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Music is the silence between the notes. 

-Claude Debussy 
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Abstract 
 

Automatic music composition is an area of research widely studied nowadays and many 

approaches have been proposed for this problem.  

This work is based on an existing project developed by the GRFIA which uses genetic 

programming for generating music melodies without human supervision. The project 

utilises a general-purpose library which is in charge of the genetic programming logic. 

The task of supervising the melodies is accomplished by a set of machine learning 

algorithms that are trained using a corpus of songs in order to select the best melodies 

generated. 

This final degree project develops a new library which replaces the one used by the 

original project. This new library implements some of the logic of genetic programming 

but the part in charge of selecting the best individuals has been developed using the multi-

objective optimization algorithm NSGA-III. 

On the other hand, this project extends the binary tree structure used by the software. The 

current data model is able to store melodic and rhythm information and the proposed 

model is able to store harmonic information too. This change improves the way new 

melodies are generated. 

Finally, a comparative has been made using performance data and the overall score of the 

melodies generated. The result of the analysis is positive, but it has slightly improved in 

comparison to the original project. Even though, the two main goals, developing a new 

library and extending the model, have been successfully completed.  
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Resumen en castellano 
 

La composición musical mediante el uso de inteligencia artificial es un área de estudio 

ampliamente estudiado y al que actualmente se siguen sumando nuevas propuestas.  

Este proyecto se basa en un proyecto existente desarrollado por el GRFIA el cual propone 

hacer uso de programación genética para componer música sin supervisión humana. 

Dicho proyecto hace uso de una biblioteca de propósito general la cual es encargada de 

realizar toda la lógica de la programación genética. 

En cuanto al apartado de supervisión de las melodías, el proyecto del GRFIA utiliza una 

serie de algoritmos de machine learning los cuales son entrenados con un corpus de 

melodías para ser capaces de identificar cuales son las mejores melodías generadas. 

Este trabajo de fin de grado desarrolla una nueva biblioteca desde cero que sustituirá la 

utilizada originalmente. Esta biblioteca implementará parte de la lógica de programación 

genética pero la parte encargada de seleccionar individuos será desarrollada utilizando un 

algoritmo de optimización multi-objetivo denominado NSGA-III. 

Además de desarrollar una nueva biblioteca, se propondrá una extensión en el modelo de 

datos utilizado. El modelo actual esta basado en un árbol binario que es capaz de 

representar una melodía representando información melódica y rítmica. En 

contraposición, el nuevo modelo propuesto almacena además información armónica, lo 

cual ayuda a que las melodías generadas sean de mejor calidad. 

Finalmente, se ha realizado una comparativa donde se exponen datos de rendimiento y de 

puntuaciones globales de las melodías generadas, que, si bien suponen una mejora, esta 

es ligera. A pesar de esto, el proyecto ha concluido cumpliendo los dos objetivos 

principales, el desarrollo de una nueva biblioteca y la extensión del modelo de datos 

utilizados. 
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1. Introduction 
 

The ability to learn from data has been always studied through history by computer 

science but the insufficiency computational power has delayed this task until now. 

Nowadays, the use of artificial intelligence is increasing due to two facts, the possibility 

of storing big amounts of data and the ability to compute them. One of the things that has 

allow this fact is the possibility to learn the characteristics of a set of data in order to 

produce a similar result.  

An example of this are the YouTube’s video suggestions (1). The company collects data 

about the viewer like his age, his favourite video category, the average video length 

preferred and then it trains a machine learning algorithm in order to produce video 

suggestions that fits the viewer’s likes.  

In this case, this project is going to be focused on improving a software able to learn about 

music and to compose music without human supervision. In order to achieve this, we will 

use some machine learning algorithms able to learn about a music genre and it will be 

accompanied by a genetic algorithm which will be in charge of generating the best 

melodies that fit for the given genre.  

In order to develop this project, we will try to improve a software developed by the 

GRFIA (2) research group that is able to compose music by itself.  

This process will be divided in three parts and every part needs to be fulfilled before 

starting the following one. Those parts are: 

1. Learn the structure of the project, which is the data model used, and how it 

implements the genetics algorithm logic.  

2. Design a new data model able to store additional musical information, trying to 

keep the ability to produce the original model using the new one.  

3. Design a new genetic algorithm that can override the general-purpose library used 

by the original software.  
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1.1 Proposal 
 

In this project, we propose a new data model that is able to represent a music melody but 

including the harmony and a new genetics algorithm library. This library will be 

developed from scratch, giving the possibility to modify it completely in order to fulfil 

the requirements of music composition. 

 

1.2 Goal 
 

The main goal of this project is to develop a system capable of composing music melodies 

with enough musical quality so the listener cannot distinguish between a regular melody 

and a melody composed by the software.  

Specific goals: 

- Understand how evolutionary music composition applications work. In 

particular, an application developed by the GRFIA (2) research group based 

on an external evolutionary computation library. 

- Extend a predefined evolutionary music data model to include harmony. 

- Replace the external evolutionary computation library by in-house code. 

- Analyse and compare the performance of the old and new systems. 

This project is going to research which is the best genetic algorithm that can be used for 

this problem. 

Finally, we will discuss the obtained results and propose future research directions. 
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2. Genetic Programming 
 

Genetic programming, GP from now on, is an artificial intelligence technique which is 

based on the idea that applying the nature evolution rules to code that can lead to programs 

that can solve a problem. Even though John Koza was not the first who proposed this 

approach (3), he has written many articles describing when GP can be a good solution, to 

problems whose solution may not be trivial.               

In his book Genetic Programming (3), Koza proposes a perfect example that can show 

how a problem without a known solution, can be represented and solved using GP. The 

example consists in finding the best business strategy for a hamburger restaurant. 

The example showed how a non-trivial problem was solved by combining characteristics 

of restaurants whose financial situation was stable or improving; or by adding new 

characteristics to the restaurants that were not present on other subjects. 

GP has proven to be a powerful tool to approach very different problems. A few years 

ago, it was developed a program (4) that was able to guide a car in a close circuit just 

using GP and the mutator operator.  

 

2.1 Concepts 
 

GP uses a vocabulary set similar to the one used in the genetic biology area of study. This 

vocabulary usually represents ideas that are similar to the original concept. 

 

2.1.1 Phenotype 
 

A phenotype is an individual with observable characteristics or traits. Two phenotypes 

are different if they have at least one different trait. Phenotypes are built using a recipe 

called genotype.  
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Figure 1 Music bar phenotype 

 

2.1.2 Genotype 
 

A genotype is the recipe used to produce a phenotype and if it is used many times, it must 

always produce the same phenotype. In biology, the animals’ genotype is the DNA but in 

GP it can be represented in different ways. The most typical genotype representations are 

arrays, strings and trees. 

Arrays are usually used to store integers or decimal numbers but the most used is the 

binary array. This is due to the fact that implementing the crossover operation and the 

mutation is easy in this type of model. 

Strings are similar to binary arrays; the crossover and mutation can be easily applied, and 

it does not handle a difficult implementation, but it may be difficult to use for complex 

models. String cannot be confused with nested parenthesis trees even though is a way to 

represent a tree, it is not considered a string genotype. 

On the other hand, we have trees. Trees are the most complex of these genotypes as it 

may represent a lot of different possibilities, in particular, information organized in 

hierarchies. Trees are usually accompanied with a set of rules which define when a tree 

is a valid genotype and when is not. 

 

Figure 2 Music bar represented using tree structure 
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2.1.3 Population 
 

A population is a set of individuals.  This set of individuals can have a subset which is 

called a subpopulation. 

 

2.1.4 Fitness function 
 

In wildness, individuals need to adapt to the environment in order to survive, they may 

need to have enough endurance for extreme weathers, being able to run faster than 

predators or evolving in order to improve their probabilities to do this.  

These factors can be used for measuring the fitness of an individual in an environment. 

In genetic programming, this is translated to fitness functions or objectives. A fitness 

function can be anything that can give an individual a score depending on how it performs 

on a given conditions. 

One of the difficulties of genetic programming is being able to define a fitness functions 

for a given problem. One common solution for this is using machine learning in order to 

extract meaningful fitness information out of a set of individuals. 

 

2.1.5 Generation 
 

In genetic programming, the population performs an evolution in order to increase their 

score on fitness functions. We call generation to a given state of the population.  

The first generation of a genetic programming flow is the initial population, after having 

applied the genetic operators, we achieve the following generation. 

The number of generations of a program can be defined by a number of iterations or using 

a criterion like the average score of their individuals. 
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2.1.6 Genetic operators 
 

In order to evolve a population, we need to use some mechanisms that help us to combine, 

mutate or keep the individuals with the aim of improving their score, these mechanisms 

are the genetics operators.  

There are three kinds of genetic operators and they have a different utility each. Those 

operators are selection, crossover and mutation. 

 

2.1.6.1 Selection 
 

The purpose of the selection operator is to keep those individuals with the highest score 

on the following population. The importance of this is that those individuals may have 

some characteristics in their genotype that can be helpful for producing new individuals, 

increasing the average fitness of the population or just to use them as the best solution to 

a problem. 

There is an intermediate state between one generation and the following one and it is the 

mating pool. The mating pool is the population created after having calculated the fitness 

of every individual in a generation. The obtained mating pool can be used for the 

selection.  

There are different ways to implement this operator, for example the tournament selection 

which consists of confronting two different individuals, comparing their fitness score. 

Finally, the winner will be present on the mating pool. 

The selection operator may be difficult to implement if more than one fitness function is 

used as it can be difficult to determine which individual is the best if they have different 

scores in different fitness functions. 
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2.1.6.2 Crossover 
 

The aim of the crossover operator is to combine different genotypes in order to produce 

new genotypes. The crossover operator is usually implemented using two parents which 

produce two new individuals.  

The parents chosen for the operator may be selected randomly or by given a higher 

probability to be chosen to those with the best score.  

The crossover operator can have some difficulties due to its ease to produce invalid 

individuals. When implemented, some rules must be implemented as well, so the 

possibility to produce an invalid individual is reduced to zero. 

 

Figure 3 Crossover operator applied to two music trees 

 

2.1.6.2 Mutation 
 

The objective of the mutator operator is to introduce random changes into a genotype in 

order to enrich the variability of the population. 

When applying the selection and the crossover operator, it is easy to remove potentially 

useful genotypes, this can be solved with the mutation operator. It can be easily 

understood with an example.  

Let us consider a binary genotype with three bits. If we have the individuals 000, 011, 

010, 001, there is no way to produce a new genotype that has a 1 on its bit on the left if 
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we use the selection and the crossover operators but it is possible that the mutator operator 

introduces a random 1 into one of the previous genotypes. 

 

Figure 4 Mutator operator applied to a music tree 

 

2.2 Program flow 
 

The first thing that we need to define in genetics programming is the size of the 

population. This is the number of individuals that can fit in a population, in every 

iteration, there must be always the same number of individuals.  

After defining the number of individuals, we need to define the number of iterations for 

the algorithm. In every iteration, a new generation will be generated by applying the 

genetics operator to the previous population.  

Once we have defined those two variables, we can start. The first thing to do is to generate 

the first population. This population can be initialized randomly or using some predefined 

rules which can help our algorithm to solve the problem.  

Every time we produce a new genotype, its corresponding phenotype must be evaluated 

by the fitness function. The score achieved by the function will be important for the 

genetics operators to decide the next step. Having evaluated every individual, we will 

have produced the mating pool. 

Koza proposes in his book to start using the crossover operator. This will double the size 

of the population. After applying it, a new set is generated with size doubled.  

Secondly, we can apply the selection operator. Not all of the individuals of the mating 

pool will be present on the next population. Every individual is provided by a probability 

to survive to the next generation based on its score. Koza proposes to calculate this 

probability using the next formula: 
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𝑓(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑛)

∑ 𝑓(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)𝑀
𝑖=0

 

Equation 1 Koza´s formula to calculate the probability of being selected by the environment selection 

Being M the size of the mating pool and f(individual) the fitness function result for the 

given individual. This can be applied if there is only one fitness function.  

Finally, we can apply the mutation operation to the individuals selected to the next 

generation. The result of applying the three operators is considered the next generation.  

The individual with the highest score on the last generation can be considered the best 

solution to the proposed problem but the other individuals may not be discarded as they 

can be good solutions as well. 
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3. The Multi-Objective Optimization 

Problem 
 

One of the problems present in genetics programming appears when there is more than 

one fitness function used to evaluate the individuals. Choosing the best one may be a 

difficult task if there is not a defined criterion for it.  

In order to introduce this problem, let’s consider two fitness functions, A and B and three 

individuals, ind1, ind2 and ind3. These are the fitness calculated for the three individuals: 

 A B 

Ind1 1 0 

Ind2 0.5 0.5 

Ind3 0 1 
Table 1 Sample fitnesses 

For this example, the best score for both functions is zero. Which of these three 

individuals is the best? There must be different answers to this question. If we consider 

that the best solution is the one with the highest sum of scores (5), the three individuals 

are valid. This approach called ‘linear aggregation’ was very popular when the firsts 

algorithms were developed.  

Other possibility is to use the lexicographic ordering which consists of prioritise one 

objective and optimising it. Secondly, another objective is prioritised and optimized 

without degrading the first objective and without taking into consideration the other 

objectives. 

If we decide to calculate the distance to the optimal point, in this case (0, 0), ind2 has a 

score of 0.71 which is better than ind1 and ind3 as they are at a distance of 1 point. 

Another possibility can be to choose those individuals with the highest score in each 

single function, in this case ind1 is the winner for function A and ind3 for function B.  

As you may see, depending on the approach used to select individuals, the result may 

vary. This problem is even more difficult if the functions produce different set of scores 

and the maximum or minimum score is unknown. For the following example, consider 

that the higher the score is, the better. 
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 A B 

Ind1 80 0.3 

Ind2 55 0.9 

Ind3 70 0.2 
Table 2 Not normalised fitnesses 

In this case, the differences are too significant, and they cannot be ignored. If we decide 

to select the sum for example, the fitness B will be almost ignored as it does not have 

enough weight to change the result of the sum. This fact can produce that the genetics 

algorithm will prioritize the solutions that fit A and not B. 

 

3.1 Pareto front 
 

The pareto front is a representation of the non-dominated solutions. A non-dominated 

solution, or pareto optimal is the one whose score cannot be improved without degrading 

the result of the other objectives.  

 
Figure 5 Example of a pareto front1 

 

There are several ways of calculating the pareto front and the algorithm for it depends on 

the number of dimensions chosen. One easy way of calculating the pareto front for 2 

dimensions is sorting one of the objectives in ascending order. Then, the individuals are 

iterated.  

 
1 Image taken from: http://www.cenaero.be/Page.asp?docid=27103&langue=EN  
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The first individual is added to the pareto front as it is the first optimal individual found, 

then, the following individual is compared with the last individual added to the optimal 

individual list, if its second objective is lower than the last added, it is added to the optimal 

list, otherwise it is discarded. 

 

3.2 Multi-Objective Evolutionary Algorithm (MOEA) 
 

With the aim to solve this problem, some algorithms have been developed even though 

this problem has not a trivial solution. A multi-objective optimization algorithm must 

include two important characteristics in order to be considered a good approach.  

Firstly, a MOEA must increase the overall score of an individual, this means that it must 

try to increase all the possible objectives functions available. This have been pursued 

since the first MOEAs came with different mechanisms (5).  

One of those mechanisms that may result interesting to consider is elitisms. Elitism is 

based on having a different set of individuals with the best traits, used within the crossover 

operator in order to increase the score of the population. 

This set can be a predefined one with manually selected individuals or it can be just the 

set of the nondominated individuals of the population.  

Elitism is an interesting technique that must be considered but using it on music 

composition can be dangerous. It may seem a good idea to have a second set with human 

composed songs that may transfer their characteristics to new sets, but the result can be 

counterproductive due to the probabilities of producing a plagiarised song.  

Secondly, a MOEA must keep the diversity of the population. This is called niching. The 

following section explains several niching methods. 
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3.2.1 Niching methods 
 

The main reason of niching is to avoid that all the solutions tend to the same point. With 

the aim of increasing the entropy of a population, the MOEAs have develop several 

methods for this task. 

 

3.2.1.1 Fitness sharing 
 

Fitness sharing (6) is one of the first niching method developed. It consists of modifying 

the overall fitness of an individual depending on how crowded the area is where the 

individual is. The winner out of two individuals with similar scores is the one with less 

neighbour around.  

Fitness sharing decreases the fitness of an individual if it finds individuals with similar 

characteristics.  

 

3.2.1.2 Crowding  
 

Crowding technique has several different implementations (7) but its first idea is to 

replace individuals. The author Dejong (8) implemented crowding by selecting an 

individual and a subset of individuals, the most similar individual of the subset is replaced 

with the individual selected.  

 

3.2.1.3 Crowding distance 
 

The MOEA NSGA-II (9) implemented a new niching method which consisted on 

calculating what they call the crowding distance. The crowding distance is the result of 

computing the average distance to two points for every objective. During the selection 

operator, the crowding distance is compared in order to rank which individual is better. 
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NSGA-II implements a crowded-comparison operator that guides the selection process. 

The operator uses two values in order to compare individuals, one is the crowding 

distance explained before and the other one is the nondomination rank which corresponds 

to the number of individuals that dominate the individual.  

The operator uses this algorithm in order to compare two individuals i and j, being irank 

the nondomination rank of the individual and idistance the crowding distance. 

i is better than j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance)) 

In other words, if one individual is better than other, it is selected, in case that both are 

equal, the crowding distance oversees defining which is better. 

 

Figure 6 Crowding-distance calculation. 

 

3.2.1.4 Reference point 
 

Reference-point method (10) is based on calculating a set of points in the hyperplane. 

Every individual is associated with a reference point based on the perpendicular distance 

between the individual score and the line formed using the reference point and the most 

optimal point.  

Finally, an individual is chosen for each reference point based on the closest distance to 

the reference line. 
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Figure 7 Association with reference points 

 

3.3 NSGA-III 
 

Choosing an algorithm to implement for this problem has been difficult. There are several 

MOEA whose results are attractive but with different results. Some MOEA may ensure 

that the average solutions for a problem are better than using other algorithm but it may 

lack some diversity, others may keep diversity but the average score of a population is 

not as optimal as others.  

The NSGA-III algorithm (10), also called NSGA-II with reference-point based non-

dominated sorting, it is a relatively recent algorithm that presents better results than its 

predecessor NSGA-II. 

NSGA-III is an improved version of its predecessor, but it changes the niching method 

used, the crowding distance. NSGA-III uses the reference-point technique instead. For 

this reason, some authors do not consider NSGA-III as a new version of NSGA. 

One of the disadvantages that may be mentioned of using NSGA-III is that we do not 

have the possibility to define the exact size of the population. The size of the population 

is computed using the following formula: 

𝐻 = (
𝑀 + 𝑝 − 1

𝑝
) 

Equation 2 NSGA-III population size 
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M is the number of objectives and p the number of divisions. H is the number of reference 

point used in the algorithm and as we mentioned before, the solution chooses one 

individual for each reference point.  

The NSGA-III algorithm will be implemented as the multi-objective optimization 

function of our genetic programming framework. 

  



 38 

  



 39 

4. State of the Art 
 

This project is based on a wide area that has been previously researched so there are some 

proposals done before that need to be taken into consideration before starting to develop 

this project. 

 

4.1 State of the art in computer generated music 
 

There are several pieces of software trying to emulate a human composing music and the 

approaches used for it are different. There are some programs that use deep learning like 

deepJazz (11) or Markov’s chains like JazzML (12). We are going to analyse three 

different projects that use genetic programming, genJam (13), vox populi (14) and one 

based on conceptual blending (15).  

 

4.1.1 GenJam 
 

GenJam, or Genetic Jammer, is a software developed in 1993 (13) but its algorithm and 

code have been improved through the years. It is based on a genetic algorithm that is able 

to compose music without human supervision.  

One of the main characteristics of GenJam is that it uses two different populations, one 

for the measures and the other for the phrases. A phrase is just a set of measures. The 

purpose of working this way is to reuse measures that have a good fitness score many 

times. 

One of the disadvantages of GenJam is its limitations. For example, it always uses a 4/4 

measure and it can only represent 14 notes due to definition of its chromosome 

representation. It uses a string for it.  
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Figure 8 GenJam genotype structure 

This is an example of a genotype. The first number on the left of the box it is just the 

index of the element, in this case we have the 23th phrase of the population. The following 

number isolated in a box is the fitness achieved, in this example, this phrase has a negative 

punctuation because it is not considered a good phrase chromosome. The following 

numbers are pointers to measures.  

The measure structure has an index and a fitness as well but the meaning of the numbers 

on the right is different. If it is a 0, it represents a rest on the melody, between 1 and 14 is 

a pitch and 15 is a hold which means that it continues playing the previous note. 

As you may notice, the genotype is designed to be optimal. The size of the population, 

the individual and even the characteristics of the individual are powers of two. This is a 

limitation of the time when the algorithm was developed. 

 

4.1.2 Vox Populi 
 

Vox Populi uses genetic programming to evolve a set of chords. Chords are represented 

using a 28-bit binary string and each note of the chord is represented in a 7-bit binary 

string.  

The genetic operators cross the chords in order to produce new ones. The fitness criteria 

used is the melodic fitness, the harmonic fitness and a voice range fitness.  
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4.1.3 Conceptual blending 
 

The author Kaliakatsos-Papakostas (15) proposed a new approach for generating drum 

rhythms based on conceptual blending as a way of creating new styles.  

The methodology used by his project is the following one: 

Firstly, two rhythms are chosen by a human as input. For both rhythms, 32 features are 

extracted. The features of both rhythms are blended, creating a new vector of features 

which include the most important features of each rhythm.  

Secondly, a genetic algorithm is used within the vector of features created on the previous 

step. The initial population includes an equal number of copies of the two original 

rhythms.  

The genotype structure is a 2-dimensional array with 3 rows, each row represents a basic 

drum and 12 to 24 columns which correspond with the number of beats. 

The genetic evolution used implements fourth different crossover operators that apply 

different set of operations to the genotype.   

 

4.2 State of the art in evolutionary computation 

libraries 
 

There are plenty of evolutionary computation libraries for general purposes. They allow 

the user to define a set of rules on its genotype so they can slightly adapt themselves for 

every problem proposed and they implement different algorithms that may be useful in 

order to sort a determined obstacle. I am going to focus on java libraries due to the fact 

that is the language used in this project. 
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4.2.1 JMetal 
 

JMetal (16) is not an evolutionary computation library itself but it provides a set of multi-

objective and single-objective algorithms that are necessary on genetics. These 

algorithms help us to select the best individuals that fit better in our environment. Some 

of those algorithms are NSGA-II, MOEA/D, MOCell… 

In order to test those algorithms, JMetal provides a set of problems that can be used as a 

benchmark. Ones of those benchmarks are provided by the DTLZ test suite.  

The DTLZ suit (17) provides seven problems with box-constraints that can be optimized 

with a variable length of fitness functions, due to this, its problems are perfect for testing. 

One of the problems is DTLZ1 (17), whose solutions are those that are located on a linear 

hyperplane on 0.5. 

JMetal can work mainly with binary or string chromosome representations.  

 

4.2.2 Jenetics 
 

Jenetics (18) is a genetic library for java that uses mostly trees for the genotype 

representation. It allows the user to use trees, parenthesis trees and flat trees as the input 

for the population.  

The multi-objective optimization algorithm used by Jenetics is NSGA-II so we can 

consider that Jenetics lacks multi-objective optimization algorithms as there are better 

options than that algorithm. 

 

4.2.3 ECJ 
 

ECJ (19) is the library originally used by the software in which this project is based. This 

library implements different multi-objective optimization algorithms like NSGA-II or 

NSGA-III and the choice is up to the user. 
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Other advantages presented in ECJ is that it supports different genotype representations. 

It uses its own tree representation and provides the user a syntax to define the 

requirements of a valid tree for the problem.  

 The other main representation is the vector. It can use fixed-length vectors and variable 

ones.  

In order to test performance, ECJ provides a set of problems that can be used for testing, 

for example, the performance of two different multi-objective optimization algorithm. 

There are some problems that use vector representation and other that use trees instead.  

Another feature of ECJ is that it implements the flyweight pattern which is able to save 

computer resources while solving a problem by abstracting the common characteristics 

of the individuals in a population. 
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5. Technologies and Methodology 
 

Choosing the technologies for this project has been easy due to the fact that this project 

continues an existing project so some of the tools used are inherited. In this chapter, we 

will provide a short description for the tools used in this project and the methodology 

used to fulfil the requirements. 

 

5.1 Technologies  
 

5.1.1 Java 
 

Java is a compiled general-purpose language programming language. It is compiled to 

bytecode which is interpreted by the Java Virtual Machine. Due to this, java can run on 

every operating system able to run the Java Virtual Machine such as Windows, MacOS 

and Linux distributions.  

Java is widely use due to its power and ability to be portable to every system. It has one 

of the largest communities and according to stackoverflow (20) is the second most loved 

programming language in 2019. 

The java version used for the project is Java SE 8 because is a long-term support version.  

Even though java has a lot of advantages, it has been criticised for being a high resource 

consuming language. 

We have used java because it is the language programming used on the original project.  

 

5.1.2 Eclipse 
 

Eclipse is the IDE chosen for Java. Eclipse is open source and it is supported by the 

Eclipse Foundation. It provides different versions for several programming languages 

such as C++ or PHP.  
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The advantages of using eclipse are that it provides a full environment with powerful 

tools that increase the productivity when working with java. 

Other reason for using eclipse is that the original project is an eclipse based project and 

migrating it can be a difficult task that may be not part of this project. 

 

5.1.3 GIT 
 

Git is a version-control system that will help us to control our code. We have used 

github.com for storing our remote git repository.  

Git has help us providing some tools to control the changes produced in the code. 

 

5.1.4 Visual Studio 
 

In one step of this project, we will need to work with a project written in C++, for this 

task we have chosen Visual Studio as our IDE.  

Visual Studio is an IDE developed by Microsoft which can work with C++, C# and F# 

among others. The main reason for choosing this IDE was the powerful debugger 

integrated that has helped us to understand how the C++ project was developed. 

 

5.2 Methodology 
 

We have divided our project in two different objectives, one is implementing our own 

genetic programming library and the other is changing the data model used in our 

problem. For this reason, we have defined two goals. 

Before both goals can be considered, there have been a previous general research step 

that consisted on analysing the current state of the program. This research has focused on 

how the problem was implemented and which solution was proposed for it. 
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After that, we have defined several requirements for our both goals. Both goals have 

followed these steps: research, implementation and testing. 
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6. Data Model 
 

The structure selected for the chromosome representation in this problem is the tree data 

structure. This structure was firstly proposed by Koza in its book genetic programming 

(3) but the rules in which the actual model for the problem is based and the original ones 

differ.  

In this chapter, we will explain why was proposed the tree as an excellent approach for 

genetic problems representations, how is implemented for music composition and how 

can it be improved. 

 

6.1 Koza tree structures 
 

Koza proposed that genetic programming was a valid strategy for solving problem whose 

solution was not trivial. When Koza refers to a solution to a problem, he may refer 

sometimes to a set of variables that may be the solution itself or sometimes to a program 

which is able to solve a problem by defining a set of parameters as an input.  

This second approach is basically a computer program and this idea can have tons of 

difficulties. The proposed language for this task was Lisp. 

Lisp is a multi-paradigm programming language, but we are going to focus on functional 

programming paradigm. Let’s consider that finding the formula to find the hypotenuse of 

a right triangle is not trivial and we want to solve the problem using genetic programming. 

The solution expected for this problem in lisp is the following one, we have omitted the 

possibility to use the power function in order to give a better example: 

(sqrt (+ (* a a) (* b b))) 

 

The advantages of using Lisp is that its syntax can be easily represented as tree. The code 

explained before can be translated to the following tree: 
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Figure 9 Lisp program represented in a tree structure 

This representation can be used in genetic programming due to the fact that defining a set 

of rules ensures that it can be changed randomly but the result will produce another valid 

program with a valid syntax. 

One example of rule that ensures the tree as valid is that a SQRT node can only have one 

child, if we disobey this rule, we can produce a Lisp program that may led to a compiling 

error. 

 

6.2 Music tree model 
 

The model used by the GRFIA application (2) is a good way to represent a music melody 

as it gives the possibility of changing the structure of the melody without breaking the 

metric rules used in music.  

On the contrary to the Lisp tree models, the nodes used in this structure may be only valid 

on a fixed level and using them on a different level may led into an invalid tree structure. 

We will explain some music theory with the aim of explaining some of the rules followed 

by this model. 

The tree structure represents a whole melody. A melody is a combination of pitch and 

rhythm. The rhythm of a melody is expressed using a meter signature and every melody 

must have one.  

The measure is in charge of deciding the duration of a bar. A melody is divided in pieces 

and those pieces are the bars.   
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Figure 10 Example of a melody extracted from Ode to Joy 

In this example, the meter signature is 4/4. It is defined by a numerator and a denominator 

and they have a different meaning depending on if the measure is simple or compound. 

We will simplify the problem using only simple measures. 

The denominator of a simple time meter indicates the note value that fulfils one beat in a 

bar. This value is always a power of two because it is calculated by dividing the whole 

note whose value is 1, then the half note is 2, quarter note 4 and so long. 

On the other hand, the numerator indicates the number of beats that fill a measure. Every 

measure must be filled with all the beats that can fit on it.  

Applying these rules to the example showed before, the 4/4 time signature means that 

every of our bars ruled by this metric will have 4 beats with a quarter note on each beat. 

This does not mean that we need to use always 4 quarter notes, we can use every 

combination of notes that fit on that bar, so for example a single whole note or 8 eighth 

notes can be valid bars. 

 

Figure 11 Equivalency between figures 

Secondly, we have the pitches of the melody. A pitch is a sound that is played on a specific 

frequency. In order to represent a pitch, we need two elements, a staff and a clef. The key 

indicates where is located a reference pitch, for example, the clef most used is the G-clef 

or treble clef which indicates that the fourth G of the piano is represented in the second 

line of the staff.  
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There are seven different pitches and after the seventh pitch, the sequence starts again 

with the first pitch. Those seven pitches are C, D, E, F, G, A and B. If we want to know 

the frequency of a pitch, we need to know the octave of it. So, for example, the A pitch 

on the fourth octave represents the frequency 440hz, the A pitch on the next octave 

represents 880hz.  

Summing up, in one hand we have that in order to represent a pitch we need to know its 

name and its octave and on the other we have that in order to represent that pitch in a 

music score, we need a staff and a clef. 

The distance between pitches is calculated using tones. There are some intermediate 

pitches and they can be represented using accidentals. The sharp accidental adds half tone 

to a pitch and the bemol subtracts half tone. If we take into consideration those 

intermediate pitches and we represent them using sharps, the list of pitches will be C, C#, 

D, D#, E, F, F#, G, G#, A, A# and B, 11 in total.  

Having explained how a melody is defined, we can then explain how this can be translated 

into a tree. 

The tree starts we a root node, the root node does not contain music information. Then, 

the children of the root nodes are the sections. Sections are not compulsory, and they are 

not in music theory, but they can help to organise the structure of the melody. Sections 

are used in some music pieces, for example the sonata is divided in three sections and 

sometimes it follows an A B A structure. 

The children of the sections, in other words, those on the third level of the tree, contain 

measure labels. The measure label contains the time signature. Every measure node is 

translated to a bar in a music score.  

If we remember, the numerator indicates the number of beats that fill a bar and the 

denominator indicates the value of each beat. The numerator is translated to the tree 

indicating the number of children that the measure node must have and the denominator 

the value of each beat.  

In this case, the numerator is applying a validation rule to the tree, if we build a tree using 

a measure node with a 4/4 time signature with only three children, it will be invalid and 

it will not be possible to translate to a music melody. 
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The child of a measure label can have 4 different labels: 

- Pitch label: A label containing a pitch and the octave of the pitch. 

- Continuation label: This label means that the beat keeps playing the previous 

played sound. In music, this can be represented using longer notes, dotted 

notes and ties.  

- Rest: This is translated as a silence in a music melody. 

- Empty label: We use this label to indicate that this is not a leaf node. 

If we use an empty label, the node container must have two children, this is because the 

duration of that beat is divided in two parts. So, for example, if we have a node that 

represents a quarter note and we want two have two eighth notes, we will put an empty 

label on the node and two children that will represent each eighth note. 

As we can notice, melodic information is stored in the labels contained by the nodes and 

the rhythm information is decided by the structure of the tree.  

There is another advantage of this model and it is the possibility to store this data in string 

form as a way to store the model if needed. Translating this tree to a nested parenthesis is 

easy, the possible labels for this are: 

Root: Corresponds to the root of the tree. 

S: It means section. 

M: For the measure label, it translates to a whole bar. 

^: Empty label, for those levels that need to be divided in two sub beats. 

-: Represents the rest.  

.: Continuation, it can be translated to a dotted note or a tie. 

A, B, C, D, E, F, G: Represents a pitch, it needs an integer to represent the octave of this 

pitch. 
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6.3 Adding harmony information to the music tree 
 

As we introduced in this document, one of the aims of this project is to try to improve the 

model utilised for representing music melodies. This is going to be done by changing the 

way it works and the way it is translated to a music score but before we can introduce this 

change, we need to explain what harmony is. 

As we described before, a melody is a set of notes played sequentially with the aim of 

producing a sound that may sound appealing to the listener. These notes can be any notes 

but if we want to produce better melodies, we need take into account the rules of harmony.  

Harmony provides a set of rules that may identify pitches that played together or one after 

another should sound nice to the listener. The main tool in harmony are chords but we 

need to introduce a few concepts before. 

 

6.3.1 Intervals 
 

If we take two different notes and we analyse the distance between the two different 

pitches, we are talking about an interval. The characteristics needed to fully identify an 

interval are the name of the both pitches, the distance between them and if the distance is 

ascending or descending. 

 

 

Figure 12 Third major ascending interval 

An interval can be perfect, major, minor, augmented and diminished. These names may 

also define how will be the sound when both pitches are played. A perfect interval 

produces a neutral sound, a major produces a happy sound while minor intervals produce 

sad ones. Then we have augmented and diminished which produce a tension sound. 
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An interval is perfect when we the distance between two pitches is 4, 5 or 8 pitches and 

they have between them 5 semitones, 7 semitones and 12 semitones each.  

Intervals with 2, 3, 6 or 7 pitches of distance are major when they have 2 semitones, 4, 9 

and 11 semitones each. For the same intervals, if we remove one semitone, we will 

produce the equivalent interval in minor mode.  

If we add a semitone to a major interval or a perfect interval, we will have an augmented 

interval, if we add two a double augmented interval and so long. 

If we remove a semitone from a minor interval or a perfect interval, we will produce a 

diminished interval, if we remove two then double diminished as augmented intervals. 

 

Figure 13 Intervals 

6.3.2 Scales 
 

A scale is an ordered set of notes built using a formula. In order to simplify the 

explanation, we will focus on the common scales. In order to build a scale, we need a 

pitch, this pitch is going to be the first one of the pitches set. Secondly, we need a key, 

this can be major or minor and finally we need a mode, the mode depends on the key, so 

we are going to use de major key for this task. 

 The most basic scale that we can built is the C major Ionian scale. 

 

Figure 14 C Major Ionian scale including the distance between the notes. T for tone, HT for half tone. 

The formula used to produce this scale is the following one, where the interval indicated 

is the one between the first pitch and the current pitch: 

1º Perfect, 2º Major, 3º Major, 4º Perfect, 5º Perfect, 6º Major, 7º Major and 8º perfect 
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If we change the first note of the set and recalculate the other pitches, we will produce a 

different scale so for example, if we have D as a reference pitch and we want to produce 

D major Ionian, this will be the result: 

 

Figure 15 D major ionian scale 

If we produce an Ionian scale and then we shift the set, we will produce the following 

mode. So, for example, if we take the ionian scale and then we shift the set to the left one 

position, the resulting set is the D major dorian scale: 

 

Figure 16 D major dorian scale 

The major modes are Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian and 

Locrian. 

 

6.3.3 Chords 
 

A chord is the combination of three or more pitches. Chords are similar to scales; they 

need a reference pitch and a formula. The easiest way to generate a chord is using a scale.  

Let’s use the C major Ionian scale for this example. If we take the first, third and fifth 

pitches of the scale, we will produce the C major chord. The major chord is generated by 

using these intervals: 

1º Perfect, 3º Major and 5º Perfect 

You may notice that these intervals are part of the major Ionian scale. If we have a scale 

with seven pitches, every pitch will generate a chord. These chords are named using 

roman numbers and depending on the mode of the third interval, we use lower case for 

minor chords and upper case for major ones. The formula to generate each chord is to 

take the first, the third and the fifth interval. The result for the C major Ionian is: 
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I, ii, iii, IV, V, vi, viiº 

Or using names: 

C major chord, D minor chord, E minor chord, F major chord, G major chord, A minor 

chord and B diminished chord. 

 

Figure 17 In order: C major, D minor, E minor, F major, G major, A minor and B dimished 

Depending on the scale, it may produce other different basic chords, but we are not going 

to include them here. 

One easy way to recognise the scale of a song is checking the first and last pitch of it. 

This method does not always work but it may be helpful sometimes. If the starting pitch 

is different to the last, the last pitch has priority over the first. Let’s use the song Hey Jude 

from The Beatles as an example, the starting pitch is G and the last pitch is C, so C has 

more probabilities to be the reference pitch of the scale. Secondly, we need to know if it 

is major or minor, this is can be discovered checking the key signature. The key signature 

is a set of bemols, or sharps located on the left of the clef of the score. 

The key signature of a scale is calculated counting the number of bemols or sharps 

necessaries to represent the scale, for example the C major scale needs 0 accidentals, but 

G major scale needs one. The order of the accidentals is logically ordered using music 

theory, if the scale uses sharps, the first sharp is F#, then C#, G#, D#, A#, E#, B# and 

then after B#, it will repeat and be F## and so long so far. The order of bemols is Bb, Eb, 

Ab, Db, Gb, Cb and Fb.  

Retaking the Hey Jude example, we knew that the first degree of the scale was C but we 

did not know it was major or minor. The key signature has 0 accidentals and C minor 

needs 3 bemols but C major needs 0 so the probabilities that the scale of this song is C 

major are very high. 

 

Figure 18 Hey Jude's last bars. 
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6.3.4 Chord progressions 
 

When a music piece is being composed, one of the first thing decided is the scale. Having 

decided the scale for the song, then a chord progression is chosen using the possible 

chords of that scale.  

So, let’s consider that we are composing a song in C Ionian major, C major from now on. 

The possible chords of this scale are C major (I), D minor (ii), E minor (iii), F major (IV), 

G major (V), A minor (vi) and B diminished (viiº).  

Using those chords is not compulsory and we can even make some modifications. A valid 

progression can be I V vi IV but for example we can add the a 7º interval to the iv chord, 

if we do that, we will have the progression I V vi7 IV. The progression used for this 

example is the one of the most common used in pop music, some examples can be Let it 

be from The Beatles, Forever Young from Alphaville or Take on me from A-ha (21). 

Chord progression has been always a good way to identify music genres, it can be used 

for example to distinguish between a jazz song and a blues one. 

When using a chord progression, it is not compulsory to use all the notes that conform 

the chord and it is very likely that other pitches from the scale’s chord are used for the 

melody.  

 

6.4 The improved tree model  
 

Having introduced some harmony concepts, now is easier to identify which elements are 

necessary for a genotype that can store them.  

One of the first thing that we need is a scale. This scale will be used for the whole melody 

so the best place for it is in the root node of the melody as it defines what is coming on 

the following levels. 
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Secondly, we need a chord progression. It is very typical to have different chord 

progressions inside a melody, for example in pop music, the progression used for the 

chorus can be different to the one used in the bridge.  

The best way we have found to store this information is using the sections nodes. This is 

helpful because we can use sections to delimitate progressions. Some sections used in 

western modern songs are the bridge, the chorus and the pre-chorus. 

Every measure node, child of a section, will use one of the chords stablished on the section 

node. The way is decided is by calculating the module of the number of measure nodes 

divided by the number of chords in the progression. So, if we have a three chord 

progression, the fourth bar of that section will use the first chord of the progression. 

Building a tree with a root node without scale or a section node without chords will 

produce an invalid tree. 

Finally, we have the leaf nodes, those that must be after the measure nodes. The leaves 

representing rests and continuations stay as the original tree model, but the ones used to 

represent pitches are not used anymore in this model, we use degree labels instead. 

As we said, every bar has a defined chord, but the pitches used in that bar can be any 

contained in the scale used to generate the chord. The chord is used in order to define the 

probability to find a degree in a bar.  

There are 7 possible degrees and an octave is needed as well in order to know the 

frequency of that pitch.  
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Figure 19 On the left, a melody represented using the tree structure without harmony. On the right, the same 
melody represented using the proposed model with harmony. Behind the trees, the melody represented by both 

trees. 
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7. Implementing the Library 
 

7.1 Implementing the selection operator 
 

One important question that considers this project is why not using a java library that 

implements this algorithm and the answer for it is that an own implementation gives us 

the freedom to change whatever is needed.  

This may be important as one of the proposed future tasks raises the need of changing the 

way NSGA-III works. 

We are going to use NSGA-III as our multi-objective optimization algorithm, and it will 

be in charge of the environmental selection. 

Another reason for this implementation is performance. The problem of using a general-

purpose library is that we have to adapt our problem to the data model used by the library. 

One example is our program, for every population, it needs to convert the music tree 

model into the tree used by the library, then the tree is converted back to the music tree 

model until the next generation. Having our own implementation has given us the 

possibility to use our own model. 

 

7.1.1 Step 1: learning how it works 
 

Implementing an algorithm from scratch may be a difficult task due to its mathematical 

complexity. For this reason, we have decided to base our implementation in one C++ 

implementation (22).  

This implementation has been used by libraries like JMetal in order to implement NSGA-

III (23) so we can consider it as a good example to start. 

The example program implements several problems used for testing purpose. Those 

problems are from the DTLZ collection, they are based on mathematical problems that 

use an array of numbers as a genotype.  
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Having debugged it a few times we can get some conclusions: 

- The selection algorithm does not depend on the genotype type.  

- The only information needed on the selection state is the fitness of each 

individual. 

- The crossover and mutator operator depend on the genotype structure. 

- There is a problem that stores possible constraints for our problem. 

Moreover, there is a math class that stores a function that calls the C++ random 

number generator. We will replace this function with our own generator in order to be 

able to generate the same numbers on java and C++ for testing purposes.  

We have chosen the DTLZ1 problem in order to understand how the algorithm 

works because it is simple and easy to understand.  

The C++ program uses a param file in order to load some configuration values: 

- Name: The name of the problem, it does not have any important use. 

- Obj_division_p: As we explained before, the algorithm NSGA-III needs one 

parameter in order to work and this is the entry parameter for it.  

- Gen_num: It defines the number of generations for the genetic algorithm. 

- Crossover_rate: Defines the possibility of two individuals getting 

crossovered. 

- Crossover_eta and Mutation_eta: These values define how do these 

operators affect to the individuals. The lower the eta is, the more different are 

the individuals affected.  

 

7.1.2 Step 2: implementing the MOEA 
 

Instead of adapting the algorithm directly to our problem, we are going to translate the 

algorithm as it was found so we can ensure that it works perfectly before changing it.  
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The configuration parameters that are provided with a config file are not going to be used 

anymore because they can be configured using the GUI of our software, so we are going 

to replace them with getters and setters in the future. 

The entry point of the algorithm will have a method that receives a problem which 

contains the problem constraints and the fitness functions.  

The individual object will store mainly the genotype of the individual and the scores 

provided by the fitness functions. 

Firstly, the reference points that is going to use later are generated. It takes two arguments, 

the number of divisions and the number of objectives to optimized that is provided within 

the problem. The reference point stores its coordinates in a variable length vector.  

Secondly, the first generation is constructed, every individual is evaluated by the 

objective functions.  

Thirdly, it starts an iterative loop that run once for every generation. The first thing done 

by the loop is to apply the crossover operator, it chooses two random parents used for 

producing two new individuals. Those individuals are then mutated by the mutator 

operator and finally, the result of the mutation is evaluated in order to include their fitness. 

Fourthly, after finishing the crossover and mutation step, the environment selection is 

executed. This step is the most difficult part of the program as it keeps all the multi-

objective optimization algorithm’s logic. 

The NSGA-III algorithm starts calculating the fronts. Fronts are subsets of individuals. 

Those individuals found on the first front are those that are not dominated by any other 

individual, like the pareto front. The second front is made up with those individuals that 

are not dominated by any individual except for those found on the first front and so long.  

Once we have computed the fronts, we only need to have as many individuals as the 

population size, it must be mentioned that, even though we have doubled the population 

size during the crossover, we need to keep the initial size.  

We only need to use the number of fronts needed to keep the population size. For 

example, if we are running the algorithm with 100 individuals, after the crossover we 

have 200 individuals. Those individuals are distributed in three fronts, the first front has 
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60 individuals, the second one 70 and the last one 80, we do not need the third front 

anymore as we can keep 100 individuals just using the first and the second front. 

If the number of individuals is exactly the population size, the environmental selection is 

finished as we can ensure that those individuals are the best, otherwise, we need to 

continue with the algorithm.  

The following step is computing the ideal point using the best coordinates found on the 

population, so for example, if we are trying to minimise the score and we have two 

objectives and two individuals with fitness (10, 7) and (8, 11), the ideal point is (8, 7).  

After that, we need to convert the objectives by subtracting the ideal point to every 

individual, for the previous example, the fitness (10, 7) is converted to (2, 0). 

After computing the ideal point, we need to calculate the extreme points, which are those 

with the worst score.  

Once we have the ideal point and the extreme points, we can calculate the reference 

points. In order to calculate the reference points, we need to build a hyperplane using the 

extreme points calculated before and then, intercept the lines formed by the reference 

points calculated on the first step of the algorithm and the ideal point.  

Every individual must be associated with a reference point. For every individual, it is 

calculated the distance between the individual and the reference line, the one formed 

using the optimal point and a reference point. The individual is associated with the closest 

line found. 

It is possible to find reference points without any individual associated. In this case, the 

reference point is excluded and is not taking into consideration in this generation. 

Finally, the next population is built. Those reference points with the minimal cluster size 

are chosen, if there is a draw, a random reference point is chosen. Then, the best individual 

associated with the reference point is selected, added to the next population and deleted 

from the possible reference point’s associated individuals list. 

To sum up the algorithm, it keeps iterating until it has built the desired amount of 

generations. 
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7.1.4 Step 3: testing 
 

The algorithm has been testing using the DTLZ1 algorithm. We have replaced the random 

number generator used by the implementation in C++ and the implementation in Java. 

After the execution, we have compared and checked that the result was the same. 

 

7.1.5 Step 4: refactoring the code 
 

Having ported and tested the algorithm, now we have a library able to optimize multi 

objective problems, but it still has a problem, it can only be used with the array of numbers 

genotype structure.  

In order to give the algorithm, the ability to work with different genotypes, we need to 

identify those parts that depends on the genotype structure and extract them from the 

algorithm itself. This task is going to be done using two important tools: interfaces and 

generics.  

We can define three parts that depends on the genotype: 

- The initializer: one of the first steps of the algorithm is initialising the first 

population.  

- The crossover: depending on the structure of the genotype, the crossover 

operator will perform different actions.  

- The mutator: as the crossover operator, it needs to know the structure of the 

genotype in order to change it.  

We are going to use generics in order to keep constraints.  

 

7.2 Implementing the crossover operator 
 

One of the difficulties of working with a tree structure with constraints is changing its 

structure in order to create a new valid individual. For this task, we have decided that we 
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are going to use only those nodes whose parents or the parents of their parents are bars, 

excluding the root node, the section nodes and the bar nodes, this will help us to increase 

diversity of the population. 

Firstly, two individuals are chosen randomly, and their eligible nodes are counted.  

 

Figure 20 In red, elegible nodes for crossover 

Secondly, two random numbers are generated between 1 and the node count. The N node 

found in pre-order search is selected as the node to be crossed.  

Finally, the selected nodes are swapped generating two new individuals. If this 

combination produces an invalid tree that exceeds the max tree depth, the parent of the 

node is selected instead for this swap until it produces a valid tree. 

There is a parameter that specifies the possibility of crossover between two individuals 

called the crossover rate. 

 

7.3 Implementing the mutator 
 

Implementing the mutator operator has the same difficulties as the crossover operator, we 

need to avoid invalid trees. In this case, it is easier to avoid these problems. There is a 

parameter that specifies the chances of one individual being mutated and it is called the 

mutation rate.  

Firstly, a node is selected like it was selected on the crossover, counting the eligible nodes 

and picking it up using the pre-order search.  
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Secondly, if the node is a leaf and it is on the last valid level, another random leaf is 

generated for replacing it. If the node is not on the last valid level, a random new tree is 

generated with a height between 1 and the available levels left. 

Finally, this new individual replaces the individual previously selected.  

 

7.4 Fitness functions 
 

For this project we have not implemented any new fitness functions, we have used those 

provided by the GRFIA software (2). For this reason, we are not going to explain deeply 

how they work but at least, they must be mentioned and described. 

 

7.4.1 Global statistical evaluations 
 

This model represents the melody as a vector of statistical descriptors that covers melodic, 

harmonic, and rhythmic properties of the melody. Some of those descriptors are the total 

number of notes of the melody, the total number of silences, the typical deviation of the 

pitches, the durations, the intervals, syncopation and many others.  

This fitness functions provides a normalized value that needs to be minimised in order to 

improve.  

 

7.4.2 Local musical n-gram evaluations 
 

The n-gram evaluators study how possible is to find a sequence of notes, for this task, it 

studies the probability of finding a symbol after a given sequence of previous symbols.  

The n parameter corresponds of the cluster of symbols studied. In this case, the meaning 

of a symbol corresponds to a pitch.  

 



 68 

7.4.3 Melodic analysis 
 

This function studies the role of a note in a harmonic section. The note is given an ‘H’ if 

it belongs to the chord, a ‘P’ if is a passing note, a ‘N’ if is a neighbour tone, ‘S’ for 

suspension and ‘A’ for appoggiatura. 

After having tagged all the notes, a n-gran model is constructed using the tags as symbols.  

 

7.4.4 Melodic segmentation 
 

Used as local boundary detection model (LBDM), is an algorithm that takes into 

consideration the sizes of the intervals, the length of notes, and the length of silences. 

Those three metrics are weighted in order to give more importance to intervals. 
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8 Results 
 

In this chapter we are going to compare the results achieved using the new system and 

the old one. For this task we are going to conduct two different analysis, one will be 

focused on the performance and the second analysis will study the average fitness of the 

results. 

These analyses present several difficulties as we cannot make a comparison using the 

same conditions for both pieces of software, so we are going to use the most similar 

parameters available. 

 

8.1 Performance analysis 
 

For the performance analysis, we are going to execute the original software and the new 

version ten times each, measuring the time spent computing the generations, then, the 

average time will be compared.  

The computer used for the experiment is a Macbook pro from 2011 with an I7 processor 

at 2.7 GHz and 8GB of RAM. 

Fifty generations will be used for the experiment with 92 individuals each, the fitness 

functions LBDM, Melodic analysis multinomial (3), 4-grams model (pitch) and 4-grams 

model (duration). The seed used has been changed for every execution. 

These are the elapsed seconds for each execution: 
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Execution 
Old system elapsed time 

in seconds 

New system elapsed time 

in seconds 

1 10.57 11.04 

2 7.49 7.55 

3 4.75 6.23 

4 4.28 5.63 

5 16.77 5.95 

6 9.65 5.86 

7 5.63 6.18 

8 4.10 5.31 

9 4.44 5.19 

10 6.68 6.24 

Average 7.44 6.52 
Table 3 Elapsed time comparison between the old system and the new one 

As we can appreciate, the time consumed varies but the conclusion that we can extract 

from the average is that the new system is faster. This may be the result of having removed 

the step were the genotypes are translated into the structures used by the external library. 

It must be said that the old library implements some mechanisms used to improve 

performance like the flyweight pattern, this may be the reason why some metrics are 

better than the new system metrics. 

 

8.2 Fitness analysis 
 

Conducting an analysis comparing two different systems may be a difficult task, for this 

reason we are going to compare the results in a different way. In order to produce the 

most similar environment, we are going to use 52 individuals and 50 generations on both 

systems, using different seeds for each execution. 

We are going to execute both programs 8 times each, using two normalized fitness 

functions, in this case Global-PD (k-centroid) and Global-PD (centroid). Then, we are 

going to calculate the pareto front from the last population of each execution. Finally, we 

are going to calculate the non-dominated area of each pareto front and then, represent the 

areas using a chart. 
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Figure 21 Pareto front 

We call non-dominated area to the space where, if a new individual is added, it will 

change the structure of the pareto front.  

 

Figure 22 Non-dominated area 

 

If we order ascending the result of computing the non-dominated area, we got the 

following chart. 
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Figure 23 Non-dominated areas 

As we can appreciate, the new system has slightly improved the fitness of the population 

as it has reduced the non-dominated area. If we compare two random populations, we can 

extract the same conclusion. 

 

Figure 24 Two populations. In blue, a population generated by the new system. In orange, a population generated by 
the old system 

 

Where the orange dots correspond to the individuals of the population generated by the 

new system and the blue ones corresponding to the old system, taking into consideration 

that the optimal point is the axis origin.  
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9 Concluding Remarks and Future 

Work 
 

To sum up this project, this chapter is going to evaluate if we have achieved our goal and 

we are going to propose some new ideas that should be considered for further research. 

In references to the results obtained in this project, we can confirm that the overall 

performance of the program has been improved. For those results, we have achieved the 

following objectives: 

- Design a new genetic programming library that replaces the ECJ library. This 

is expected to improve further development, by allowing for faster debugging 

times, develop ad-hoc music genotypes, and integrate new fitness functions 

and multi-objective optimization functions easily. 

- Research about multi-objective evolutionary algorithms and implement one 

for the new library. 

- Add harmony information to the current data model structure. 

This project has helped us to understand how genetic programming works and we have 

had deep research about how multi objective optimizations are being driven nowadays.  

Finally, we would like to propose some ideas that came up during the development of the 

project but that have not been implemented due to the lack of time: 

- Implement fitness functions for harmony. With the addition of harmony 

information to the tree structure, it has appeared the need of a fitness function 

that helps to select those individuals with the best chord progression. 

- Implement different populations. One of the projects analysed in the state of 

art used two populations, the first one was used to compose clusters of pitches 

and the second one was built using the individuals of the first population. 

- To evaluate the possibility of using elitism as a way of including better 

characteristics from original songs into de population. It must be studied if this 

inclusion can produce plagiarised songs. 



 74 

In relation to the future of this project, these technologies are very likely to become the 

future tools used for composing popular songs. The ability to learn about the trending 

songs and the possibility of using the characteristics that made those songs successful will 

definitely become a new standard on the music industry. 
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Appendix A. NSGA-III pseudocode 
 

The following four algorithms are part of NSGA-III logic (10). 

 

Generation t of NSGA-III procedure 
 

Input: H structured reference points ZS or supplied aspiration 

points Za, parent population Pt. 

Output: Pt+1 

1: S = Ø, i=1 

2: Qt = Recombination+Mutation(Pt) 

3: Rt = Pt ∪ Qt 

4: (F1, F2,…) = Non-dominated-sort(Rt) 

5: repeat 

6: St = St ∪ Qt 

7: until |St| >= N 

8: Last front to be included: Fl = Fi 

9: if |St| >= N then 

10:  Pt+1 = St, break 

11: else 

12:  P+t+1 = ∪l-1
j-1 Fl=Fi 

13: Points to be chosen from Fl: K = N - |Pt+1| 

14: Normalize objectives and create reference set Zr: 

Normalize(fn, St, Z
r, Zs, Za) 

15: Associate each member s of St with a reference point: [π(s), 

d(s)] = Associate(St,Z
r) % π(s): closest reference point, d: 

distance between s and π(s) 

16: Compute niche count of reference point j ∈ Zr: pj = ∑S∈St/Fl 
((π(s) = j) ? 1 : 0) 

17: Choose K members one at a time from Fl to construct Pt+1: 

Niching(K, pj, π, d, Z
r, Fl,Pt+1) 

18: end if 
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Normalize (fn,St, Zr, Zs/Za) procedure 
 

Input: St, Z
s
 (structured points) or Z

a (supplied points) 

Output: fn, Zr (reference points on normalized hyper-plane) 

1: for j=1 to M do 

2: Compute ideal point: zminj = minS∈St fj(s) 

3: Translate objectives: f’j(s) = fj(s) – zminj ∀s∈St 

4: Compute extreme points: zj,max = s : argmins∈St ASF(s, w
j), 

where wj = (e,…,e)T e=10-6, and wij = 1 

5: end for 

6: Compute intercepts aj for j = 1,…,M 

7: Normalize objectives (fn) 

8: if Za is given then 

9: Map each (aspiration) point on normalized hyper-plane and 

save the point in the set Zr 

10: else 

11: Zr = ZS 

12: end if 

 

 

Associate (St, Zr) procedure 
 

Input: Zr, St 

Output: π(s ∈ St), d(s ∈ St) 

1: for each reference point z ∈ Zr do 

2: Compute reference line w = z 

3: end for 

4: for each s ∈ St do 

5: for each w ∈ Zr do 

6:  Compute d⊥(s,w) = s – wT s/||w|| 

7: end for 

8: Assign π(s) = w : argminW∈Zr d⊥(s,w) 

9: Assign d(s) = d⊥(s, π(s)) 

10: end for 
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Niching (K, pj, π, d, Zr, Fl,Pt+1) procedure 
 

Input: K, pj, π(s ∈ St), d(s ∈ St), Zr, Fl 
Output: Pt+1 

1: k = 1 

2: while k <= K do 

3: Jmin = {j : argminj∈Zr pj} 

4: j = random(Jmin) 

5: Ij = {s : π(s) = j,s ∈ Fl} 

6: if Ij ≠ Ø then 

7:  if pj = 0 then 

8:   Pt+1 = Pt+1 ∪ (s : argmins∈Ij d(s)) 

9:  else 

10:   Pt+1 = Pt+1 ∪ random(Ij) 

11:  end if 

12:  pj = pj + 1, Fl = Fl\s 

13:  k = k + 1 

14: else 

15:  Zr = Zr / {j} 

16: end if 

17: end while 
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