Drift of the Earth’s Principal Axes of Inertia from GRACE and Satellite Laser Ranging Data

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/101751
Información del item - Informació de l'item - Item information
Título: Drift of the Earth’s Principal Axes of Inertia from GRACE and Satellite Laser Ranging Data
Autor/es: Ferrandiz, Jose M. | Modiri, Sadegh | Belda, Santiago | Barkin, Mikhail | Bloßfeld, Mathis | Heinkelmann, Robert | Schuh, Harald
Grupo/s de investigación o GITE: Geodesia Espacial y Dinámica Espacial
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Matemática Aplicada
Palabras clave: Earth gravity mission | GRACE | Satellite Laser Ranging | Principal axes of inertia | Earth rotation
Área/s de conocimiento: Matemática Aplicada
Fecha de publicación: 18-ene-2020
Editor: MDPI
Cita bibliográfica: Ferrándiz JM, Modiri S, Belda S, Barkin M, Bloßfeld M, Heinkelmann R, Schuh H. Drift of the Earth’s Principal Axes of Inertia from GRACE and Satellite Laser Ranging Data. Remote Sensing. 2020; 12(2):314. doi:10.3390/rs12020314
Resumen: The location of the Earth’s principal axes of inertia is a foundation for all the theories and solutions of its rotation, and thus has a broad effect on many fields, including astronomy, geodesy, and satellite-based positioning and navigation systems. That location is determined by the second-degree Stokes coefficients of the geopotential. Accurate solutions for those coefficients were limited to the stationary case for many years, but the situation improved with the accomplishment of Gravity Recovery and Climate Experiment (GRACE), and nowadays several solutions for the time-varying geopotential have been derived based on gravity and satellite laser ranging data, with time resolutions reaching one month or one week. Although those solutions are already accurate enough to compute the evolution of the Earth’s axes of inertia along more than a decade, such an analysis has never been performed. In this paper, we present the first analysis of this problem, taking advantage of previous analytical derivations to simplify the computations and the estimation of the uncertainty of solutions. The results are rather striking, since the axes of inertia do not move around some mean position fixed to a given terrestrial reference frame in this period, but drift away from their initial location in a slow but clear and not negligible manner.
Patrocinador/es: J.M.F and S.B were partially supported by Spanish Project AYA2016-79775-P (AEI/FEDER, UE). Also, S.B was supported by the European Research Council (ERC) under the ERC-2017-256 STG SENTIFLEX project (Grant Agreement 755617).
URI: http://hdl.handle.net/10045/101751
ISSN: 2072-4292
DOI: 10.3390/rs12020314
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/rs12020314
Aparece en las colecciones:INV - GEDE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2020_Ferrandiz_etal_RemoteSens.pdf795,97 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons