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Abstract 

The photocatalytic dehydrogenation of formic acid has recently emerged as an 

outstanding alternative to the traditional thermal catalysts widely applied in this reaction. 

The utilization of photocatalytic processes for the production of hydrogen is an appealing 

strategy that perfectly matches with the idea of green and sustainable future energy 

scenario. However, it sounds easier than it is, and great efforts have been needed to design 

and develop highly efficient photocatalysts for the production of hydrogen from formic 

acid. In this work, some of the most representative strategies adopted for this application 

are reviewed, by paying particular attention to those systems based on TiO2, CdS and 

C3N4.  

 

Keywords: Hydrogen production, formic acid, photocatalyst, semiconductor, 

heterojunction.  
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1. Introduction 

Hydrogen holds great hope in the current energy scenario as a promising energy vector 

able to replace the widely used vectors based on fossil fuels (coal, oil, and gas). This is 

not only due to the rapid depletion of fossil fuel reserves, but also due to the increasing 

energy demand experienced in the last decades and the negative impact of the use of such 

fuels due to the generation of greenhouse gases [1]. Among greenhouse gases, carbon 

dioxide (CO2) is the largest contributor to climate change [2]. As a proof of the impact of 

the anthropogenic activities in the emission of CO2, its concentration in the atmosphere 

has greatly increased since the Industrial Revolution (270–275 ppm in 1750; 310 ppm in 

1950; 408 ppm in 2018), with a total emission of 36 Gt CO2 per year, being 91% of it 

generated by anthropogenic activities  [3].  

The worldwide concern about the climate change has resulted in global agreements to 

combat its tragic consequences, such as the Kyoto Protocol and the more recent Paris 

Agreement (United Nations Framework Convention on Climate Change; UNFCCC) [4], 

which aims at keeping global warming below 2 °C. In such energy context, the role of 

renewable and clean energy is gaining more and more importance. Among them, the use 

of solar and wind energy as well as hydropower are green energy power sources of interest 

and they can satisfy the global energy demand. Such renewable sources display 

advantages as compared to fossil fuels and nuclear-based energy: (i) low variable cost of 

production; (ii) no production of waste linked to the generation of power; (ii) applicability 

for decentralized power generation [5].  

However, their obvious advantages come with important drawbacks related to their 

intrinsically dependence on day-night intervals, seasons and fluctuating environmental 

conditions that result in periods of deficit and surplus of energy output [6, 7]. In such 

complicated energy scenario, hydrogen, as a never-ending and renewable source of 
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energy, emerges as an outstanding energy vector for mobile and stationary applications. 

Hydrogen was recently defined by the International Energy Agency (IEA) as a flexible 

energy carrier, which can be produced from any energy source, and which can be 

converted into various energy forms [8]. 

The widespread implementation of the so-called “hydrogen economy” is not facing 

only technical barriers, but headwinds related to political and economic interests of using 

fossil fuels are also underlying causes. However, the scientific community has the moral 

obligation of searching for possible solutions to solve the issues related to the production, 

storage, and transportation of hydrogen. The production of hydrogen can be carried out 

through both renewable and non-renewable sources, but currently steam methane 

reforming of natural gas is the main process used, which produces approximately 48 % 

of the total production [9]. However, such process is also linked to the generation of CO2 

emission, which fades the concept of “green hydrogen production” [10]. Aside from that, 

safety issues related to the physical hydrogen storage by compression and cooling means 

are also focus of discussion because of the very high pressure level (up to 700 to 800 bar) 

or very low temperatures (- 252 ºC) required [11–15].  

The generation of molecular hydrogen (H2) from hydrogen carrier molecules that 

contain it in their structure has recently been claimed as an auspicious option. Such 

molecules provide a unique way to deliver molecular hydrogen in a reversible way by 

means of chemical reactions and, even though the hydrogen production by these means 

is not as mature as the classical alternatives, there is already a number of potential 

candidates that show interesting characteristics [16–25].  Among them, Liquid Organic 

Hydrogen Carriers (LOHC) are recognized as an ideal option in terms of cost, safety and 

manageability [26, 27]. Within the LOHC are included all hydrogen storage systems that 

are liquid in the hydrogen-rich form [11]. Such molecules can be dehydrogenated and re-
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hydrogenated and show great potential for their use in stationary and transportation 

applications [5, 28]. Among LOHC investigated for this application (i.e. N-

ethylcarbazole, dibenzyltoluene, naphthalene, methanol, toluene, etc. [26, 27]), the 

suitability of formic acid (HCOOH, FA) is highlighted by the plethora of recent 

publications reported on the investigation of H2 production from FA via dehydrogenation 

reaction (HCOOH ↔ H2 + CO2) [29–35]. FA is the simplest carboxylic acid and it has 

attracted great attention due to its non-toxic character, its stability, and high hydrogen 

content (4.4 wt.% and 53 g L-1) [30, 31]. Furthermore, FA is readily available from 

sources such as oxidation of biomass and it is an intermediate, by-product and product of 

the chemical industry, as well as product of the hydrogenation of CO2 [36].  

The HCOOH/CO2 system has been claimed to be an ideal environmental-friendly 

system for the hydrogen storage, so that the CO2 produced in the dehydrogenation 

reaction can be re-hydrogenated to HCOOH in a carbon-free emission process [37]. The 

use of catalysts is vital in the reactions involved in the hydrogen storage and release. 

Traditionally, the use of homogeneous systems has been used to boost the 

dehydrogenation of FA, starting with the pioneering investigation reported by Coffey in 

1967, in which Pt, Ru and Ir phosphine complexes were used [38]. Even though FA has 

attracted interest for the H2 production for more than five decades, its use as a LOHC was 

not claimed until 2008 by Laurenczy's [39] and Beller's [40] investigations independently 

[41].  

The more convenient use of heterogeneous catalysts has motivated the search for new 

alternatives to achieve competitive and selective heterogeneous systems able to catalyze 

the dehydrogenation of FA under mild or moderate conditions. Significant breakthroughs 

in the field have been achieved while exploring aspects such as the features of the metallic 

active phase [42–46] or the properties of the support [44, 47–50]. Most of the 
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investigation reported so far use relatively high temperatures to achieve acceptable 

conversion of FA into H2. However, CO can be also produced from FA at high 

temperatures by following the dehydration reaction (HCOOH → CO + H2O), which is a 

poison of the catalysts used in the fuel cells [51].  

Recently, the photocatalytic dehydrogenation of FA has also attracted great attention 

as a promising option for the generation of H2 at room temperature.  In most cases, the 

catalysts used are Mott-Schottky photocatalysts, in which a semiconductor support and 

metal nanoparticles of diverse composition (i.e. Pd, Pt, Au, Ag, etc.) are used [52].  

The utilization of sunlight, as a green and abundant energy source, is of great interest 

in the current energy scenario. In particular, the use of sunlight for the production of H2 

unites two pillars towards the realization of a sustainable energy future. Most of the solar-

to-hydrogen production is based on the water splitting reaction [53, 54], but 

photocatalytic processes have also been utilized for the production of H2 from other 

molecules, such as ethanol [55, 56], methanol [57, 58], glycerol [59, 60], hydrazine [61], 

ammonia [62, 63], ammonia borane [17, 64–66] etc.  

In this manuscript, some of the most representative investigation dealing with the 

production of H2 from photocatalytic decomposition of FA are reviewed. The 

photodecomposition of FA has frequently been investigated from other points of view, 

such as the degradation of pollutant, the use of FA in photoelectrochemical cells or the 

role of FA as intermediate in the photocatalytic oxidation of other molecules (i.e. 

formaldehyde, acetaldehyde, ethanol, and acetic acid) [67, 68]. For that reason, the 

mechanism involved in the photodecomposition of FA has widely been studied by both 

experimental and theoretical researchers. However, it remains uncertain because there are 

various possible adsorption configurations of FA on the surface of the photocatalysts. Ji 

and Luo reported that FA photodecomposition can take place via either one-step 
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mechanism (without any reaction intermediate) or by two-reaction mechanism [67], in 

which FA firstly forms a formate radical and it subsequently forms CO2 with an electron 

injected in the conduction band of the semiconductor.  

- One-step mechanism:  

𝐻𝐶𝑂𝑂𝐻 + ℎ+  → 𝐶𝑂2 + 2𝐻
+ + 𝑒𝑐𝑏

−  

- Two-step mechanism: 

𝐻𝐶𝑂𝑂𝐻 + ℎ+  → 𝐻𝐶𝑂𝑂• +𝐻+ 

𝐻𝐶𝑂𝑂•  → 𝐶𝑂2 +𝐻
+ + 𝑒𝑐𝑏

−  

In order to review the most important breakthroughs achieved in the field, the 

following sections are divided according to the main component of the photocatalytic 

system (i.e. TiO2, CdS, C3N4, etc.).  

2. Photocatalytic systems based on TiO2 

Starting a review on photocatalytic applications by highlighting the importance of 

titanium dioxide is a must. Although the investigation of TiO2 in photocatalysis started 

long back, it remains one of the most important photocatalytic material because of the 

great performance showed in multiple applications by virtue of features such as its low 

cost, chemical inertness, low toxicity, excellent thermal and photo stability, and 

scalability [69, 70]. The great potential of TiO2 for a photocatalytic application was firstly 

discovered by Akira Fujishima in the late 1960s with his investigation on the water photo-

splitting [71, 72]. After that, TiO2 became the most used semiconductor material for 

photocatalysis and it has been utilized for countless applications [73–77]. Its application 

for the production of H2 from FA has also attracted great attention. Some of the strategies 

found in the literature towards the design of high-performing photocatalysts for the 
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decomposition of FA using TiO2 are based on the modification of its properties by means 

of doping or creating hybrid nanostructure with metal nanoparticles, synthesizing shape-

controlled TiO2 nanoparticles, etc. Such approaches found in the literature are briefly 

reviewed in the present section.  

It is well-known that most of the photocatalytic processes are carried out at room 

temperature by excluding the heat generated by the infrared part of the solar spectrum by 

using external cooling systems. In an attempt to fully use the solar energy, both photo and 

thermal contributions, and maximize therefore the process from an economic viewpoint, 

Liu and co-workers explored the effect of both energies in the decomposition of FA [78]. 

For that, Pt/TiO2 catalysts prepared by photodeposition and with H2PtCl6.6H2O as the 

metal precursor were used as model to study the photothermal generation of hydrogen up 

to 90 ºC (i.e. 35, 70, 80, and 90 ºC). The impact of the photo and thermal effects was 

differentiated by using LED emitting purple, blue and white lights. The sets of catalytic 

tests consisted in: i) photocatalytic test at 35 ºC (Pt/TiO2-P); ii) thermal reaction at 90 ºC 

(Pt/TiO2-P); iii) photothermal coupling reaction (photo + 35 ºC, photo + 70 ºC, photo + 

80 ºC, and photo + 90 ºC, Pt/TiO2-PT). The obtained results are summarized in Figure 1. 

As expected, the thermal tests gave higher H2 yield with the increasing temperature. As 

for the results achieved with the photothermal experiments, a more pronounced 

dependence with the temperature was observed and the H2 yield was 8.1 and 4.2 times 

than that obtained with the photo and thermal experiments, respectively. Such effect was 

ascribed to a synergetic effect of the photo and thermal contributions in Pt/TiO2 catalysts. 

After performing the test with different LED light irradiations, it was concluded that the 

H2 yield followed the order white > blue > purple, confirming the synergistic effect 

between the thermal catalytic and photocatalytic processes under blue and purple 

illumination conditions.  



9 

 

 

 

Figure 1. (a) The total amount of H2 generated in 8 h under photo (35 ºC), thermal (35, 

70, 80, and 90 ºC) and photothermal (photo + 35 ºC, photo + 70 ºC, photo + 80 ºC, and 

photo + 90 ºC) condition over Pt/TiO2 in the presence of FA (10 vol %); (b) the 

comparison of 8 h H2 generation over TiO2 and Pt/TiO2 under photo (35 ºC), thermal (90 

ºC), and photothermal (photo + 90 ºC) reaction conditions. Reprinted with permission 

from [78].  

The catalysts were deeply characterized, and the tentative mechanism displayed in 

Figure 2 was proposed. According to what it was found, the photothermal activity was 

due to the presence of both, non-plasmonic Pt and TiO2 nanoparticles. According to the 

proposed mechanism, the production of H2 mainly takes place on the Pt nanoparticles and 

the adsorbates derived from FA are the main responsible for the consumption of holes. 

When the sample is irradiated with UV light, electrons transfer from the valence band to 

the conduction band and they rapidly transfer to Pt nanoparticles. The adsorbates derived 

from FA are oxidized by the holes and release hydrogen protons (H+
f), which are accepted 

by the water species (H2HfO
+). Such H2HfO

+ species diffuse on the surface of the catalyst 

and exchange the protons with other molecule of water, forming H3O
+. After that, when 

H3O
+ reaches the metal nanoparticles, the electrons go to the LUMO of the molecules 

adsorbed and H2 is produced (Figure 2a). On the other hand, the non-plasmonic Pt 
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nanoparticles can use the heat energy creating chemical bond with the adsorbed reactants. 

Bonding and anti-bonding orbitals of the adsorbed molecules result from the interaction 

of the molecular orbital of the adsorbed species and the d electron states of the 

nanoparticles (Figure 2b). Then, hydrogen can be formed from FA by the d band electrons 

of Pt that are excited upon heating. In the case proposed in that study, the irradiation of 

Pt/TiO2 causes the excitation of the bound electrons of Pt nanoparticles. Such excited 

electrons inject into the LUMO of the reactants adsorbed to form protons. Upon heating, 

the excited electrons on the Pt nanoparticles go to higher energy levels, facilitating the 

activation of the adsorbed reactants and inducing the reaction (Figure 2c). 

 

Figure 2. Proposed mechanism of the photothermal catalytic reaction with Pt/TiO2 

nanocatalysts. Reprinted with permission from [78]. 

 

In line with the investigations reporting on thermal decomposition of FA, in which 

most of the alternatives used are based on Pd-catalysts, Xiong and co-workers reported 
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on the photocatalytic decomposition of FA with Pd-TiO2 [79]. In that study, the electronic 

state of the active site was modified by depositing foreign atoms on Pd-tetrahedron-TiO2. 

Firstly, the Pd loading was optimizing by checking the activity of catalysts with 5, 10, 18, 

and 40 wt.% of Pd, being the sample with 18 wt.% the most active. The characterization 

of the samples indicated that Pd nanocrystals had an average length of 6.3 nm and were 

covered by {111} facets. The photocatalytic activity in liquid phase was evaluated under 

various light intensities while collecting the gas generated with a gas burette system 

(Figure 3).  

 

Figure 3. a) TEM and b) HRTEM images of Pd-tetrahedron–TiO2 hybrid nanostructures. 

c) Volume of H2 and CO2 produced by the decomposition of FA catalyzed by Pd-

tetrahedron–TiO2 hybrid nanostructures at different light intensities. d) The dependence 

of catalytic conversion on light intensity. Conditions: 0.5m aq. HCOOH solution (5 mL), 

Pd-tetrahedron–TiO2 (Pd:7.74 mg), 90 ºC. Reprinted with permission from [79].  
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According to the results, it was claimed that the improvement of the activity was 

ascribed to the increased electron density of Pd by the Mott–Schottky effect. Two effects 

were considered to explain the photocatalytic tendencies. On the one hand, plasmonic hot 

electrons generated in Pd particles can inject into the conduction band of TiO2, which 

would reduce the electron density of Pd. On the other hand, photoexcitation electrons 

transfer from TiO2 to Pd, increasing therefore its electron density. Then, the authors 

claimed that the photoexcitation of TiO2 and increase of the electron density on Pd were 

the main contributions at low light intensities, due to the low plasmonic coefficient of Pd.  

On the contrary, for higher light intensities (beyond 4.5 mW cm-2), the generation of 

plasmonic electrons is promoted, while the photoexcitation in TiO2 is saturated, making 

the injection of plasmonic electrons from Pd to TiO2 and the subsequent decrease of the 

electron density of Pd, the predominant process. After that, foreign metals (i.e. M= Ag+, 

Cu2+, Au3+ or Pt4+) were deposited on the surface of Pd tetrahedrons so that their surface 

was partially covered by a layer of PdM alloy. The photocatalytic activity of the resulting 

samples with a light intensity of 4.5 mW cm-2 was assessed. It was observed that the 

activity in the dehydrogenation of FA was strongly dependent on the foreign metal used. 

The best performance was achieved with Pd@Ag5%-tetrahedron–TiO2, with a 

conversion of 98.7 %, while 63.2 and 35.5 % of conversion was achieved with Cu- and 

Au-modified Pd-tetrahedron–TiO2, respectively. Sample modified with Pt displayed a 

reduced activity. According to the results of DRIFT analysis and the work function of the 

metals used, such catalytic trend was mainly explained in terms of CO interaction strength 

and poisoning effect. 

Ago et al. also reported on the photocatalytic activity of PdAg-TiO2 catalysts 

(AgPd@Pd/TiO2) [80]. In that case, the desired composition of the metal phase was 
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achieved by dealloying the AgPd core. Samples with various compositions (i.e. Ag100-

xPdx@Pd/TiO2, with x = 7, 10, 15) were prepared by microwave heating at 100 ºC during 

30 min, 1 h, and 2 h, respectively. The best composition of the catalysts was determined 

to be Ag93Pd7@Pd/TiO2. Furthermore, the effect of TiO2 was also analyzed by using 

anatase (A) and P25 (P). The characterization of the catalysts indicated that 0.8 nm-thick 

Pd shells were achieved on the AgPd cores for both TiO2 supports and the composition, 

sizes, and morphology did not depend on the TiO2 used. The photocatalytic activity was 

monitored by measuring the gas generated while irradiating with a Xe lamp and heating 

at various temperatures (from 27 to 90 ºC). The profiles of the gas evolution with and 

without illumination are plotted in Figure 4. The analysis of the profiles indicated that the 

initial reaction rate was improved by a factor of 1.5-1.6 for AgPd@Pd/TiO2 (A) and 

AgPd@Pd/TiO2 (P) at 27 ºC, respectively, while that factor was 1.1-1.2 at 90 ºC. Such 

differences observed with the temperature were explained on the basis of the migration 

of photogenerated electrons from TiO2 to Pd. At low temperatures, the photogenerated 

electrons transfer from the conduction band of TiO2 to Pd shell with larger work function 

(5.1, 4.7, and 4.0 eV for Pd, Ag, and TiO2, respectively). The electron-rich Pd species 

formed upon irradiation were the responsible for the enhancement of the FA 

decomposition ability. However, for higher temperatures, photogenerated electron have 

a higher migration rate, but, at the same time, electron–hole pairs recombination is also 

favored, which eventually resulted in a lower number of electrons reaching the surface of 

Pd. As for the TiO2 support, it was observed that AgPd@Pd/TiO2 (A) displayed better 

activity than AgPd@Pd/TiO2 (P) under both light and dark conditions, which was 

ascribed to the slower electron–hole recombination rate of anatase in comparison to rutile 

phase present in P25, as well as to its higher specific surface area and strong interaction 

of anatase phase with AgPd@Pd particles.  
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Figure 4. (a) Gas generation by decomposition of FA (0.25 M, 20 mL) vs. time in the 

presence of (A) AgPd@Pd/TiO2 (A) and (B) AgPd@Pd/TiO2 (P) nanocatalysts at 27–90 

ºC with and without photoirradiation. Reprinted with permission from [80].  

 

 

Apart from the most commonly investigated PdAg-based catalysts, some other 

compositions have been studied for this application. For instance, Xue el al. reported on 

selective photocatalytic decomposition of FA over AuPd nanoparticle-decorated TiO2 

nanofibers under simulated sunlight irradiation [81], which were expected to combine the 

optimum ability of Pd to boost the decomposition of FA with the surface plasmon 
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resonance (SPR) of Au, as well as the optimized features of the three-dimensional TiO2 

structure. Samples with various Au/Pd ratios were prepared by electrospinning from a 

solution containing HAuCl4, Pd(C2H3O2)2, tetrabutyl titanate (Ti(OC4H9)4), and 

poly(vinylpyrrolidone) (PVP). Pd1/TiO2 and Au1/TiO2 were synthesized as control 

samples. Among investigated, sample Au0.75Pd0.25/TiO2 displayed the highest H2 

production rate. The presence of alloyed nanoparticles was confirmed by high resolution 

TEM, XPS, and UV-Vis spectra. Sample with Au nanoparticles showed an absorption 

band at 590 nm, corresponding to the SPR of Au, while the AuPd-based catalysts 

displayed a blue-shift to 540 nm with lower intensity due to the increase of electron 

density in Au particles.  

The photocatalytic tests were carried out under simulated sunlight irradiation, with a 

light intensity of 100 mWcm−2. The results of the photocatalytic test are depicted in Figure 

5. The hydrogen generation rate was calculated to be 4.0, 19.5, 54.5, and 88.5 µmol h−1, 

for TiO2, Au1/TiO2, Pd1/TiO2, and Au0.75Pd0.25/TiO2, respectively. Such tendency 

confirms the ability of Au and Pd to hold the photogenerated electrons from TiO2 and act 

as active site for the dehydrogenation reaction. The test under visible light irradiation did 

not show generation of H2 for the alloy catalysts, which suggested that TiO2 excitation is 

the main responsible for the photocatalytic activity of the sample. Furthermore, the 

cyclability tests showed a high stability of the alloy photocatalysts during 9 h of reaction. 

The higher activity displayed by the alloy AuPd-based catalysts was ascribed to the 

stronger electron-sink effect, that reduced the recombination of electron-hole pairs, which 

was confirmed by photoelectrochemical tests and photoluminescence measurements. 

Interestingly, it was demonstrated that the CO poisoned metal surface could be reactivated 

by means of light excitation of the TiO2 support upon sunlight irradiation, while such 

reactivation was not effective under visible light irradiation.  
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be 

Figure 5. Results of photocatalytic FA decomposition under simulated sunlight 

irradiation over different nanofibers: (a) TiO2; (b) Au1/TiO2; (c) Au0.75Pd0.25/TiO2; (d) 

Au0.5Pd0.2/TiO2, (e) Au0.25Pd0.75/TiO2; (f) Pd1/TiO2 nanofibers. (A) photocatalytic H2 

production amount versus irradiation time; (B) photocatalytic CO production amount 

versus irradiation time; (C) cycling test of photocatalytic H2 production over the 

Au0.75Pd0.25/TiO2 nanofibers; (D) H2 production rates and CO production amounts (after 

4 h). Reprinted with permission from [81]. 

 

Liu et al. also reported on the investigation of Au-TiO2 photocatalysts [82]. In that 

study, a more complex visible-light-responsive system formed by Au-La2O3/TiO2 (ALT) 

hybrid was prepared by a sol-gel method and using different atmospheres (i.e. H2/CO2, 

H2, CO2, and N2; samples denoted as ALT-H2/CO2, ALT-H2, ALT-CO2, and ALT-N2, 

respectively). It was observed that the presence of La inhibited the transformation of 
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anatase to rutile phase. Furthermore, La2O2CO3 was formed upon treatment under H2/CO2 

atmosphere, which was claimed to be able to decompose to La2O3. As for the morphology 

of the samples, it was observed that Au nanoparticles were embedded in sample ALT-

H2/CO2 and they were strongly interacting with TiO2 and La2O3 phases and had an 

average size of 5-6 nm, while larger nanoparticles with hemispherical shape were 

identified in sample ALT-H2. The presence of La2O2CO3 in samples treated under H2/CO2 

atmosphere and its dynamic formation and decomposition was found to be responsible 

for the good dispersion of the nanoparticles observed in ALT-H2/CO2. However, Au 

nanoparticles were not detected in ALT-CO2 and ALT-N2, possible due to the absence of 

reducing agent in the calcination step. UV-vis characterization of the catalysts revealed 

that co-doping of La and Au provoked a reduction of the band gap, following the order 

ALT-H2 (2.56 eV) < ALT-H2/CO2 (2.66 eV) < ALT-CO2 (2.77 eV) < ALT-N2 (2.84 eV), 

which was ascribed to a synergistic effect between Au and La under the different 

atmospheres used. In addition, photoluminescence analysis demonstrated the prolonged 

lifetime of electron-hole pairs in sample ALT-H2/CO2. As expected after all the results of 

characterization of the samples, ALT-H2/CO2 displayed the best photocatalytic 

performance among investigated, with a H2 production rate of 178.4 μmol gcat
-1 h-1, which 

was much higher than those rates achieved with the catalysts prepared under the other 

atmospheres under study. A plausible mechanism for the decomposition of FA was 

proposed, which is schematized in Figure 6. The photon absorbed by La-doped TiO2 

excite photogenerated electrons to the conduction band and generate holes in the valence 

band. Firstly, electrons are transferred to Au nanoparticles promoting the decomposition 

of HCOOH into HCOO- and H+. H+ can produce H2 by reduction with an electron, and 

HCOO- reacts with a photogenerated hole in TiO2 forming a free radical (HCOO·). 

Subsequently, HCOO· is oxidized by holes and produces CO2 by releasing a H+. In the 
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mechanism proposed, La2O2CO3 plays a vital role in promoting the decomposition of FA 

and the desorption of CO2 from the surface of the catalyst.  

 

Figure 6. Schematic illustration for the reaction mechanism of photocatalytic 

decomposition over ALT-H2/CO2 photocatalyst. Reprinted with permission from [82].    

 

As for noble-metal-free photocatalysts, some nice works can also be found in the 

literature. For instance, Andreozzi et al. reported on novel nano-TiO2 photocatalytic 

system based on the solar reforming of FA in presence of cupric ions and chlorides, in a 

study in which the effect of the pH values, initial concentration of FA, chloride and cupric 

ion in the H2 production ability was investigated. The H2 production was suggested to 

proceed via the following steps: 

- Step 1: reduction of cupric ions to cuprous with a simultaneous oxidation of formic 

acid.  

𝐶𝑢(𝐼𝐼)
𝑒−𝐶𝐵
→    𝐶𝑢(𝐼)

𝑒−𝐶𝐵
→    𝐶𝑢(0) 

𝐻𝐶𝑂𝑂𝐻
ℎ+𝑉𝐵
→    𝐶𝑂2

•− + 2𝐻+ 
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- Step 2: photolysis of some chloride complexes of cuprous ions.  

𝐶𝑢𝐶𝑙2
− + 𝐻+

ℎ𝜐
→  𝐶𝑢2+ + 2𝐶𝑙− +𝑒𝑠

−  

𝐶𝑢𝐶𝑙3
2− + 𝐻+

ℎ𝜐
→  𝐶𝑢2+ + 3𝐶𝑙− +𝑒𝑠

− 

Dong et al. investigated on the engineering of binary CuO/TiO2 heterojunction 

nanofibers prepared from electrospinning and followed calcination treatment [83]. It was 

found that after irradiation for 30 min during the photodecomposition of FA, the binary 

heteroconjunction (CuO/TiO2) changed to a heteroconjunction formed by four 

components (Cu/Cu2O/CuO/TiO2) originated by a photo-assisted recrystallization 

reaction (Figure 7), enhancing the separation of electron and hole pairs. Such aspect is 

crucial, because the production of H2 takes place in two steps photoreaction, the 

generation of H+ via photocatalytic oxidation of HCOOH by the holes in the valence band, 

and the formation of H2 via photocatalytic reduction of H+ with the photoinduced 

electrons in the conduction band.  Then, as the oxidation reaction by the holes occurs 

before the reduction, the lifetime of the electrons should be longer than that of the holes. 

In this particular case, HCOOH can be oxidized to H+ by the holes accumulated in the 

valence band of CuO, because of their higher potential (∼ +2.05 V) than those of the pair 

CO2/HCOOH (∼ −0.61 V). However, the position of the conduction band of CuO is 

below the reduction potential of the pair H+/H2 (∼ +0.36 V and ∼ -0.42 V, respectively), 

meaning that the reduction of H+ to H2 by the photoinduced electrons is not 

thermodynamically favored. For that reason, Cu2O and Cu species are formed from the 

reduction of CuO, species that are visible-light responsive and inexpensive co-catalysts, 

respectively. As a result, the quaternary multi-heterojunction photocatalysts 

(Cu/Cu2O/CuO/TiO2) displayed 40 times higher production of H2 from FA than pure TiO2 

nanofibers counterpart.  
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Figure 7. Schematic diagrams for the synthesis route of CuO/TiO2 binary heterojunction 

nanofibers and the photo-assisted self-optimizing of charge-carriers transport channel 

(CCTC) through a recrystallization process during the photocatalytic decomposition of 

organic hydrogen-carrier molecules. Reprinted with permission from [83].  

3. Photocatalytic systems based on CdS 

The previous section mentioned some benefits of TiO2 in photocatalytic reactions and 

summarized some examples of TiO2-based catalysts for the FA decomposition. However, 

their limitation in the visible-light range creates the necessity of searching for 

photocatalysts with wider light responsive range. In this sense, metal sulphides have 

extensively been studied because they exhibit an important visible-light response 

although their efficiency is poor. As mentioned before, the recombination between 

electron and hole is related to the efficiency. An approach to limit such recombination is 

the use of photocatalysts with a high CB position, which present an interesting reduction 

capability. At this point, CdS (with a band gap of   ̴ 2.5 eV) is an interesting option that 

has attracted much attention due to its wide visible-light range together with its simple 
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synthesis and low cost. Furthermore, it fulfils the thermodynamic aspects of some of the 

most studied photocatalytic reactions [84, 85]. Regarding the photocatalytic 

decomposition of FA, a few studies on CdS-based photocatalysts have also been reported 

until now. In 1968, Willner and Goren reported on semiconductor CdS particles for the 

generation of H2 from the FA decomposition [86]. In this particular case, they used both 

formate solution and deuterated counterpart to evaluate the photodecomposition to 

produce H2. The yield of H2 was higher than 90 % for the formate solution while the 

deuterated solution displayed a lower H2 evolution rate, indicating that the limiting step 

of the formate oxidation reaction was the generation of holes in CdS particles (h+ + 

HCO2
▬ → CO2

●▬ + H+) and that water was the source of H+ for the H2 formation. 

Moreover, they realized that the formation of CO2
●▬ (reducing agent) after the 

photodecomposition promoted the presence of Cd metal in the system. Nedoluzhko et al. 

also reported that Cd0 was involved in the photoformation of H2 [87]. In that study, a 

solution of CdS particles (̴ 1.5 µm), formate and buffer was irradiated under anaerobic 

conditions. Among evolved gases, H2 profile exhibited an induction time and then, the 

rate of H2 evolution increased rapidly. This turning point was related to the generation of 

Cd0 from CdS. The formation of cadmium (metallic state) was firstly attributed to the 

presence of formate and they proposed that two CO2
•─ anion radicals, which acted as 

reducing agents, are involved in the reduction process of CdS. 

𝐶𝑑𝑆 + 2𝐶𝑂2
•─  →  𝐶𝑑0 + 𝑆2− + 2𝐶𝑂2  

During this process, electrons present in the conduction band reduced water to form 

H2. However, they noticed that H2 gas evolution did not happen at the beginning of the 

photoreaction and they claimed that one equivalent of CO2
•─ participated to reduce the 

lattice Cd2+. Therefore, the proposed mechanism consisted of a trapping of electrons, 

followed by a reduction. 
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𝐶𝑑𝑆 + 𝑒𝑐𝑏
−  → (𝐶𝑑2+𝑒−𝑆2−) 

(𝐶𝑑2+𝑒−𝑆2−) +  𝐶𝑂2
•─ → 𝐶𝑑0 + 𝐶𝑂2 + 𝑆

2− 

According to the standard reduction potential values, it was stated that electrons of 

CdS conduction band could not reduce the lattice Cd2+ to Cd0. Once a determined amount 

of the lattice Cd2+ was converted to Cd0, the H2 gas evolution commenced following the 

suggested pathways. 

𝑖) 𝐶𝑂𝑂𝐻− + ℎ+ →  𝐶𝑂2
•─ + 𝐻+ 

𝐶𝑂2
•─ + ℎ+ → 𝐶𝑂2 

2𝐻+ + 2𝑒− → 𝐻2 

 

𝑖𝑖) 𝐶𝑂2
•─ + 𝐻+ →  𝐶𝑂2 + 

1

2
𝐻2

 

𝐻+ + 𝑒− → 
1

2
𝐻2 

 

Although CdS exhibited photocatalytic activity towards the FA decomposition, it was 

restricted for CdS in powder form. For instance, Nedoluzhko et al. also observed that the 

formation of Cd0, which played a pivotal role in the H2 formation from FA decomposition, 

depended on a limited amount of Cd2+. Therefore, different strategies based on CdS have 

been explored to enhance the photocatalytic activity in the FA decomposition. Chen et al. 

reported that CdS particles were embedded on titanate nanotubes (TNTs) using a 

hydrothermal synthesis [88]. From TEM images, confined CdS particles as well as CdS 

particles suported on the surface of TNTs were observed. Morevoer, XRD patterns and 

UV spectra confirmed the presence of CdS particles. The photocatalytic activity towards 

the H2 production was evaluated in a 10 vol % FA solution. CdS/TNTs produced 179.4 

µmol of H2 after 3 h while TNTs only generated 0.09 µmol. This enhancement could be 

related to the transfer of photogenerated electrons from the valence band to the conduction 
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band. These electrons could be transferred to TNTs because both valence band and 

conduction band positions of CdS are higher compared to TNTs. Recently, Liou et al. 

published a composite that consisted of Pt, CdS, and TNTs synthesized by microwave 

hydrothermal method [89]. The H2 evolution rate for different catalysts were assessed in 

an aqueous FA solution (10 vol %) under visible light. Both TiO2 and TNTs catalysts did 

not displayed activity towards the FA decomposition. However, the addition of CdS into 

titania structures promoted the photocatalytic activity, being more active in the case of 

Cds/TNTs (295.0 µmol h-1) than CdS/TiO2 (118.7 µmol h-1). Such effect was attributted 

to a higher active surface area for TNTs compared to TiO2, which boosted the adsorption 

of FA onto the active sites and reduced the recombination of electron-hole pair. After this, 

Pt was loaded on titania-based photocatalyst in order to trap the photogenerated electrons, 

resulting in photocatalysts more active towards the FA decomposition. To do that, 

impregnation and photodeposition methods were carried out, leading to Pt-CdS/TNT 

samples prepared by the thermal impregnation method with different Pt loadings, which 

exhibited worst photocatalytic activities compared to that of CdS/TNT photocatalyst. 

This decline in the H2 production was related to the agglomeration after the thermal 

impregnation. However, Pt-CdS/TNT synthesized by photodeposition of Pt displayed a 

remarkable photocatalytic activity for the H2 production (661.1 µmol h-1). The 

enhancement of the H2 production was due to a smaller Pt nanoparticle size and a well-

distribution of nanoparticles onto CdS/TNT, resulting in a better contact between Pt and 

TNTs that improved the separation of electron-hole pair. Concerning the mechanism, it 

was suggested that the photogenerated electrons were transferred from the valence band 

to the conduction band of CdS, and therefore the concentracion of holes increased in the 

valence band. According to the band gap of TNTs, the photoelectrons in CdS jumped 

quickly into TNTs. Moreover, it was indicated that Ti3+ species present in TNTs (due to 
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the oxygen vacancy) may capture electrons and Pt nanoparticles act as active sites for the 

H2 production. Additionally, Ti4+ species was suggested as a hole cocatalyst because the 

photogenerated holes in the CdS surface can be trapped by Ti4+ species, avoiding the CdS 

photocorrosion.  

A different strategy was tackled by Li et al. who reported on the use of visible light-

driven photocatalyst based on a CdS-ZnS composite with heterogeneous structure [90]. 

In such system, CdS, with a narrow band gap and highly photo-sensitivity, showed great 

reactivity for the production of H2, while ZnS, with a wider band gap, reduced the 

recombination of electron-holes pairs. The nanoparticles of the CdS-ZnS photocatalyst 

were prepared by a microemulsion technique in a system composed of water/Triton X-

100/1-butanol/n-hexane, and using Cd(NO3)2, Zn(NO3)2, and Na2S.xH2O, as precursors 

of Cd, Zn and S2-, respectively. The heterogeneous solid formed was composed by ZnS 

deposited on the surface of crystals of CdS. The obtained photocatalysts were evaluated 

in the production of H2 and it was shown that only 13.7 µmol h-1 of H2 was generated 

from CdS, while 189.5 µmol h-1 was produced from the CdS-ZnS and no H2 was detected 

using bare ZnS. The enhancement observed for the heterogeneous CdS-ZnS system was 

claimed to be due to the suppression of electron-hole pairs recombination due to the 

presence of ZnS, which makes electrons available for the evolution of H2. It was proved 

that, aside from that effect, the addition of ZnS was responsible for the good stability 

against photo-corrosion displayed by CdS-ZnS. Moreover, it was observed that the ZnS 

coating avoided the Cd2+ leaching from the photocatalysts, which also helped to maintain 

the reactivity of the samples (Figure 8).  
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Figure 8. A) Hydrogen production in the formic acid solution (10%) by the composite 

CdS-ZnS, bare CdS and bare ZnS, under visible light; and (B) stability of CdS-ZnS and 

bare CdS in terms of the hydrogen production rate and leaching of Cd2+ from the catalysts 

during the repeated photocatalytic tests (at least 4 h for each test cycle). Reprinted with 

permission from [90].  

Following with the heterogeneous systems based on CdS, Xu et al. reported on multi-

core–shell CdS@ZIF-8 structures prepared by a two-step method [91]. In the synthetic 

protocol used in that study, polyvinylpyrrolidone (PVP) was used to stabilize the 

nanoparticles of CdS and ZIF-8 shells with controlled thickness (from 13.6 to 102 nm) 

were formed on the surface of CdS. The photocatalytic performance evidenced the 

superiority of the core-shell structure compared to bare CdS nanoparticles. It was 

observed that core–shell structures showed better selectivity towards the production of 

H2 via FA dehydrogenation reaction.  
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Zhang et al. reported on the preparation of composite of aluminium-substituted 

mesoporous silica (Al-HMS) molecular sieve coupled with CdS (CdS/Al-HMS) [92]. It 

was observed that the addition of Ru enhanced the photocatalytic activity as a 

consequence of the separation of photogenerated charge-carrier. Among investigated, 

sample 0.07Ru/CdS/Al-HMS exhibited the highest H2 evolution activity (3.7 mL h-1).  

Reisner et al. investigated on a CdS-based photocatalyst that efficiently converted FA 

into H2 or CO by boosting the dehydrogenation or dehydration reaction, respectively, by 

means of controlling the selectivity of the reaction by using 3-mercaptopro-pionic acid 

(MPA) as a capping ligand (QD-MPA) [93]. Under visible-light irradiation, 52.1 mmol 

H2 gcat
-1h-1 were generated with QD-MPA, which was enhanced by the addition of Co 

(QD-MPA/CoCl2; 116 mmol H2 gcat
-1h-1). However, 218 H2 gcat

-1h-1 were achieved upon 

utilization of full solar spectrum. Aside from the effect of Co species in boosting the 

catalytic performance, it was also proved in that study that the selectivity of the FA 

decomposition towards either H2 or CO could be modified by means of modifying the 

surface of CdS with ligands, such as [Me3O]BF4.  

Piao et al. reported on the use of ultrasmall cobalt phosphide nanoparticle (CoP) as 

efficient cocatalysts for photocatalytic dehydrogenation of FA [94], in a study in which a 

CdS/CoP@RGO hybrid was evaluated.  In order to obtain the final catalysts, 

Co3O4@SiO2 nanospheres were firstly prepared using a microemulsion method and 

subsequently decorated by polyethyleneimine (PEI) and loaded on graphene oxide (GO). 

After that, SiO2 was removed to obtain Co3O4 dispersed on RGO and the final 

CdS/CoP@RGO photocatalyst was prepared by phosphidation and loading CdS 

nanoparticles by ultrasonic treatment. The performance of CoP was assessed by 

comparison with the counterpart noble-metal based catalysts (CdS/Pt@RGO, 

CdS/Pd@RGO, CdS/Au@RGO, and CdS/Ru@RGO). It was shown that the TOF values 
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were 196, 244, 106, 107, and 63 h-1, for CoP, Pt, Pd, Au, and Ru, respectively, which 

evidenced the promising behaviour of CoP as a cocatalyst for the photocatalytic 

dehydrogenation of FA. Following with the non-noble-free photocatalysts, Khan et al. 

reported a system based on Ni and Co loaded on CdS nanorods (NRs), that were 

synthetized via controlled thermolysis of cadmium (II) bis(dibutylcarbamodithioate) in 

ethylenediamine [95]. Using such system and due to the redox potentials of Ni and Co in 

relation to the band positions of CdS NRs, electron and holes were shuttled from CdS to 

Ni and CoCl2 species, respectively, which led to higher stability and photocatalytic 

performance. The evaluation of the catalytic performance under visible-light irradiation 

revealed that the H2 production ability followed the order CdS < Co/CdS < Ni/CdS < Co-

Ni/CdS.   

4. Photocatalytic systems based on C3N4 

Graphitic carbon nitride (g-C3N4), a polymeric semiconductor, has elicited great 

attention in the context of the search for robust and visible-light-active semiconductor 

photocatalysts. It is formed by ordered tri‐s‐triazine subunits connected through planar 

tertiary amino groups within a layer and weak van der Waals force between layers. It 

shows appealing electronic properties, high physicochemical stability, and easy synthesis 

from N-containing precursors (i.e. urea, cyanamide, dicyandiamide, melamine, etc.). It 

has a moderate band gap (2.4 - 2.8 eV) that results in an onset visible light absorption of 

~ 450 nm [96, 97]. Even though the history of C3N4-based polymer started in the 

nineteenth century by the investigation of Berzelius and Liebig [98], its use in 

heterogeneous catalysis started much later in 2006 [99] and its properties as a metal-free 

conjugated semiconductor photocatalysts for the evolution of H2 was pioneering reported 

by Wang just 10 years ago [100].  
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Since then, g-C3N4 has widely been utilized in numerous photocatalytic applications, 

such as water splitting, CO2 reduction, and degradation of pollutants, etc. [101] [102, 

103]. Recently, g-C3N4 has also received attention as a catalyst for the H2 production from 

hydrogen carrier molecules [44, 50, 64, 104]. In the case of g-C3N4-photocatalysts used 

for the decomposition of FA, they contain metal nanoparticles so as to construct Mott–

Schottky photocatalysts, in which the charge separation is enhanced. This was the case of 

the study reported by Chen et al. [105]. In that investigation, Mott–Schottky type Pd-C3N4 

photocatalysts, with mesoporous C3N4 (mpg-C3N4) as support, were prepared by wet 

impregnation and the resulting material was denoted as Pd@CN. For that, mpg-C3N4 was 

firstly synthetized from cyanamide and a Ludox HS40 solution, and subsequently 

impregnated with PdCl2 to have a final metal loading of 8 %. Furthermore, reference 

samples with N-doped layered carbon and carbon black (Pd@N-LC and Pd@CB, 

respectively) were also synthetized.  The average nanoparticle size was determined to be 

of 3-5 nm for Pd@CN and Pd@N-LC, and 10 nm for Pd@CB. In order to assess the 

performance of the samples, catalytic and photocatalytic tests were monitored. It was 

observed that, in dark conditions (i.e. catalytic test at 15 ºC), Pd@CN displayed the 

highest TOF number among investigated (49.8 mol H2 mol-1Pd h-1), which was attributed 

to the Mott–Schottky effect (i.e. support effect). Such effect was confirmed by the 

decreased intensity of the photoluminescence spectra after the loading of Pd nanoparticles 

on mpg-C3N4. In addition, it was found that such good catalytic activity was further 

increased upon visible-light irradiation (71.0 mol H2 mol-1Pd h-1). It was claimed that the 

enhancement observed in the catalytic activity under light irradiation conditions was due 

to the electron enrichment of Pd nanoparticles, which in turn was strongly dependent on 

the wavelength of the light used (See Figure 9).  
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Figure 9. Dependence of the activity of Pd@CN on the irradiation wavelength for the 

photocatalytic decomposition of FA. Reaction conditions: 1m aqueous FA solution (10 

mL), Pd@CN-1% (20 mg),1 h, 15 ºC.  Reprinted with permission from [105]. 

 

Yu et al. also reported on the application of Mott–Schottky heterojunctions [106]. In 

that case, PdAg nanowires (NWs) with various Pd/Ag compositions (Pd7Ag3 NWs@g-

C3N4, Pd5Ag5 NWs@g-C3N4, Pd3Ag7 NWs@g-C3N4, and Pd NWs@g-C3N4) were in-situ 

formed on g-C3N4. XPS analysis confirmed the electron transfer from Ag and g-C3N4 to 

Pd of the Pd5Ag5 NWs@g-C3N4 Mott–Schottky heterojunction, creating electron-rich Pd 

species that are favorable for facilitating the O–H cleavage and strengthening the 

adsorption of formate. On its side, the support serves as a proton scavenger for the 

dissociation of O-H, forming protonated g-C3N4, which facilitates the production of H2 

and CO2 via β-hydride elimination of Pd-formate. The catalytic activity displayed 

dependence with the composition of the nanoparticles, with initial TOF of 346, 420, 242, 

and 105 h-1, Pd7Ag3 NWs@g-C3N4, Pd5Ag5 NWs@g-C3N4, Pd3Ag7 NWs@g-C3N4 and 

Pd NWs@g-C3N4, respectively. Furthermore, the performance of some control samples 

was also assessed to point out the effect of the Mott–Schottky heterojunction. The effect 

of the visible-light intensity on the photocatalytic activity of Pd5Ag5 NWs@g-C3N4 was 
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also investigated, which showed and increasing dehydrogenation rate with the light 

intensity.  

Stucky et al. also investigated on AgPd nanocatalysts supported on g-C3N4 (denoted 

as AgPd/CN) [104]. In that case, microsized mesoporous carbon nitride hollow spheres 

were synthetized from melamine-cyanuric acid network, and subsequently impregnated 

with K2PdCl4 and AgNO3. As indicated by the characterization results, the resulting 

nanoparticles had an average size of 7.5 ± 1.0 nm and a Ag/Pd ratio of 1/1. The 

comparison with reference samples prepared from SiO2 and activated carbon 

demonstrated the vital role of the N-functional groups in C3N4 in achieving highly 

dispersed alloy AgPd nanoparticles.  The electron density enrichment of Pd species via 

electron donation from C3N4 and Ag to Pd was also demonstrated by XPS analysis. It was 

also claimed that the electron density of Pd could be further increased by the photoexcited 

electron transfer from the semiconductor support, which in turn would suppress the 

electron-hole pairs recombination. As a consequence of the resulting unique electronic 

features, AgPd/CN displayed much higher activities than Ag/CN and Pd/CN counterpart, 

which was further enhanced under visible-light irradiation. H/D isotope experiments were 

also followed using D2O to investigate the contribution of the semiconductor and the 

direction of the charge carrier in the components of the photocatalysts. The results of the 

relative atomic amount and atomic ratio of H and D in the gas produced from FA 

decomposition at 30 ºC is depicted in Figure 10. 
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Figure 10. (a, b) Kinetic isotope effects for FA decomposition with the AgPd/CN-3% 

catalyst in D2O at 30 ºC under different conditions; (a) the relative atomic amount and (b) 

the atomic ratio of deuterium/hydrogen to the total amount of hydrogen and deuterium is 

shown. The reaction pathway and mechanism for (c) catalytic route under dark or (d) 

photoelectrochemical route under light with incident energy higher than bandgap of CN. 

Reprinted with permission with [104].  

It was observed that the atomic percentage of D under visible-light was slightly higher 

than that under dark conditions (64.7 and 60.6 %, respectively), while it increased to 87.3 

under UV-light, indicating that the photocatalytic activity was wavelength-dependent. 

Under UV-light, the energy of the photon is able to excite the electron-hole pair directly 

and the water splitting occurs in the different components of the catalysts (i.e. 

photocathode: AgPd for reduction of water; photoanode: C3N4 for the oxidation of FA), 

so that FA serves as the electron donor and D2O acts as the electron acceptor. The higher 
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content of D observed in the gas product demonstrated that D2O is the source of D, due 

to the photoelectrochemistry with half reaction separated. However, for very short 

wavelength, FA photolysis to CO can take place.  

Following with the Mott-Schottky photocatalysts, Liu et al. recently reported on the 

application of plasmonic AuPd alloy nanoparticles supported on super small carbon 

nitride nanospheres (AuxPdy/CNS) for the H2 production [52]. The catalysts were 

designed so that Au could capture the irradiation energy, which results in electron with 

high density on its surface by the LSPR effect. Such high energy electrons can migrate to 

Pd active sites and results in enhanced photocatalytic performances. For the preparation 

of the catalysts, carbon nitride nanospheres were firstly synthetized from cyanamide and 

using SiO2 as a template. They were subsequently impregnated with HAuCl4 and H2PdCl4 

with various mole ratio (i.e. 1:0, 2:1, 1:1, 1:2, and 0:1) to achieve different compositions 

of the alloy nanoparticles. The resulting photocatalysts were denoted as Au/CNS, 

Au2Pd1/CNS, AuPd/CNS, Au1Pd2/CNS and Pd/CNS, respectively, according to the 

composition of the nanoparticles. A sample prepared from bulk C3N4 (AuPd/Bulk CN) 

was also prepared as a reference material. TEM analysis revealed that the average size of 

g-C3N4 nanospheres and AuPd nanoparticles was 20 and 3 nm, respectively.  Once again, 

the fine distribution of AuPd nanoparticles on the nanospheres was attributed to the 

anchoring effect of the uncondensed amine groups on the surface g-C3N4. XPS analysis 

confirmed the strong interaction and distribution of charge from Au to Pd in the AuPd 

nanoparticles, as well as the electron donation from the support to Pd species. As for the 

catalytic results (See Figure 11), in was observed that, under dark conditions, the 

generation of gas was equal to 86, 137 and 171 mL for Pd/CNS, AuPd/Bulk CN, and 

AuPd/CNS, respectively, confirming the beneficial effect of the alloyed nanoparticles. 

All Pd-containing showed improved activity under visible-light as compared to that under 
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dark conditions, being more marked in sample AuPd/CNS, with displayed the highest 

activity (TOF value of 1017.8 h−1). Such enhancement was attributed to the donation of 

electron from CNS to the nanoparticles due to the Mott-Schottky effect as well as to the 

alloying and plasmonic effects that lead to the redistribution of charge under visible-light 

irradiation. The contribution of alloying and plasmonic effects was confirmed by 

assessing the performance of samples with various composition of the alloy nanoparticles 

(Au2Pd1/CNS, AuPd/CNS, Au1Pd2/CNS, and Au1Pd2/CNS) and the physically mixed 

counterpart catalysts (Au2+Pd1/CNS, Au+Pd/CNS, and Au1+Pd2/CNS).  

Considering that Pd is the active phase, a decrease of the activity with increasing the 

Au content could be expected. However, the positive alloying and plasmonic effect was 

confirmed by the enhancement achieved by the AuPd-based catalysts. Samples 

Au+Pd/CNS and AuPd/CNS, displayed the best performances among physically mixed 

and alloy catalysts, respectively. The comparison between Pd/CNS and Au+Pd/CNS 

revealed an increasing rate of 24.8 %, which corresponds to the plasmonic effect. The 

increasing rate in the case of the alloy catalysts was of 143.2 %, indicating that the alloy 

effect is much more important than the plasmonic effect.  
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Figure 11. Time-dependent gas (H2 and CO2) evolution curves from formic acid of all 

the as-prepared materials (a) in the dark at 25 ºC and (b) under visible light irradiation (λ 

> 420 nm) at 25 ºC. (c) The TOFs and activity ratio of different catalysts in the dark and 

under visible light irradiation [TOF was calculated from the data within the first 10 min 

according to the following equation: TOF = mmol gas produced/(mmolAuPd × h)]. (d) 

The TOFs of AuxPdy/CNS and Aux+Pdy/CNS under visible light irradiation. (e) The 

activity contribution rate of alloying effects and plasmonic effects under visible light 

irradiation. (f) The recycling performance of AuPd/CNS under visible light irradiation (λ 

> 420 nm). Reprinted with permission from [52].  

 

Furthermore, the reaction mechanism summarized in Figure 12 was also proposed in 

that study. In dark condition, FA is auto-oxidized and the reduction to H2 and CO2 takes 

place on the Pd active sites of the alloy system by means of thermal power. Under visible-

light irradiation conditions, electron-electron collisions and electron distribution between 

Au and Pd happen because of the alloying and plasmonic effects. Furthermore, the 

photogenerated electron of CNS transfer to Pd sites, leading to the formation of electron-

rich Pd species. FA is oxidized to form CO2 and H+ by the holes on CNS and such H+ are 

reduced to H2 by the electron-rich Pd species.  
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Figure 12. Schematic illustration of photocatalytic hydrogen evolution from formic acid 

for AuPd/CNS (a) under dark and (b) light. Reprinted with permission from [52]. 

 

5. Other photocatalytic systems 

Aside from the most commonly photocatalytic systems based on TiO2, CdS, and C3N4, 

some other nice works aiming at catalysing the photodecomposition of FA have also been 

reported in the recent literature.  

For instance, Tabata et al. investigated the use of silicon-base material for the 

production of H2 under visible-light irradiation [107]. Pure Si powder and metal-

containing catalysts (Pt, Pd, or Ru) were evaluated. In that case, the catalytic ability was 

shown to follow the order Ru/Si > Pd/Si > Pt/Si > Si.  

Moskovits et al. prepared a series of Pd nanostructures to serve as plasmon-mediated 

photocatalytic for the decomposition of FA [108]. The investigated nanostructures were 

nanocubes (average edge length of 10 nm) and hexagonal nanosheets (average edge 

lengths of 22 nm and thickness of 2.9 nm) with the same surface-to-volume ratio.  

Kakuta and Abe reported on the utilization of Cu2O and Pt-Cu2O as visible-light-

responsive photocatalysts to boost the decomposition of FA [109]. According to the 

valence and conduction band edge of Cu2O (+0.844 V and -1.16 V, vs SHE (pH 7), 

respectively), it was determined that the oxidation of FA (HCOOH + 2h+ → CO2 + 2H+) 

and the generation of H2 was feasible (2h+ + 2e- → H2). The catalytic test under dark 

condition did not produce gas, indicating that, using such system, the decomposition of 

FA takes place via photocatalytic process. Upon irradiation, the production of H2 with 

both Cu2O and Pt-Cu2O showed a linear trend with the irradiation time, and it was larger 

for Pt-Cu2O. That study was claimed to be the first instance in reporting the selective and 

stoichiometric decomposition of FA to H2 and CO2 with a visible-light-responsive 

photocatalyst.  
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Wang et. al recently reported on Pt Single Atoms on Te nanowires (Te NWs) for 

plasmon-enhanced dehydrogenation of FA [110]. Initially, Te NWs were prepared from 

Na2TeO3 and they were loaded with Pt contents of 1.1, 4.6, and 32.0 wt.%, so as to result 

in the formation of Pt single atoms, nanoclusters and nanocrystals (average size of ~4 

nm), 1.1%Pt/Te, 4.6%Pt/Te, and 32.0%Pt/Te, respectively. Furthermore, a commercial 

Pt/C sample with an average nanoparticle size of ~ 4-5 nm was also assessed. The reaction 

tests revealed that, while the decomposition of FA was almost negligible under dark 

conditions, the performance was greatly enhanced under light irradiation, reaching TOF 

values of TOFs 3070, 1205, 580, and 363 h−1 for 1.1%Pt/Te, 4.6%Pt/Te, 32.0%Pt/Te, and 

Pt/C under, respectively. In addition, the photocatalysts were evaluated under various 

light wavelengths. It was observed that in the case of 1.1%Pt/Te, 4.6%Pt/Te the apparent 

quantum efficiency (AQE) irradiated by light with different wavelength followed the 

same tendency as the UV–vis spectrum, being such tendency deviated for the sample with 

the highest Pt content. Additional tests were conducted to elucidate the plasmonic 

electron-driven mechanism and photothermal effect accompanied by plasmonic effect 

factors. The linear dependence of TOFs values with the light intensity observed for 

1.1%Pt/Te confirmed the importance of the plasmonic electron-driven mechanism for the 

photocatalysts with low Pt content, while the photothermal effect gains importance for 

higher Pt content. 

Su et al. reported on the visible-light-driven catalytic activity enhancement of Pd in 

AuPd nanoparticles supported on graphene oxide (AuPd/GO) [111]. As previously 

mentioned for some other bimetallic AuPd systems discussed above, the significant effect 

of the electron transfer from Au to Pd was claimed to be crucial for the enhancement 

achieved by the AuPd-system under visible-light irradiation. Wen et al. also reported on 

AuPd-based photocatalysts for the decomposition of FA by using a more sophisticated 
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photocatalyst formed by plasmonic Au@Pd nanoparticles supported on titanium-doped 

zirconium-based amine functionalized metal−organic frameworks (MOFs) (UiO-

66(Zr100−xTix)) [112]. It was observed that the integration of the components of the 

catalyst resulted in a highly effective light energy harvesting system able to catalyze the 

dehydrogenation of FA under visible-light irradiation without any additive.  

As for the case of thermal catalysts used in the FA decomposition [47, 49] , the 

beneficial role of N-doped materials in achieved enhanced performances has also been 

indicated for photocatalytic processes. In this line, the photocatalytic activity of N-doped 

carbon quantum dots (NCQDs) in the production of H2 from FA was evaluated by Li et 

al. [113]. In that study, NCQDs of average diameter of 2.5 nm were obtained from the 

waste of shrimp by hydrothermal treatment and washing and their photoactivity was 

evaluated using external sunlight irradiation.  

As can be seen from the results summarized in these sections, there are diverse 

strategies considered for the preparation of photocatalytic systems used in the 

photodecomposition of FA. In order to give the readers a comparison of the performance 

achieved, the results of some representative photocatalysts are listed in Table 1.  

 

Table 1. Comparison of the performance of various photocatalytic systems in the 

conversion of FA to H2. 

Photocatalyst 
Production of H2 

[mmol H2 g catalyst −1 h −1] 

Selectivity 

to H2 
Light Reference 

TiO2 

nanofibers 
0.80 69.6 

AM1.5, 1 

sun 
[81] 

Pd-TiO2 

nanofibers 
10.9 98.2 

AM1.5, 1 

sun 
[81] 

Au-TiO2 

nanofibers 
3.9 90.7 

AM1.5, 1 

sun 
[81] 

AuPd-TiO2 

nanofibers 
17.7 99.7 

AM1.5, 1 

sun 
[81] 

Pt-TiO2 1.62 n/a UV [114] 

Cu-TiO2 0.83 n/a UV [115] 
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Rh-N-TiO2 0.75 98 
230-440 

nm 
[116] 

Bulk CdS 0.08 n/a >400 nm [86] 

Pt-CdS 0.85 83 >400 nm [117] 

CdS nanorods 0.22 n/a >420 nm [118] 

Pt-CdS 

nanorods 
4.46 n/a >420 nm [118] 

Pt-CdS-TNT 4.26 n/a >420 nm [88] 

CdS-TNT + 

WO3 
0.62 n/a >420 nm [88] 

Pt-CdS-QD 1.22 n/a >420 nm [119] 

CdS@Al-

HMS 
0.13 n/a >420 nm [120] 

Ru-CdS@Al-

HMS 
0.54 n/a >420 nm [120] 

CdS/ZnS 

nanoparticles 
1.24 n/a >420 nm [90] 

Ru-CdS/ZnS 

nanoparticles 
5.85 n/a >420 nm [90] 

Pd@C3N4 53.4 100 >400 nm [105] 

 

6. Conclusion and outlook 

In the present review the promising role of hydrogen as an energy vector able to replace 

the widely used vectors based on fossil fuels is pointed out. Furthermore, the suitability 

of FA as a Liquid Organic Hydrogen Carrier (LOHC) is highlighted by summarizing its 

features and some of the most representative studies aiming at reporting on the 

photocatalytic decomposition of FA are herein summarized. In order to consider the most 

widely investigated photocatalytic systems studies for the present application, sections on 

TiO2, CdS and C3N4-based photocatalysts have been included in this manuscript. Along 

these sections, it has been evidenced that, as in the case of the thermal decomposition of 

FA, the addition of metal nanoparticles is vital to accelerate the photocatalytic process. 

In this line, Mott–Schottky photocatalysts have shown to be a very promising approach 

to adjust the surface charge density of the active metal phase, while decreasing the 

recombination of electron-holes pairs by transferring of the photogenerated electrons 

from the semiconductor supports to the metal active phase. Such electron-rich metal 
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species are, in turn, more active to boost the hydrogen production from FA. This is 

particularly important for the Pd-based catalysts. Moreover, it has been observed that the 

utilization of alloy nanoparticles further promotes the formation of electron-rich Pd 

species. In addition, the incorporation of agent to control the size and shape of the 

nanoparticles are a useful resource to afford optimized performances. Particular attention 

has been paid to those systems containing plasmonic nanoparticles (PdAg and PdAu).  

Aside from noble metal-containing photocatalysts, noble-metal-free systems have also 

been studied in this application. For instance, the utilization of heterojunction (i.e. 

CuO/TiO2, CdS/Fe2O3, MoS2/CdS, etc.) or core-shell structures (i.e. CdS@ZIF-8, CdS-

ZnS, etc.) has been shown to afford enhanced performances ascribed to efficient electron-

hole pairs separation at the interface. Such systems are also promising from the economic 

viewpoint. Furthermore, the importance of some other photocatalytic systems (i.e. MOFs, 

GO, NCQDs, etc.) has also been briefly mentioned.  

This review highlights the applicability of photocatalyst in the hydrogen production 

from LOHC. It is expected to provide the readership with an overview of the most 

representative approaches utilized so far for this application at the time that aims at 

encouraging the research community to further explore on the exciting and relatively 

hardly investigated photocatalytic decomposition of formic acid. Even though important 

breakthroughs have recently been achieved in the photodecomposition of FA, the 

materials used until now are far to be as sophisticated as those used for some other 

traditional photocatalytic applications. It could be envisaged that such important 

application will soon deserve new efforts towards the design of efficient photocatalytic 

systems. One of the points to be considered in this respect would be the improvement of 

the stability of the photocatalysts, which has been shown to be lacking until now. Such 

aspect could be enhanced by engineering the optical properties of the materials used as 
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well as by controlling the adsorption of the reaction intermediates, which would 

eventually block the active sites. Furthermore, another point to be considered would be 

the development of photocatalysts with higher surface area able to provide a higher 

dispersion of the active sites. In this line, the combination of the traditionally used 

photocatalytic materials (i.e. TiO2, CdS, g-C3N4) with a second component with a higher 

developed porosity (i.e. carbon materials, etc.) could be a resourceful alternative to afford 

highly efficient systems for the photodecomposition of FA.  
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