

Automatic music composition by

genetic programming

Grado en Ingeniería Informática

Trabajo Fin de Grado

Autor:

Eddie Rodríguez Pastor

Tutor/es:

Pedro José Ponce de León Amador

Septiembre 2019

 2

 3

Music is the silence between the notes.

-Claude Debussy

 4

 5

Acknowledgements

I would like to express my sincere gratitude to my advisor Pedro José Ponce de León

Amador for giving me the opportunity to work on this project.

My sincere thanks to all my music teachers for sharing with me their love for music.

I thank all my magical colleagues for supporting me during this time of my life.

Last but not least, I would like to thank my family, this project would not have been

possible without them.

 6

 7

Abstract

Automatic music composition is an area of research widely studied nowadays and many

approaches have been proposed for this problem.

This work is based on an existing project developed by the GRFIA which uses genetic

programming for generating music melodies without human supervision. The project

utilises a general-purpose library which is in charge of the genetic programming logic.

The task of supervising the melodies is accomplished by a set of machine learning

algorithms that are trained using a corpus of songs in order to select the best melodies

generated.

This final degree project develops a new library which replaces the one used by the

original project. This new library implements some of the logic of genetic programming

but the part in charge of selecting the best individuals has been developed using the multi-

objective optimization algorithm NSGA-III.

On the other hand, this project extends the binary tree structure used by the software. The

current data model is able to store melodic and rhythm information and the proposed

model is able to store harmonic information too. This change improves the way new

melodies are generated.

Finally, a comparative has been made using performance data and the overall score of the

melodies generated. The result of the analysis is positive, but it has slightly improved in

comparison to the original project. Even though, the two main goals, developing a new

library and extending the model, have been successfully completed.

 8

 9

Resumen en castellano

La composición musical mediante el uso de inteligencia artificial es un área de estudio

ampliamente estudiado y al que actualmente se siguen sumando nuevas propuestas.

Este proyecto se basa en un proyecto existente desarrollado por el GRFIA el cual propone

hacer uso de programación genética para componer música sin supervisión humana.

Dicho proyecto hace uso de una biblioteca de propósito general la cual es encargada de

realizar toda la lógica de la programación genética.

En cuanto al apartado de supervisión de las melodías, el proyecto del GRFIA utiliza una

serie de algoritmos de machine learning los cuales son entrenados con un corpus de

melodías para ser capaces de identificar cuales son las mejores melodías generadas.

Este trabajo de fin de grado desarrolla una nueva biblioteca desde cero que sustituirá la

utilizada originalmente. Esta biblioteca implementará parte de la lógica de programación

genética pero la parte encargada de seleccionar individuos será desarrollada utilizando un

algoritmo de optimización multi-objetivo denominado NSGA-III.

Además de desarrollar una nueva biblioteca, se propondrá una extensión en el modelo de

datos utilizado. El modelo actual esta basado en un árbol binario que es capaz de

representar una melodía representando información melódica y rítmica. En

contraposición, el nuevo modelo propuesto almacena además información armónica, lo

cual ayuda a que las melodías generadas sean de mejor calidad.

Finalmente, se ha realizado una comparativa donde se exponen datos de rendimiento y de

puntuaciones globales de las melodías generadas, que, si bien suponen una mejora, esta

es ligera. A pesar de esto, el proyecto ha concluido cumpliendo los dos objetivos

principales, el desarrollo de una nueva biblioteca y la extensión del modelo de datos

utilizados.

 10

 11

Index

List of Figures ... 15

List of Equations ... 17

List of Tables .. 19

1. Introduction .. 21

1.1 Proposal ... 22

1.2 Goal ... 22

2. Genetic Programming ... 23

2.1 Concepts .. 23
2.1.1 Phenotype ... 23
2.1.2 Genotype ... 24
2.1.3 Population ... 25
2.1.4 Fitness function ... 25
2.1.5 Generation .. 25
2.1.6 Genetic operators ... 26
2.1.6.1 Selection ... 26
2.1.6.2 Crossover .. 27
2.1.6.2 Mutation .. 27

2.2 Program flow ... 28

3. The Multi-Objective Optimization Problem .. 31

3.1 Pareto front ... 32

3.2 Multi-Objective Evolutionary Algorithm (MOEA) ... 33
3.2.1 Niching methods ... 34
3.2.1.1 Fitness sharing .. 34
3.2.1.2 Crowding .. 34
3.2.1.3 Crowding distance .. 34
3.2.1.4 Reference point .. 35

3.3 NSGA-III ... 36

4. State of the Art ... 39

4.1 State of the art in computer generated music.. 39
4.1.1 GenJam .. 39
4.1.2 Vox Populi.. 40
4.1.3 Conceptual blending ... 41

4.2 State of the art in evolutionary computation libraries ... 41
4.2.1 JMetal .. 42
4.2.2 Jenetics .. 42
4.2.3 ECJ ... 42

 12

5. Technologies and Methodology... 45

5.1 Technologies .. 45
5.1.1 Java .. 45
5.1.2 Eclipse .. 45
5.1.3 GIT ... 46
5.1.4 Visual Studio .. 46

5.2 Methodology ... 46

6. Data Model... 49

6.1 Koza tree structures ... 49

6.2 Music tree model ... 50

6.3 Adding harmony information to the music tree ... 54
6.3.1 Intervals ... 54
6.3.2 Scales ... 55
6.3.3 Chords ... 56
6.3.4 Chord progressions ... 58

6.4 The improved tree model ... 58

7. Implementing the Library .. 61

7.1 Implementing the selection operator .. 61
7.1.1 Step 1: learning how it works.. 61
7.1.2 Step 2: implementing the MOEA .. 62
7.1.4 Step 3: testing ... 65
7.1.5 Step 4: refactoring the code ... 65

7.2 Implementing the crossover operator ... 65

7.3 Implementing the mutator ... 66

7.4 Fitness functions .. 67
7.4.1 Global statistical evaluations .. 67
7.4.2 Local musical n-gram evaluations ... 67
7.4.3 Melodic analysis .. 68
7.4.4 Melodic segmentation .. 68

8 Results ... 69

8.1 Performance analysis ... 69

8.2 Fitness analysis... 70

9 Concluding Remarks and Future Work .. 73

Bibliography ... 75

Appendix A. NSGA-III pseudocode ... 77

Generation t of NSGA-III procedure .. 77

Normalize (fn,St, Zr, Zs/Za) procedure ... 78

Associate (St, Zr) procedure... 78

 13

Niching (K, pj, π, d, Zr, Fl,Pt+1) procedure .. 79

 14

 15

List of Figures

Figure 1 Music bar phenotype ___ 24
Figure 2 Music bar represented using tree structure __ 24
Figure 3 Crossover operator applied to two music trees _____________________________________ 27
Figure 4 Mutator operator applied to a music tree ___ 28
Figure 5 Example of a pareto front __ 32
Figure 6 Crowding-distance calculation. __ 35
Figure 7 Association with reference points __ 36
Figure 8 GenJam genotype structure __ 40
Figure 9 Lisp program represented in a tree structure _______________________________________ 50
Figure 10 Example of a melody extracted from Ode to Joy ___________________________________ 51
Figure 11 Equivalency between figures __ 51
Figure 12 Third major ascending interval ___ 54
Figure 13 Intervals___ 55
Figure 14 C Major Ionian scale including the distance between the notes. T for tone, HT for half tone. 55
Figure 15 D major ionian scale ___ 56
Figure 16 D major dorian scale ___ 56
Figure 17 In order: C major, D minor, E minor, F major, G major, A minor and B dimished___________ 57
Figure 18 Hey Jude's last bars. ___ 57
Figure 19 On the left, a melody represented using the tree structure without harmony. On the right, the

same melody represented using the proposed model with harmony. Behind the trees, the melody

represented by both trees. __ 60
Figure 20 In red, elegible nodes for crossover ___ 66
Figure 21 Pareto front __ 71
Figure 22 Non-dominated area ___ 71
Figure 23 Non-dominated areas __ 72
Figure 24 Two populations. In blue, a population generated by the new system. In orange, a population

generated by the old system ___ 72

 16

 17

List of Equations

Equation 1 Koza´s formula to calculate the probability of being selected by the environment selection 29
Equation 2 NSGA-III population size ___ 36

 18

 19

List of Tables

Table 1 Sample fitnesses __ 31
Table 2 Not normalised fitnesses ___ 32
Table 3 Elapsed time comparison between the old system and the new one _____________________ 70

 20

 21

1. Introduction

The ability to learn from data has been always studied through history by computer

science but the insufficiency computational power has delayed this task until now.

Nowadays, the use of artificial intelligence is increasing due to two facts, the possibility

of storing big amounts of data and the ability to compute them. One of the things that has

allow this fact is the possibility to learn the characteristics of a set of data in order to

produce a similar result.

An example of this are the YouTube’s video suggestions (1). The company collects data

about the viewer like his age, his favourite video category, the average video length

preferred and then it trains a machine learning algorithm in order to produce video

suggestions that fits the viewer’s likes.

In this case, this project is going to be focused on improving a software able to learn about

music and to compose music without human supervision. In order to achieve this, we will

use some machine learning algorithms able to learn about a music genre and it will be

accompanied by a genetic algorithm which will be in charge of generating the best

melodies that fit for the given genre.

In order to develop this project, we will try to improve a software developed by the

GRFIA (2) research group that is able to compose music by itself.

This process will be divided in three parts and every part needs to be fulfilled before

starting the following one. Those parts are:

1. Learn the structure of the project, which is the data model used, and how it

implements the genetics algorithm logic.

2. Design a new data model able to store additional musical information, trying to

keep the ability to produce the original model using the new one.

3. Design a new genetic algorithm that can override the general-purpose library used

by the original software.

 22

1.1 Proposal

In this project, we propose a new data model that is able to represent a music melody but

including the harmony and a new genetics algorithm library. This library will be

developed from scratch, giving the possibility to modify it completely in order to fulfil

the requirements of music composition.

1.2 Goal

The main goal of this project is to develop a system capable of composing music melodies

with enough musical quality so the listener cannot distinguish between a regular melody

and a melody composed by the software.

Specific goals:

- Understand how evolutionary music composition applications work. In

particular, an application developed by the GRFIA (2) research group based

on an external evolutionary computation library.

- Extend a predefined evolutionary music data model to include harmony.

- Replace the external evolutionary computation library by in-house code.

- Analyse and compare the performance of the old and new systems.

This project is going to research which is the best genetic algorithm that can be used for

this problem.

Finally, we will discuss the obtained results and propose future research directions.

 23

2. Genetic Programming

Genetic programming, GP from now on, is an artificial intelligence technique which is

based on the idea that applying the nature evolution rules to code that can lead to programs

that can solve a problem. Even though John Koza was not the first who proposed this

approach (3), he has written many articles describing when GP can be a good solution, to

problems whose solution may not be trivial.

In his book Genetic Programming (3), Koza proposes a perfect example that can show

how a problem without a known solution, can be represented and solved using GP. The

example consists in finding the best business strategy for a hamburger restaurant.

The example showed how a non-trivial problem was solved by combining characteristics

of restaurants whose financial situation was stable or improving; or by adding new

characteristics to the restaurants that were not present on other subjects.

GP has proven to be a powerful tool to approach very different problems. A few years

ago, it was developed a program (4) that was able to guide a car in a close circuit just

using GP and the mutator operator.

2.1 Concepts

GP uses a vocabulary set similar to the one used in the genetic biology area of study. This

vocabulary usually represents ideas that are similar to the original concept.

2.1.1 Phenotype

A phenotype is an individual with observable characteristics or traits. Two phenotypes

are different if they have at least one different trait. Phenotypes are built using a recipe

called genotype.

 24

Figure 1 Music bar phenotype

2.1.2 Genotype

A genotype is the recipe used to produce a phenotype and if it is used many times, it must

always produce the same phenotype. In biology, the animals’ genotype is the DNA but in

GP it can be represented in different ways. The most typical genotype representations are

arrays, strings and trees.

Arrays are usually used to store integers or decimal numbers but the most used is the

binary array. This is due to the fact that implementing the crossover operation and the

mutation is easy in this type of model.

Strings are similar to binary arrays; the crossover and mutation can be easily applied, and

it does not handle a difficult implementation, but it may be difficult to use for complex

models. String cannot be confused with nested parenthesis trees even though is a way to

represent a tree, it is not considered a string genotype.

On the other hand, we have trees. Trees are the most complex of these genotypes as it

may represent a lot of different possibilities, in particular, information organized in

hierarchies. Trees are usually accompanied with a set of rules which define when a tree

is a valid genotype and when is not.

Figure 2 Music bar represented using tree structure

 25

2.1.3 Population

A population is a set of individuals. This set of individuals can have a subset which is

called a subpopulation.

2.1.4 Fitness function

In wildness, individuals need to adapt to the environment in order to survive, they may

need to have enough endurance for extreme weathers, being able to run faster than

predators or evolving in order to improve their probabilities to do this.

These factors can be used for measuring the fitness of an individual in an environment.

In genetic programming, this is translated to fitness functions or objectives. A fitness

function can be anything that can give an individual a score depending on how it performs

on a given conditions.

One of the difficulties of genetic programming is being able to define a fitness functions

for a given problem. One common solution for this is using machine learning in order to

extract meaningful fitness information out of a set of individuals.

2.1.5 Generation

In genetic programming, the population performs an evolution in order to increase their

score on fitness functions. We call generation to a given state of the population.

The first generation of a genetic programming flow is the initial population, after having

applied the genetic operators, we achieve the following generation.

The number of generations of a program can be defined by a number of iterations or using

a criterion like the average score of their individuals.

 26

2.1.6 Genetic operators

In order to evolve a population, we need to use some mechanisms that help us to combine,

mutate or keep the individuals with the aim of improving their score, these mechanisms

are the genetics operators.

There are three kinds of genetic operators and they have a different utility each. Those

operators are selection, crossover and mutation.

2.1.6.1 Selection

The purpose of the selection operator is to keep those individuals with the highest score

on the following population. The importance of this is that those individuals may have

some characteristics in their genotype that can be helpful for producing new individuals,

increasing the average fitness of the population or just to use them as the best solution to

a problem.

There is an intermediate state between one generation and the following one and it is the

mating pool. The mating pool is the population created after having calculated the fitness

of every individual in a generation. The obtained mating pool can be used for the

selection.

There are different ways to implement this operator, for example the tournament selection

which consists of confronting two different individuals, comparing their fitness score.

Finally, the winner will be present on the mating pool.

The selection operator may be difficult to implement if more than one fitness function is

used as it can be difficult to determine which individual is the best if they have different

scores in different fitness functions.

 27

2.1.6.2 Crossover

The aim of the crossover operator is to combine different genotypes in order to produce

new genotypes. The crossover operator is usually implemented using two parents which

produce two new individuals.

The parents chosen for the operator may be selected randomly or by given a higher

probability to be chosen to those with the best score.

The crossover operator can have some difficulties due to its ease to produce invalid

individuals. When implemented, some rules must be implemented as well, so the

possibility to produce an invalid individual is reduced to zero.

Figure 3 Crossover operator applied to two music trees

2.1.6.2 Mutation

The objective of the mutator operator is to introduce random changes into a genotype in

order to enrich the variability of the population.

When applying the selection and the crossover operator, it is easy to remove potentially

useful genotypes, this can be solved with the mutation operator. It can be easily

understood with an example.

Let us consider a binary genotype with three bits. If we have the individuals 000, 011,

010, 001, there is no way to produce a new genotype that has a 1 on its bit on the left if

 28

we use the selection and the crossover operators but it is possible that the mutator operator

introduces a random 1 into one of the previous genotypes.

Figure 4 Mutator operator applied to a music tree

2.2 Program flow

The first thing that we need to define in genetics programming is the size of the

population. This is the number of individuals that can fit in a population, in every

iteration, there must be always the same number of individuals.

After defining the number of individuals, we need to define the number of iterations for

the algorithm. In every iteration, a new generation will be generated by applying the

genetics operator to the previous population.

Once we have defined those two variables, we can start. The first thing to do is to generate

the first population. This population can be initialized randomly or using some predefined

rules which can help our algorithm to solve the problem.

Every time we produce a new genotype, its corresponding phenotype must be evaluated

by the fitness function. The score achieved by the function will be important for the

genetics operators to decide the next step. Having evaluated every individual, we will

have produced the mating pool.

Koza proposes in his book to start using the crossover operator. This will double the size

of the population. After applying it, a new set is generated with size doubled.

Secondly, we can apply the selection operator. Not all of the individuals of the mating

pool will be present on the next population. Every individual is provided by a probability

to survive to the next generation based on its score. Koza proposes to calculate this

probability using the next formula:

 29

𝑓(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑛)

∑ 𝑓(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)𝑀
𝑖=0

Equation 1 Koza´s formula to calculate the probability of being selected by the environment selection

Being M the size of the mating pool and f(individual) the fitness function result for the

given individual. This can be applied if there is only one fitness function.

Finally, we can apply the mutation operation to the individuals selected to the next

generation. The result of applying the three operators is considered the next generation.

The individual with the highest score on the last generation can be considered the best

solution to the proposed problem but the other individuals may not be discarded as they

can be good solutions as well.

 30

 31

3. The Multi-Objective Optimization

Problem

One of the problems present in genetics programming appears when there is more than

one fitness function used to evaluate the individuals. Choosing the best one may be a

difficult task if there is not a defined criterion for it.

In order to introduce this problem, let’s consider two fitness functions, A and B and three

individuals, ind1, ind2 and ind3. These are the fitness calculated for the three individuals:

 A B

Ind1 1 0

Ind2 0.5 0.5

Ind3 0 1
Table 1 Sample fitnesses

For this example, the best score for both functions is zero. Which of these three

individuals is the best? There must be different answers to this question. If we consider

that the best solution is the one with the highest sum of scores (5), the three individuals

are valid. This approach called ‘linear aggregation’ was very popular when the firsts

algorithms were developed.

Other possibility is to use the lexicographic ordering which consists of prioritise one

objective and optimising it. Secondly, another objective is prioritised and optimized

without degrading the first objective and without taking into consideration the other

objectives.

If we decide to calculate the distance to the optimal point, in this case (0, 0), ind2 has a

score of 0.71 which is better than ind1 and ind3 as they are at a distance of 1 point.

Another possibility can be to choose those individuals with the highest score in each

single function, in this case ind1 is the winner for function A and ind3 for function B.

As you may see, depending on the approach used to select individuals, the result may

vary. This problem is even more difficult if the functions produce different set of scores

and the maximum or minimum score is unknown. For the following example, consider

that the higher the score is, the better.

 32

 A B

Ind1 80 0.3

Ind2 55 0.9

Ind3 70 0.2
Table 2 Not normalised fitnesses

In this case, the differences are too significant, and they cannot be ignored. If we decide

to select the sum for example, the fitness B will be almost ignored as it does not have

enough weight to change the result of the sum. This fact can produce that the genetics

algorithm will prioritize the solutions that fit A and not B.

3.1 Pareto front

The pareto front is a representation of the non-dominated solutions. A non-dominated

solution, or pareto optimal is the one whose score cannot be improved without degrading

the result of the other objectives.

Figure 5 Example of a pareto front1

There are several ways of calculating the pareto front and the algorithm for it depends on

the number of dimensions chosen. One easy way of calculating the pareto front for 2

dimensions is sorting one of the objectives in ascending order. Then, the individuals are

iterated.

1 Image taken from: http://www.cenaero.be/Page.asp?docid=27103&langue=EN

 33

The first individual is added to the pareto front as it is the first optimal individual found,

then, the following individual is compared with the last individual added to the optimal

individual list, if its second objective is lower than the last added, it is added to the optimal

list, otherwise it is discarded.

3.2 Multi-Objective Evolutionary Algorithm (MOEA)

With the aim to solve this problem, some algorithms have been developed even though

this problem has not a trivial solution. A multi-objective optimization algorithm must

include two important characteristics in order to be considered a good approach.

Firstly, a MOEA must increase the overall score of an individual, this means that it must

try to increase all the possible objectives functions available. This have been pursued

since the first MOEAs came with different mechanisms (5).

One of those mechanisms that may result interesting to consider is elitisms. Elitism is

based on having a different set of individuals with the best traits, used within the crossover

operator in order to increase the score of the population.

This set can be a predefined one with manually selected individuals or it can be just the

set of the nondominated individuals of the population.

Elitism is an interesting technique that must be considered but using it on music

composition can be dangerous. It may seem a good idea to have a second set with human

composed songs that may transfer their characteristics to new sets, but the result can be

counterproductive due to the probabilities of producing a plagiarised song.

Secondly, a MOEA must keep the diversity of the population. This is called niching. The

following section explains several niching methods.

 34

3.2.1 Niching methods

The main reason of niching is to avoid that all the solutions tend to the same point. With

the aim of increasing the entropy of a population, the MOEAs have develop several

methods for this task.

3.2.1.1 Fitness sharing

Fitness sharing (6) is one of the first niching method developed. It consists of modifying

the overall fitness of an individual depending on how crowded the area is where the

individual is. The winner out of two individuals with similar scores is the one with less

neighbour around.

Fitness sharing decreases the fitness of an individual if it finds individuals with similar

characteristics.

3.2.1.2 Crowding

Crowding technique has several different implementations (7) but its first idea is to

replace individuals. The author Dejong (8) implemented crowding by selecting an

individual and a subset of individuals, the most similar individual of the subset is replaced

with the individual selected.

3.2.1.3 Crowding distance

The MOEA NSGA-II (9) implemented a new niching method which consisted on

calculating what they call the crowding distance. The crowding distance is the result of

computing the average distance to two points for every objective. During the selection

operator, the crowding distance is compared in order to rank which individual is better.

 35

NSGA-II implements a crowded-comparison operator that guides the selection process.

The operator uses two values in order to compare individuals, one is the crowding

distance explained before and the other one is the nondomination rank which corresponds

to the number of individuals that dominate the individual.

The operator uses this algorithm in order to compare two individuals i and j, being irank

the nondomination rank of the individual and idistance the crowding distance.

i is better than j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance))

In other words, if one individual is better than other, it is selected, in case that both are

equal, the crowding distance oversees defining which is better.

Figure 6 Crowding-distance calculation.

3.2.1.4 Reference point

Reference-point method (10) is based on calculating a set of points in the hyperplane.

Every individual is associated with a reference point based on the perpendicular distance

between the individual score and the line formed using the reference point and the most

optimal point.

Finally, an individual is chosen for each reference point based on the closest distance to

the reference line.

 36

Figure 7 Association with reference points

3.3 NSGA-III

Choosing an algorithm to implement for this problem has been difficult. There are several

MOEA whose results are attractive but with different results. Some MOEA may ensure

that the average solutions for a problem are better than using other algorithm but it may

lack some diversity, others may keep diversity but the average score of a population is

not as optimal as others.

The NSGA-III algorithm (10), also called NSGA-II with reference-point based non-

dominated sorting, it is a relatively recent algorithm that presents better results than its

predecessor NSGA-II.

NSGA-III is an improved version of its predecessor, but it changes the niching method

used, the crowding distance. NSGA-III uses the reference-point technique instead. For

this reason, some authors do not consider NSGA-III as a new version of NSGA.

One of the disadvantages that may be mentioned of using NSGA-III is that we do not

have the possibility to define the exact size of the population. The size of the population

is computed using the following formula:

𝐻 = (
𝑀 + 𝑝 − 1

𝑝
)

Equation 2 NSGA-III population size

 37

M is the number of objectives and p the number of divisions. H is the number of reference

point used in the algorithm and as we mentioned before, the solution chooses one

individual for each reference point.

The NSGA-III algorithm will be implemented as the multi-objective optimization

function of our genetic programming framework.

 38

 39

4. State of the Art

This project is based on a wide area that has been previously researched so there are some

proposals done before that need to be taken into consideration before starting to develop

this project.

4.1 State of the art in computer generated music

There are several pieces of software trying to emulate a human composing music and the

approaches used for it are different. There are some programs that use deep learning like

deepJazz (11) or Markov’s chains like JazzML (12). We are going to analyse three

different projects that use genetic programming, genJam (13), vox populi (14) and one

based on conceptual blending (15).

4.1.1 GenJam

GenJam, or Genetic Jammer, is a software developed in 1993 (13) but its algorithm and

code have been improved through the years. It is based on a genetic algorithm that is able

to compose music without human supervision.

One of the main characteristics of GenJam is that it uses two different populations, one

for the measures and the other for the phrases. A phrase is just a set of measures. The

purpose of working this way is to reuse measures that have a good fitness score many

times.

One of the disadvantages of GenJam is its limitations. For example, it always uses a 4/4

measure and it can only represent 14 notes due to definition of its chromosome

representation. It uses a string for it.

 40

Figure 8 GenJam genotype structure

This is an example of a genotype. The first number on the left of the box it is just the

index of the element, in this case we have the 23th phrase of the population. The following

number isolated in a box is the fitness achieved, in this example, this phrase has a negative

punctuation because it is not considered a good phrase chromosome. The following

numbers are pointers to measures.

The measure structure has an index and a fitness as well but the meaning of the numbers

on the right is different. If it is a 0, it represents a rest on the melody, between 1 and 14 is

a pitch and 15 is a hold which means that it continues playing the previous note.

As you may notice, the genotype is designed to be optimal. The size of the population,

the individual and even the characteristics of the individual are powers of two. This is a

limitation of the time when the algorithm was developed.

4.1.2 Vox Populi

Vox Populi uses genetic programming to evolve a set of chords. Chords are represented

using a 28-bit binary string and each note of the chord is represented in a 7-bit binary

string.

The genetic operators cross the chords in order to produce new ones. The fitness criteria

used is the melodic fitness, the harmonic fitness and a voice range fitness.

 41

4.1.3 Conceptual blending

The author Kaliakatsos-Papakostas (15) proposed a new approach for generating drum

rhythms based on conceptual blending as a way of creating new styles.

The methodology used by his project is the following one:

Firstly, two rhythms are chosen by a human as input. For both rhythms, 32 features are

extracted. The features of both rhythms are blended, creating a new vector of features

which include the most important features of each rhythm.

Secondly, a genetic algorithm is used within the vector of features created on the previous

step. The initial population includes an equal number of copies of the two original

rhythms.

The genotype structure is a 2-dimensional array with 3 rows, each row represents a basic

drum and 12 to 24 columns which correspond with the number of beats.

The genetic evolution used implements fourth different crossover operators that apply

different set of operations to the genotype.

4.2 State of the art in evolutionary computation

libraries

There are plenty of evolutionary computation libraries for general purposes. They allow

the user to define a set of rules on its genotype so they can slightly adapt themselves for

every problem proposed and they implement different algorithms that may be useful in

order to sort a determined obstacle. I am going to focus on java libraries due to the fact

that is the language used in this project.

 42

4.2.1 JMetal

JMetal (16) is not an evolutionary computation library itself but it provides a set of multi-

objective and single-objective algorithms that are necessary on genetics. These

algorithms help us to select the best individuals that fit better in our environment. Some

of those algorithms are NSGA-II, MOEA/D, MOCell…

In order to test those algorithms, JMetal provides a set of problems that can be used as a

benchmark. Ones of those benchmarks are provided by the DTLZ test suite.

The DTLZ suit (17) provides seven problems with box-constraints that can be optimized

with a variable length of fitness functions, due to this, its problems are perfect for testing.

One of the problems is DTLZ1 (17), whose solutions are those that are located on a linear

hyperplane on 0.5.

JMetal can work mainly with binary or string chromosome representations.

4.2.2 Jenetics

Jenetics (18) is a genetic library for java that uses mostly trees for the genotype

representation. It allows the user to use trees, parenthesis trees and flat trees as the input

for the population.

The multi-objective optimization algorithm used by Jenetics is NSGA-II so we can

consider that Jenetics lacks multi-objective optimization algorithms as there are better

options than that algorithm.

4.2.3 ECJ

ECJ (19) is the library originally used by the software in which this project is based. This

library implements different multi-objective optimization algorithms like NSGA-II or

NSGA-III and the choice is up to the user.

 43

Other advantages presented in ECJ is that it supports different genotype representations.

It uses its own tree representation and provides the user a syntax to define the

requirements of a valid tree for the problem.

 The other main representation is the vector. It can use fixed-length vectors and variable

ones.

In order to test performance, ECJ provides a set of problems that can be used for testing,

for example, the performance of two different multi-objective optimization algorithm.

There are some problems that use vector representation and other that use trees instead.

Another feature of ECJ is that it implements the flyweight pattern which is able to save

computer resources while solving a problem by abstracting the common characteristics

of the individuals in a population.

 44

 45

5. Technologies and Methodology

Choosing the technologies for this project has been easy due to the fact that this project

continues an existing project so some of the tools used are inherited. In this chapter, we

will provide a short description for the tools used in this project and the methodology

used to fulfil the requirements.

5.1 Technologies

5.1.1 Java

Java is a compiled general-purpose language programming language. It is compiled to

bytecode which is interpreted by the Java Virtual Machine. Due to this, java can run on

every operating system able to run the Java Virtual Machine such as Windows, MacOS

and Linux distributions.

Java is widely use due to its power and ability to be portable to every system. It has one

of the largest communities and according to stackoverflow (20) is the second most loved

programming language in 2019.

The java version used for the project is Java SE 8 because is a long-term support version.

Even though java has a lot of advantages, it has been criticised for being a high resource

consuming language.

We have used java because it is the language programming used on the original project.

5.1.2 Eclipse

Eclipse is the IDE chosen for Java. Eclipse is open source and it is supported by the

Eclipse Foundation. It provides different versions for several programming languages

such as C++ or PHP.

 46

The advantages of using eclipse are that it provides a full environment with powerful

tools that increase the productivity when working with java.

Other reason for using eclipse is that the original project is an eclipse based project and

migrating it can be a difficult task that may be not part of this project.

5.1.3 GIT

Git is a version-control system that will help us to control our code. We have used

github.com for storing our remote git repository.

Git has help us providing some tools to control the changes produced in the code.

5.1.4 Visual Studio

In one step of this project, we will need to work with a project written in C++, for this

task we have chosen Visual Studio as our IDE.

Visual Studio is an IDE developed by Microsoft which can work with C++, C# and F#

among others. The main reason for choosing this IDE was the powerful debugger

integrated that has helped us to understand how the C++ project was developed.

5.2 Methodology

We have divided our project in two different objectives, one is implementing our own

genetic programming library and the other is changing the data model used in our

problem. For this reason, we have defined two goals.

Before both goals can be considered, there have been a previous general research step

that consisted on analysing the current state of the program. This research has focused on

how the problem was implemented and which solution was proposed for it.

 47

After that, we have defined several requirements for our both goals. Both goals have

followed these steps: research, implementation and testing.

 48

 49

6. Data Model

The structure selected for the chromosome representation in this problem is the tree data

structure. This structure was firstly proposed by Koza in its book genetic programming

(3) but the rules in which the actual model for the problem is based and the original ones

differ.

In this chapter, we will explain why was proposed the tree as an excellent approach for

genetic problems representations, how is implemented for music composition and how

can it be improved.

6.1 Koza tree structures

Koza proposed that genetic programming was a valid strategy for solving problem whose

solution was not trivial. When Koza refers to a solution to a problem, he may refer

sometimes to a set of variables that may be the solution itself or sometimes to a program

which is able to solve a problem by defining a set of parameters as an input.

This second approach is basically a computer program and this idea can have tons of

difficulties. The proposed language for this task was Lisp.

Lisp is a multi-paradigm programming language, but we are going to focus on functional

programming paradigm. Let’s consider that finding the formula to find the hypotenuse of

a right triangle is not trivial and we want to solve the problem using genetic programming.

The solution expected for this problem in lisp is the following one, we have omitted the

possibility to use the power function in order to give a better example:

(sqrt (+ (* a a) (* b b)))

The advantages of using Lisp is that its syntax can be easily represented as tree. The code

explained before can be translated to the following tree:

 50

Figure 9 Lisp program represented in a tree structure

This representation can be used in genetic programming due to the fact that defining a set

of rules ensures that it can be changed randomly but the result will produce another valid

program with a valid syntax.

One example of rule that ensures the tree as valid is that a SQRT node can only have one

child, if we disobey this rule, we can produce a Lisp program that may led to a compiling

error.

6.2 Music tree model

The model used by the GRFIA application (2) is a good way to represent a music melody

as it gives the possibility of changing the structure of the melody without breaking the

metric rules used in music.

On the contrary to the Lisp tree models, the nodes used in this structure may be only valid

on a fixed level and using them on a different level may led into an invalid tree structure.

We will explain some music theory with the aim of explaining some of the rules followed

by this model.

The tree structure represents a whole melody. A melody is a combination of pitch and

rhythm. The rhythm of a melody is expressed using a meter signature and every melody

must have one.

The measure is in charge of deciding the duration of a bar. A melody is divided in pieces

and those pieces are the bars.

 51

Figure 10 Example of a melody extracted from Ode to Joy

In this example, the meter signature is 4/4. It is defined by a numerator and a denominator

and they have a different meaning depending on if the measure is simple or compound.

We will simplify the problem using only simple measures.

The denominator of a simple time meter indicates the note value that fulfils one beat in a

bar. This value is always a power of two because it is calculated by dividing the whole

note whose value is 1, then the half note is 2, quarter note 4 and so long.

On the other hand, the numerator indicates the number of beats that fill a measure. Every

measure must be filled with all the beats that can fit on it.

Applying these rules to the example showed before, the 4/4 time signature means that

every of our bars ruled by this metric will have 4 beats with a quarter note on each beat.

This does not mean that we need to use always 4 quarter notes, we can use every

combination of notes that fit on that bar, so for example a single whole note or 8 eighth

notes can be valid bars.

Figure 11 Equivalency between figures

Secondly, we have the pitches of the melody. A pitch is a sound that is played on a specific

frequency. In order to represent a pitch, we need two elements, a staff and a clef. The key

indicates where is located a reference pitch, for example, the clef most used is the G-clef

or treble clef which indicates that the fourth G of the piano is represented in the second

line of the staff.

 52

There are seven different pitches and after the seventh pitch, the sequence starts again

with the first pitch. Those seven pitches are C, D, E, F, G, A and B. If we want to know

the frequency of a pitch, we need to know the octave of it. So, for example, the A pitch

on the fourth octave represents the frequency 440hz, the A pitch on the next octave

represents 880hz.

Summing up, in one hand we have that in order to represent a pitch we need to know its

name and its octave and on the other we have that in order to represent that pitch in a

music score, we need a staff and a clef.

The distance between pitches is calculated using tones. There are some intermediate

pitches and they can be represented using accidentals. The sharp accidental adds half tone

to a pitch and the bemol subtracts half tone. If we take into consideration those

intermediate pitches and we represent them using sharps, the list of pitches will be C, C#,

D, D#, E, F, F#, G, G#, A, A# and B, 11 in total.

Having explained how a melody is defined, we can then explain how this can be translated

into a tree.

The tree starts we a root node, the root node does not contain music information. Then,

the children of the root nodes are the sections. Sections are not compulsory, and they are

not in music theory, but they can help to organise the structure of the melody. Sections

are used in some music pieces, for example the sonata is divided in three sections and

sometimes it follows an A B A structure.

The children of the sections, in other words, those on the third level of the tree, contain

measure labels. The measure label contains the time signature. Every measure node is

translated to a bar in a music score.

If we remember, the numerator indicates the number of beats that fill a bar and the

denominator indicates the value of each beat. The numerator is translated to the tree

indicating the number of children that the measure node must have and the denominator

the value of each beat.

In this case, the numerator is applying a validation rule to the tree, if we build a tree using

a measure node with a 4/4 time signature with only three children, it will be invalid and

it will not be possible to translate to a music melody.

 53

The child of a measure label can have 4 different labels:

- Pitch label: A label containing a pitch and the octave of the pitch.

- Continuation label: This label means that the beat keeps playing the previous

played sound. In music, this can be represented using longer notes, dotted

notes and ties.

- Rest: This is translated as a silence in a music melody.

- Empty label: We use this label to indicate that this is not a leaf node.

If we use an empty label, the node container must have two children, this is because the

duration of that beat is divided in two parts. So, for example, if we have a node that

represents a quarter note and we want two have two eighth notes, we will put an empty

label on the node and two children that will represent each eighth note.

As we can notice, melodic information is stored in the labels contained by the nodes and

the rhythm information is decided by the structure of the tree.

There is another advantage of this model and it is the possibility to store this data in string

form as a way to store the model if needed. Translating this tree to a nested parenthesis is

easy, the possible labels for this are:

Root: Corresponds to the root of the tree.

S: It means section.

M: For the measure label, it translates to a whole bar.

^: Empty label, for those levels that need to be divided in two sub beats.

-: Represents the rest.

.: Continuation, it can be translated to a dotted note or a tie.

A, B, C, D, E, F, G: Represents a pitch, it needs an integer to represent the octave of this

pitch.

 54

6.3 Adding harmony information to the music tree

As we introduced in this document, one of the aims of this project is to try to improve the

model utilised for representing music melodies. This is going to be done by changing the

way it works and the way it is translated to a music score but before we can introduce this

change, we need to explain what harmony is.

As we described before, a melody is a set of notes played sequentially with the aim of

producing a sound that may sound appealing to the listener. These notes can be any notes

but if we want to produce better melodies, we need take into account the rules of harmony.

Harmony provides a set of rules that may identify pitches that played together or one after

another should sound nice to the listener. The main tool in harmony are chords but we

need to introduce a few concepts before.

6.3.1 Intervals

If we take two different notes and we analyse the distance between the two different

pitches, we are talking about an interval. The characteristics needed to fully identify an

interval are the name of the both pitches, the distance between them and if the distance is

ascending or descending.

Figure 12 Third major ascending interval

An interval can be perfect, major, minor, augmented and diminished. These names may

also define how will be the sound when both pitches are played. A perfect interval

produces a neutral sound, a major produces a happy sound while minor intervals produce

sad ones. Then we have augmented and diminished which produce a tension sound.

 55

An interval is perfect when we the distance between two pitches is 4, 5 or 8 pitches and

they have between them 5 semitones, 7 semitones and 12 semitones each.

Intervals with 2, 3, 6 or 7 pitches of distance are major when they have 2 semitones, 4, 9

and 11 semitones each. For the same intervals, if we remove one semitone, we will

produce the equivalent interval in minor mode.

If we add a semitone to a major interval or a perfect interval, we will have an augmented

interval, if we add two a double augmented interval and so long.

If we remove a semitone from a minor interval or a perfect interval, we will produce a

diminished interval, if we remove two then double diminished as augmented intervals.

Figure 13 Intervals

6.3.2 Scales

A scale is an ordered set of notes built using a formula. In order to simplify the

explanation, we will focus on the common scales. In order to build a scale, we need a

pitch, this pitch is going to be the first one of the pitches set. Secondly, we need a key,

this can be major or minor and finally we need a mode, the mode depends on the key, so

we are going to use de major key for this task.

 The most basic scale that we can built is the C major Ionian scale.

Figure 14 C Major Ionian scale including the distance between the notes. T for tone, HT for half tone.

The formula used to produce this scale is the following one, where the interval indicated

is the one between the first pitch and the current pitch:

1º Perfect, 2º Major, 3º Major, 4º Perfect, 5º Perfect, 6º Major, 7º Major and 8º perfect

 56

If we change the first note of the set and recalculate the other pitches, we will produce a

different scale so for example, if we have D as a reference pitch and we want to produce

D major Ionian, this will be the result:

Figure 15 D major ionian scale

If we produce an Ionian scale and then we shift the set, we will produce the following

mode. So, for example, if we take the ionian scale and then we shift the set to the left one

position, the resulting set is the D major dorian scale:

Figure 16 D major dorian scale

The major modes are Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian and

Locrian.

6.3.3 Chords

A chord is the combination of three or more pitches. Chords are similar to scales; they

need a reference pitch and a formula. The easiest way to generate a chord is using a scale.

Let’s use the C major Ionian scale for this example. If we take the first, third and fifth

pitches of the scale, we will produce the C major chord. The major chord is generated by

using these intervals:

1º Perfect, 3º Major and 5º Perfect

You may notice that these intervals are part of the major Ionian scale. If we have a scale

with seven pitches, every pitch will generate a chord. These chords are named using

roman numbers and depending on the mode of the third interval, we use lower case for

minor chords and upper case for major ones. The formula to generate each chord is to

take the first, the third and the fifth interval. The result for the C major Ionian is:

 57

I, ii, iii, IV, V, vi, viiº

Or using names:

C major chord, D minor chord, E minor chord, F major chord, G major chord, A minor

chord and B diminished chord.

Figure 17 In order: C major, D minor, E minor, F major, G major, A minor and B dimished

Depending on the scale, it may produce other different basic chords, but we are not going

to include them here.

One easy way to recognise the scale of a song is checking the first and last pitch of it.

This method does not always work but it may be helpful sometimes. If the starting pitch

is different to the last, the last pitch has priority over the first. Let’s use the song Hey Jude

from The Beatles as an example, the starting pitch is G and the last pitch is C, so C has

more probabilities to be the reference pitch of the scale. Secondly, we need to know if it

is major or minor, this is can be discovered checking the key signature. The key signature

is a set of bemols, or sharps located on the left of the clef of the score.

The key signature of a scale is calculated counting the number of bemols or sharps

necessaries to represent the scale, for example the C major scale needs 0 accidentals, but

G major scale needs one. The order of the accidentals is logically ordered using music

theory, if the scale uses sharps, the first sharp is F#, then C#, G#, D#, A#, E#, B# and

then after B#, it will repeat and be F## and so long so far. The order of bemols is Bb, Eb,

Ab, Db, Gb, Cb and Fb.

Retaking the Hey Jude example, we knew that the first degree of the scale was C but we

did not know it was major or minor. The key signature has 0 accidentals and C minor

needs 3 bemols but C major needs 0 so the probabilities that the scale of this song is C

major are very high.

Figure 18 Hey Jude's last bars.

 58

6.3.4 Chord progressions

When a music piece is being composed, one of the first thing decided is the scale. Having

decided the scale for the song, then a chord progression is chosen using the possible

chords of that scale.

So, let’s consider that we are composing a song in C Ionian major, C major from now on.

The possible chords of this scale are C major (I), D minor (ii), E minor (iii), F major (IV),

G major (V), A minor (vi) and B diminished (viiº).

Using those chords is not compulsory and we can even make some modifications. A valid

progression can be I V vi IV but for example we can add the a 7º interval to the iv chord,

if we do that, we will have the progression I V vi7 IV. The progression used for this

example is the one of the most common used in pop music, some examples can be Let it

be from The Beatles, Forever Young from Alphaville or Take on me from A-ha (21).

Chord progression has been always a good way to identify music genres, it can be used

for example to distinguish between a jazz song and a blues one.

When using a chord progression, it is not compulsory to use all the notes that conform

the chord and it is very likely that other pitches from the scale’s chord are used for the

melody.

6.4 The improved tree model

Having introduced some harmony concepts, now is easier to identify which elements are

necessary for a genotype that can store them.

One of the first thing that we need is a scale. This scale will be used for the whole melody

so the best place for it is in the root node of the melody as it defines what is coming on

the following levels.

 59

Secondly, we need a chord progression. It is very typical to have different chord

progressions inside a melody, for example in pop music, the progression used for the

chorus can be different to the one used in the bridge.

The best way we have found to store this information is using the sections nodes. This is

helpful because we can use sections to delimitate progressions. Some sections used in

western modern songs are the bridge, the chorus and the pre-chorus.

Every measure node, child of a section, will use one of the chords stablished on the section

node. The way is decided is by calculating the module of the number of measure nodes

divided by the number of chords in the progression. So, if we have a three chord

progression, the fourth bar of that section will use the first chord of the progression.

Building a tree with a root node without scale or a section node without chords will

produce an invalid tree.

Finally, we have the leaf nodes, those that must be after the measure nodes. The leaves

representing rests and continuations stay as the original tree model, but the ones used to

represent pitches are not used anymore in this model, we use degree labels instead.

As we said, every bar has a defined chord, but the pitches used in that bar can be any

contained in the scale used to generate the chord. The chord is used in order to define the

probability to find a degree in a bar.

There are 7 possible degrees and an octave is needed as well in order to know the

frequency of that pitch.

 60

Figure 19 On the left, a melody represented using the tree structure without harmony. On the right, the same
melody represented using the proposed model with harmony. Behind the trees, the melody represented by both

trees.

 61

7. Implementing the Library

7.1 Implementing the selection operator

One important question that considers this project is why not using a java library that

implements this algorithm and the answer for it is that an own implementation gives us

the freedom to change whatever is needed.

This may be important as one of the proposed future tasks raises the need of changing the

way NSGA-III works.

We are going to use NSGA-III as our multi-objective optimization algorithm, and it will

be in charge of the environmental selection.

Another reason for this implementation is performance. The problem of using a general-

purpose library is that we have to adapt our problem to the data model used by the library.

One example is our program, for every population, it needs to convert the music tree

model into the tree used by the library, then the tree is converted back to the music tree

model until the next generation. Having our own implementation has given us the

possibility to use our own model.

7.1.1 Step 1: learning how it works

Implementing an algorithm from scratch may be a difficult task due to its mathematical

complexity. For this reason, we have decided to base our implementation in one C++

implementation (22).

This implementation has been used by libraries like JMetal in order to implement NSGA-

III (23) so we can consider it as a good example to start.

The example program implements several problems used for testing purpose. Those

problems are from the DTLZ collection, they are based on mathematical problems that

use an array of numbers as a genotype.

 62

Having debugged it a few times we can get some conclusions:

- The selection algorithm does not depend on the genotype type.

- The only information needed on the selection state is the fitness of each

individual.

- The crossover and mutator operator depend on the genotype structure.

- There is a problem that stores possible constraints for our problem.

Moreover, there is a math class that stores a function that calls the C++ random

number generator. We will replace this function with our own generator in order to be

able to generate the same numbers on java and C++ for testing purposes.

We have chosen the DTLZ1 problem in order to understand how the algorithm

works because it is simple and easy to understand.

The C++ program uses a param file in order to load some configuration values:

- Name: The name of the problem, it does not have any important use.

- Obj_division_p: As we explained before, the algorithm NSGA-III needs one

parameter in order to work and this is the entry parameter for it.

- Gen_num: It defines the number of generations for the genetic algorithm.

- Crossover_rate: Defines the possibility of two individuals getting

crossovered.

- Crossover_eta and Mutation_eta: These values define how do these

operators affect to the individuals. The lower the eta is, the more different are

the individuals affected.

7.1.2 Step 2: implementing the MOEA

Instead of adapting the algorithm directly to our problem, we are going to translate the

algorithm as it was found so we can ensure that it works perfectly before changing it.

 63

The configuration parameters that are provided with a config file are not going to be used

anymore because they can be configured using the GUI of our software, so we are going

to replace them with getters and setters in the future.

The entry point of the algorithm will have a method that receives a problem which

contains the problem constraints and the fitness functions.

The individual object will store mainly the genotype of the individual and the scores

provided by the fitness functions.

Firstly, the reference points that is going to use later are generated. It takes two arguments,

the number of divisions and the number of objectives to optimized that is provided within

the problem. The reference point stores its coordinates in a variable length vector.

Secondly, the first generation is constructed, every individual is evaluated by the

objective functions.

Thirdly, it starts an iterative loop that run once for every generation. The first thing done

by the loop is to apply the crossover operator, it chooses two random parents used for

producing two new individuals. Those individuals are then mutated by the mutator

operator and finally, the result of the mutation is evaluated in order to include their fitness.

Fourthly, after finishing the crossover and mutation step, the environment selection is

executed. This step is the most difficult part of the program as it keeps all the multi-

objective optimization algorithm’s logic.

The NSGA-III algorithm starts calculating the fronts. Fronts are subsets of individuals.

Those individuals found on the first front are those that are not dominated by any other

individual, like the pareto front. The second front is made up with those individuals that

are not dominated by any individual except for those found on the first front and so long.

Once we have computed the fronts, we only need to have as many individuals as the

population size, it must be mentioned that, even though we have doubled the population

size during the crossover, we need to keep the initial size.

We only need to use the number of fronts needed to keep the population size. For

example, if we are running the algorithm with 100 individuals, after the crossover we

have 200 individuals. Those individuals are distributed in three fronts, the first front has

 64

60 individuals, the second one 70 and the last one 80, we do not need the third front

anymore as we can keep 100 individuals just using the first and the second front.

If the number of individuals is exactly the population size, the environmental selection is

finished as we can ensure that those individuals are the best, otherwise, we need to

continue with the algorithm.

The following step is computing the ideal point using the best coordinates found on the

population, so for example, if we are trying to minimise the score and we have two

objectives and two individuals with fitness (10, 7) and (8, 11), the ideal point is (8, 7).

After that, we need to convert the objectives by subtracting the ideal point to every

individual, for the previous example, the fitness (10, 7) is converted to (2, 0).

After computing the ideal point, we need to calculate the extreme points, which are those

with the worst score.

Once we have the ideal point and the extreme points, we can calculate the reference

points. In order to calculate the reference points, we need to build a hyperplane using the

extreme points calculated before and then, intercept the lines formed by the reference

points calculated on the first step of the algorithm and the ideal point.

Every individual must be associated with a reference point. For every individual, it is

calculated the distance between the individual and the reference line, the one formed

using the optimal point and a reference point. The individual is associated with the closest

line found.

It is possible to find reference points without any individual associated. In this case, the

reference point is excluded and is not taking into consideration in this generation.

Finally, the next population is built. Those reference points with the minimal cluster size

are chosen, if there is a draw, a random reference point is chosen. Then, the best individual

associated with the reference point is selected, added to the next population and deleted

from the possible reference point’s associated individuals list.

To sum up the algorithm, it keeps iterating until it has built the desired amount of

generations.

 65

7.1.4 Step 3: testing

The algorithm has been testing using the DTLZ1 algorithm. We have replaced the random

number generator used by the implementation in C++ and the implementation in Java.

After the execution, we have compared and checked that the result was the same.

7.1.5 Step 4: refactoring the code

Having ported and tested the algorithm, now we have a library able to optimize multi

objective problems, but it still has a problem, it can only be used with the array of numbers

genotype structure.

In order to give the algorithm, the ability to work with different genotypes, we need to

identify those parts that depends on the genotype structure and extract them from the

algorithm itself. This task is going to be done using two important tools: interfaces and

generics.

We can define three parts that depends on the genotype:

- The initializer: one of the first steps of the algorithm is initialising the first

population.

- The crossover: depending on the structure of the genotype, the crossover

operator will perform different actions.

- The mutator: as the crossover operator, it needs to know the structure of the

genotype in order to change it.

We are going to use generics in order to keep constraints.

7.2 Implementing the crossover operator

One of the difficulties of working with a tree structure with constraints is changing its

structure in order to create a new valid individual. For this task, we have decided that we

 66

are going to use only those nodes whose parents or the parents of their parents are bars,

excluding the root node, the section nodes and the bar nodes, this will help us to increase

diversity of the population.

Firstly, two individuals are chosen randomly, and their eligible nodes are counted.

Figure 20 In red, elegible nodes for crossover

Secondly, two random numbers are generated between 1 and the node count. The N node

found in pre-order search is selected as the node to be crossed.

Finally, the selected nodes are swapped generating two new individuals. If this

combination produces an invalid tree that exceeds the max tree depth, the parent of the

node is selected instead for this swap until it produces a valid tree.

There is a parameter that specifies the possibility of crossover between two individuals

called the crossover rate.

7.3 Implementing the mutator

Implementing the mutator operator has the same difficulties as the crossover operator, we

need to avoid invalid trees. In this case, it is easier to avoid these problems. There is a

parameter that specifies the chances of one individual being mutated and it is called the

mutation rate.

Firstly, a node is selected like it was selected on the crossover, counting the eligible nodes

and picking it up using the pre-order search.

 67

Secondly, if the node is a leaf and it is on the last valid level, another random leaf is

generated for replacing it. If the node is not on the last valid level, a random new tree is

generated with a height between 1 and the available levels left.

Finally, this new individual replaces the individual previously selected.

7.4 Fitness functions

For this project we have not implemented any new fitness functions, we have used those

provided by the GRFIA software (2). For this reason, we are not going to explain deeply

how they work but at least, they must be mentioned and described.

7.4.1 Global statistical evaluations

This model represents the melody as a vector of statistical descriptors that covers melodic,

harmonic, and rhythmic properties of the melody. Some of those descriptors are the total

number of notes of the melody, the total number of silences, the typical deviation of the

pitches, the durations, the intervals, syncopation and many others.

This fitness functions provides a normalized value that needs to be minimised in order to

improve.

7.4.2 Local musical n-gram evaluations

The n-gram evaluators study how possible is to find a sequence of notes, for this task, it

studies the probability of finding a symbol after a given sequence of previous symbols.

The n parameter corresponds of the cluster of symbols studied. In this case, the meaning

of a symbol corresponds to a pitch.

 68

7.4.3 Melodic analysis

This function studies the role of a note in a harmonic section. The note is given an ‘H’ if

it belongs to the chord, a ‘P’ if is a passing note, a ‘N’ if is a neighbour tone, ‘S’ for

suspension and ‘A’ for appoggiatura.

After having tagged all the notes, a n-gran model is constructed using the tags as symbols.

7.4.4 Melodic segmentation

Used as local boundary detection model (LBDM), is an algorithm that takes into

consideration the sizes of the intervals, the length of notes, and the length of silences.

Those three metrics are weighted in order to give more importance to intervals.

 69

8 Results

In this chapter we are going to compare the results achieved using the new system and

the old one. For this task we are going to conduct two different analysis, one will be

focused on the performance and the second analysis will study the average fitness of the

results.

These analyses present several difficulties as we cannot make a comparison using the

same conditions for both pieces of software, so we are going to use the most similar

parameters available.

8.1 Performance analysis

For the performance analysis, we are going to execute the original software and the new

version ten times each, measuring the time spent computing the generations, then, the

average time will be compared.

The computer used for the experiment is a Macbook pro from 2011 with an I7 processor

at 2.7 GHz and 8GB of RAM.

Fifty generations will be used for the experiment with 92 individuals each, the fitness

functions LBDM, Melodic analysis multinomial (3), 4-grams model (pitch) and 4-grams

model (duration). The seed used has been changed for every execution.

These are the elapsed seconds for each execution:

 70

Execution
Old system elapsed time

in seconds

New system elapsed time

in seconds

1 10.57 11.04

2 7.49 7.55

3 4.75 6.23

4 4.28 5.63

5 16.77 5.95

6 9.65 5.86

7 5.63 6.18

8 4.10 5.31

9 4.44 5.19

10 6.68 6.24

Average 7.44 6.52
Table 3 Elapsed time comparison between the old system and the new one

As we can appreciate, the time consumed varies but the conclusion that we can extract

from the average is that the new system is faster. This may be the result of having removed

the step were the genotypes are translated into the structures used by the external library.

It must be said that the old library implements some mechanisms used to improve

performance like the flyweight pattern, this may be the reason why some metrics are

better than the new system metrics.

8.2 Fitness analysis

Conducting an analysis comparing two different systems may be a difficult task, for this

reason we are going to compare the results in a different way. In order to produce the

most similar environment, we are going to use 52 individuals and 50 generations on both

systems, using different seeds for each execution.

We are going to execute both programs 8 times each, using two normalized fitness

functions, in this case Global-PD (k-centroid) and Global-PD (centroid). Then, we are

going to calculate the pareto front from the last population of each execution. Finally, we

are going to calculate the non-dominated area of each pareto front and then, represent the

areas using a chart.

 71

Figure 21 Pareto front

We call non-dominated area to the space where, if a new individual is added, it will

change the structure of the pareto front.

Figure 22 Non-dominated area

If we order ascending the result of computing the non-dominated area, we got the

following chart.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pareto front

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

 72

Figure 23 Non-dominated areas

As we can appreciate, the new system has slightly improved the fitness of the population

as it has reduced the non-dominated area. If we compare two random populations, we can

extract the same conclusion.

Figure 24 Two populations. In blue, a population generated by the new system. In orange, a population generated by
the old system

Where the orange dots correspond to the individuals of the population generated by the

new system and the blue ones corresponding to the old system, taking into consideration

that the optimal point is the axis origin.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

Non-dominated areas

GRFIA software Modified version

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 73

9 Concluding Remarks and Future

Work

To sum up this project, this chapter is going to evaluate if we have achieved our goal and

we are going to propose some new ideas that should be considered for further research.

In references to the results obtained in this project, we can confirm that the overall

performance of the program has been improved. For those results, we have achieved the

following objectives:

- Design a new genetic programming library that replaces the ECJ library. This

is expected to improve further development, by allowing for faster debugging

times, develop ad-hoc music genotypes, and integrate new fitness functions

and multi-objective optimization functions easily.

- Research about multi-objective evolutionary algorithms and implement one

for the new library.

- Add harmony information to the current data model structure.

This project has helped us to understand how genetic programming works and we have

had deep research about how multi objective optimizations are being driven nowadays.

Finally, we would like to propose some ideas that came up during the development of the

project but that have not been implemented due to the lack of time:

- Implement fitness functions for harmony. With the addition of harmony

information to the tree structure, it has appeared the need of a fitness function

that helps to select those individuals with the best chord progression.

- Implement different populations. One of the projects analysed in the state of

art used two populations, the first one was used to compose clusters of pitches

and the second one was built using the individuals of the first population.

- To evaluate the possibility of using elitism as a way of including better

characteristics from original songs into de population. It must be studied if this

inclusion can produce plagiarised songs.

 74

In relation to the future of this project, these technologies are very likely to become the

future tools used for composing popular songs. The ability to learn about the trending

songs and the possibility of using the characteristics that made those songs successful will

definitely become a new standard on the music industry.

 75

Bibliography
1. Newton, Casey. How YouTube perfected the feed. The Verge.

2. Pedro J. Ponce de León, José M. Iñesta, Jorge Calvo-Zaragoza & David Rizo. Data-based

melody generation through multi-objective evolutionary computation. Journal of Mathematics

and Music. 2016.

3. Koza, John R. Genetic Programming. Cambridge, Massachusetts : The MIT Press, 1992. 0-

262-11170-5.

4. Mitchvoll. NeuroEvolutionDriver. [Online]

https://github.com/mitchvoll/NeuroEvolutionDriver/.

5. Coello, Carlos A. Coello. Evolutionary Multi-Objective Optimization: A Historical View of the

Field. IEEE Computational Intelligence Magaine. 2006.

6. Krähenbühl, Bruno Sareni and Laurent. Fitness Sharing and Niching Methods Revisited. IEEE

TRANSACTIONS ON EVOLUTIONARY COMPUTATION. 1998, Vol. 2, 3.

7. Ole J. Mengshoel, David E. Goldberg. The Crowding Approach to Niching in

GeneticAlgorithms. Evolutionary Computation. Vol. X, X.

8. Dejong, K. A. An Analysis of the Behavior a Class of Genetic Adaptive Systems. PhD thesis,

University of Michigan. 1975.

9. Kalyanmoy Deb, Associate Member, IEEE, Amrit Pratap, Sameer Agarwal, and T.

Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION. 2002, Vol. 6, 2.

10. Kalyanmoy Deb and Himanshu Jain. An Evolutionary Many-Objective Optimization

Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving

Problems with Box Constraints. IEEE Transactions on Evolutionary Computation. 2014, Vol. 18,

4.

11. Kim, Ji-Sung. Deepjazz. [Online] [Cited: 19 5 2019.] https://github.com/jisungk/deepjazz.

12. evancchow. Jazzml. [Online] [Cited: 20 5 2019.] https://github.com/evancchow/jazzml.

13. Biles, John A. GenJam: A Genetic Algorithm for Generating Jazz Solos. ICMC Proceedings.

1994.

14. Moroni, Artemis & Manzolli, Jônatas & Von Zuben, Fernando & Gudwin, Ricardo. Vox

Populi: An Interactive Evolutionary System for Algorithmic Music Composition. Leonardo Music

Journal. 2000.

15. Kaliakatsos-Papakostas, Maximos. Generating Drum Rhythms Through Data-Driven

Conceptual Blending of Features and Genetic Algorithms. EvoMUSART. 2018.

16. Sourceforge. JMetal. [Online] http://jmetal.sourceforge.net/.

 76

17. Deb, Kalyanmoy; Thiele, Lothar; Laumanns, Marco; Zitzler, Eckart. Scalable test problems

for evolutionary multi-objectiveoptimization. 2001.

18. Jenetics. [Online] [Cited: 10 7 2019.] http://jenetics.io/.

19. gmu. [Online] [Cited: 10 7 2019.] https://cs.gmu.edu/~eclab/projects/ecj/.

20. Stackoverflow. [Online] [Cited: 10 5 2019.]

https://insights.stackoverflow.com/survey/2019.

21. truefire. [Online] [Cited: 7 06 2019.] https://truefire.com/blog/guitar-lessons/229-easy-

guitar-songs-just-4-chords/.

22. Chiang, Tsung-Che. nsga3cpp.

23. JMetal-algorithm. [Online] https://github.com/jMetal/jMetal/blob/master/jmetal-

algorithm/src/main/java/org/uma/jmetal/algorithm/multiobjective/nsgaiii/NSGAIII.java.

 77

Appendix A. NSGA-III pseudocode

The following four algorithms are part of NSGA-III logic (10).

Generation t of NSGA-III procedure

Input: H structured reference points ZS or supplied aspiration

points Za, parent population Pt.

Output: Pt+1

1: S = Ø, i=1

2: Qt = Recombination+Mutation(Pt)

3: Rt = Pt ∪ Qt

4: (F1, F2,…) = Non-dominated-sort(Rt)

5: repeat

6: St = St ∪ Qt

7: until |St| >= N

8: Last front to be included: Fl = Fi

9: if |St| >= N then

10: Pt+1 = St, break

11: else

12: P+t+1 = ∪l-1
j-1 Fl=Fi

13: Points to be chosen from Fl: K = N - |Pt+1|

14: Normalize objectives and create reference set Zr:

Normalize(fn, St, Z
r, Zs, Za)

15: Associate each member s of St with a reference point: [π(s),

d(s)] = Associate(St,Z
r) % π(s): closest reference point, d:

distance between s and π(s)

16: Compute niche count of reference point j ∈ Zr: pj = ∑S∈St/Fl
((π(s) = j) ? 1 : 0)

17: Choose K members one at a time from Fl to construct Pt+1:

Niching(K, pj, π, d, Z
r, Fl,Pt+1)

18: end if

 78

Normalize (fn,St, Zr, Zs/Za) procedure

Input: St, Z
s
 (structured points) or Z

a (supplied points)

Output: fn, Zr (reference points on normalized hyper-plane)

1: for j=1 to M do

2: Compute ideal point: zminj = minS∈St fj(s)

3: Translate objectives: f’j(s) = fj(s) – zminj ∀s∈St

4: Compute extreme points: zj,max = s : argmins∈St ASF(s, w
j),

where wj = (e,…,e)T e=10-6, and wij = 1

5: end for

6: Compute intercepts aj for j = 1,…,M

7: Normalize objectives (fn)

8: if Za is given then

9: Map each (aspiration) point on normalized hyper-plane and

save the point in the set Zr

10: else

11: Zr = ZS

12: end if

Associate (St, Zr) procedure

Input: Zr, St

Output: π(s ∈ St), d(s ∈ St)

1: for each reference point z ∈ Zr do

2: Compute reference line w = z

3: end for

4: for each s ∈ St do

5: for each w ∈ Zr do

6: Compute d⊥(s,w) = s – wT s/||w||

7: end for

8: Assign π(s) = w : argminW∈Zr d⊥(s,w)

9: Assign d(s) = d⊥(s, π(s))

10: end for

 79

Niching (K, pj, π, d, Zr, Fl,Pt+1) procedure

Input: K, pj, π(s ∈ St), d(s ∈ St), Zr, Fl
Output: Pt+1

1: k = 1

2: while k <= K do

3: Jmin = {j : argminj∈Zr pj}

4: j = random(Jmin)

5: Ij = {s : π(s) = j,s ∈ Fl}

6: if Ij ≠ Ø then

7: if pj = 0 then

8: Pt+1 = Pt+1 ∪ (s : argmins∈Ij d(s))

9: else

10: Pt+1 = Pt+1 ∪ random(Ij)

11: end if

12: pj = pj + 1, Fl = Fl\s

13: k = k + 1

14: else

15: Zr = Zr / {j}

16: end if

17: end while

	Acknowledgements
	Abstract
	Resumen en castellano
	Index
	List of Figures
	List of Equations
	List of Tables
	1. Introduction
	1.1 Proposal
	1.2 Goal

	2. Genetic Programming
	2.1 Concepts
	2.1.1 Phenotype
	2.1.2 Genotype
	2.1.3 Population
	2.1.4 Fitness function
	2.1.5 Generation
	2.1.6 Genetic operators
	2.1.6.1 Selection
	2.1.6.2 Crossover
	2.1.6.2 Mutation

	2.2 Program flow

	3. The Multi-Objective Optimization Problem
	3.1 Pareto front
	3.2 Multi-Objective Evolutionary Algorithm (MOEA)
	3.2.1 Niching methods
	3.2.1.1 Fitness sharing
	3.2.1.2 Crowding
	3.2.1.3 Crowding distance
	3.2.1.4 Reference point

	3.3 NSGA-III

	4. State of the Art
	4.1 State of the art in computer generated music
	4.1.1 GenJam
	4.1.2 Vox Populi
	4.1.3 Conceptual blending

	4.2 State of the art in evolutionary computation libraries
	4.2.1 JMetal
	4.2.2 Jenetics
	4.2.3 ECJ

	5. Technologies and Methodology
	5.1 Technologies
	5.1.1 Java
	5.1.2 Eclipse
	5.1.3 GIT
	5.1.4 Visual Studio

	5.2 Methodology

	6. Data Model
	6.1 Koza tree structures
	6.2 Music tree model
	6.3 Adding harmony information to the music tree
	6.3.1 Intervals
	6.3.2 Scales
	6.3.3 Chords
	6.3.4 Chord progressions

	6.4 The improved tree model

	7. Implementing the Library
	7.1 Implementing the selection operator
	7.1.1 Step 1: learning how it works
	7.1.2 Step 2: implementing the MOEA
	7.1.4 Step 3: testing
	7.1.5 Step 4: refactoring the code

	7.2 Implementing the crossover operator
	7.3 Implementing the mutator
	7.4 Fitness functions
	7.4.1 Global statistical evaluations
	7.4.2 Local musical n-gram evaluations
	7.4.3 Melodic analysis
	7.4.4 Melodic segmentation

	8 Results
	8.1 Performance analysis
	8.2 Fitness analysis

	9 Concluding Remarks and Future Work
	Bibliography
	Appendix A. NSGA-III pseudocode
	Generation t of NSGA-III procedure
	Normalize (fn,St, Zr, Zs/Za) procedure
	Associate (St, Zr) procedure
	Niching (K, pj, π, d, Zr, Fl,Pt+1) procedure

