A.18. El agua es un compuesto cuyas moléculas están formadas por dos átomos de hidrógeno y uno de oxígeno.
a) Representad su molécula y escribid su fórmula química.
b) Cuando el agua hiere a 100 °C y pasa a vapor, ¿podemos decir que sigue siendo agua?, ¿es el vapor de agua una mezcla de oxígeno e hidrógeno? Representad las moléculas de las sustancias en ambos casos.

El modelo atómico-molecular puede explicar la existencia de una enorme variedad de sustancias distintas, tanto si se trata de sustancias simples como de compuestas: cada una de ellas estará constituida por un solo tipo de moléculas, y eso explica que tengan propiedades únicas. Por el contrario, las mezclas, al estar formadas de moléculas diferentes, no pueden tener propiedades únicas. Por ejemplo, la densidad tendrá un valor distinto según la proporción en que se encuentren las sustancias que forman la mezcla.

Una mezcla de los gases hidrógeno (H₂) y oxígeno (O₂) será claramente diferente del agua, ya que las moléculas que las componen son diferentes en cada caso.

Este modelo atómico-molecular, además de explicar la variedad de sustancias, debe explicar las reacciones químicas o procesos en los cuales aparecen sustancias nuevas; y el que, según las condiciones, sea posible recuperar las sustancias iniciales.

A.19. En una reacción química se producen sustancias nuevas (productos) a partir de otras iniciales (reactivos). Propusieron un modelo de reacción química a partir de la hipótesis atómico-molecular. Concretad vuestras respuestas mediante dibujos para la reacción en que se produce agua (H₂O) a partir de oxígeno (O₂) e hidrógeno (H₂).

El que cada sustancia esté caracterizada por un conjunto de propiedades físicas y químicas se interpreta, según la hipótesis atómico-molecular, por estar constituida por moléculas iguales entre sí y diferentes de las de otra sustancia. A su vez, estas moléculas pueden estar formadas por paquetes de átomos unidos entre sí. Así, para el ejemplo que se plantea, si a partir de oxígeno e hidrógeno, cuyas moléculas están formadas por dos átomos de oxígeno e hidrógeno respectivamente (O₂ y H₂), se ha formado agua,
cuyas moléculas están constituidas por dos átomos de hidrógeno y uno de oxígeno (H₂O), se puede suponer la rotura de las moléculas de oxígeno y de hidrógeno y la formación de uniones entre cada átomo de oxígeno y cada dos átomos de hidrógeno. De esta forma, un modelo de reacción química, coherente con la hipótesis atómico-molecular de las sustancias, supondría una redistribución de átomos tal que acaben formando moléculas diferentes de las iniciales y, por tanto, sustancias diferentes.

Esta hipótesis plantea, no obstante, problemas importantes; entre otros: ¿cómo se rompen las moléculas en una reacción química?, ¿qué mantiene unidos a los átomos formando moléculas? En este momento, sólo se puede aventurar que sean fuerzas de naturaleza eléctrica las responsables de la unión de los átomos, y que el movimiento de las moléculas podría producir los choques necesarios para la ruptura de esas uniones. Como vemos, existe una necesidad clara del estudio de estas moléculas y del propio átomo para dar respuesta fundamentada a estas preguntas. Posteriormente tendremos que profundizar en estos aspectos.

Para realizar una representación gráfica de las moléculas que intervienen en la reacción deberemos utilizar el número de moléculas de cada tipo que aporten los átomos necesarios para la formación de moléculas de producto. En el caso del ejemplo planteado, por cada molécula de O₂, se formarán dos moléculas de H₂O, y por tanto, serán necesarias dos moléculas de H₂ para que, al reaccionar, se aporten los átomos necesarios. Gráficamente, se puede expresar de esta forma:

\[
\text{O}_2 + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O}
\]

Utilizando las fórmulas químicas para las especies implicadas en la reacción, se puede escribir lo que se conoce como ecuación química:

Esta ecuación química nos indica la proporción entre las moléculas que intervienen; o sea: por cada molécula de O₂ que reacciona, son necesarias 2 moléculas de H₂ para formar 2 moléculas de H₂O.
A.20. Realizad representaciones gráficas de las moléculas que intervienen y escribid las ecuaciones químicas de las reacciones químicas siguientes:

a) El cloro (Cl₂) reacciona con el hidrógeno (H₂) para formar cloruro de hidrógeno (HCl).
b) Cuando el monóxido de carbono (CO) reacciona con el oxígeno (O₂), se obtiene dióxido de carbono (CO₂).
c) La formación de amoníaco (NH₃) a partir de nitrógeno (N₂) y de hidrógeno (H₂).

Anteriormente vimos una reacción en la que se formaba un precipitado blanco al añadir unas gotas de nitrato de plata sobre agua del grifo. Este precipitado desaparecía al añadir amoníaco y volvía a aparecer con ácido sulfúrico. Ahora podemos explicar la aparición del precipitado blanco por la aparición de una sustancia nueva consecuencia de una reacción química; a la vez, esta sustancia podía descomponerse y volver a formar las sustancias iniciales al añadir amoníaco, y recuperarse al añadir ácido sulfúrico. Es decir, se trataría de una reacción reversible que puede evolucionar en un sentido o en otro según las condiciones de la reacción.

A.21. Explicad cómo a partir de oxígeno se obtiene ozono y, también, cómo a partir del ozono puede recuperarse el oxígeno.

Gracias a la hipótesis atómico-molecular de las sustancias y el modelo de reacción química elaborado, podemos suponer que las moléculas, formadas por unión de átomos, pueden romperse y volver a formar las moléculas iniciales, siendo el número de átomos existentes, antes y después de la reacción, el mismo. En la mayoría de las reacciones, en donde no se extraen los productos de reacción del recipiente donde reaccionan, en realidad, se dan las dos reacciones, ya que las moléculas de producto pueden, mediante choques, romperse y propiciar uniones entre átomos para volver a formar las moléculas de las sustancias iniciales.

Estas consideraciones del modelo de reacción nos llevarían a escribir las ecuaciones químicas, para un caso como el propuesto en la actividad anterior, en la forma: 3 O₂ ↔ 2 O₃

Parece, pues, que el modelo atómico-molecular de las sustancias puede explicar, cualitativamente, los problemas planteados. Pero es necesario ir más allá y realizar predicciones que se puedan contrastar experimentalmente.

E.7. Un alumno ha escrito las siguientes ecuaciones químicas, para representar algunas reacciones:

a) O₂ + O → O₃
b) 2N + 3H → 2NH₃
c) H₂ + O₂ → H₂O

Corregid razonadamente los errores que ha cometido.
A.22. Una reacción química supone una reordenación de átomos, produciéndose la ruptura de las moléculas reaccionantes, y uniones distintas entre los átomos para formar nuevas moléculas. Sugerid alguna consecuencia, respecto de las masas de las sustancias que intervienen en la reacción, que pueda contrastarse experimentalmente.

En los ejemplos de ecuaciones químicas, hemos tenido especial cuidado en escribir el número de moléculas, de reactivos y de productos, necesarias para que exista igual número de átomos antes y después de la reacción. Como la masa de las sustancias está directamente relacionada con el número de átomos de las distintas sustancias, debemos concluir que la suma de las masas de los reactivos es igual a la suma de las masas de los productos. Este principio de conservación de la masa en las reacciones químicas fue enunciado por Antoine L. de Lavoisier después de trabajos muy minuciosos en 1789.

La conservación de la masa en las reacciones químicas no parece ofrecer duda teniendo en cuenta el número de átomos que intervienen; no obstante, su contrastación experimental puede presentar problemas en algunos casos.

Joaquín Martínez Torregrosa

A.23. Las siguientes reacciones químicas parecen contradecir el principio de conservación de la masa que hemos establecido. Sugerid posibles explicaciones:

a) Cuando se oxida un trozo de hierro, sufre un aumento de masa.

b) Después de añadir vinagre al bicarbonato de sodio, el vaso de reacción presenta una disminución de masa.

c) Al quemar una madera, la ceniza pesa menos que el tronco original.