final (acceso restringido)1,34 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2020_Cuadrado-Collados_etal_Carbon_accepted.pdfAccepted Manuscript (acceso abierto)1,04 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.