Influence of the microstructure of TMT reinforcing bars on their corrosion behavior in concrete with chlorides

A. Bautistaa, J.C. Pomaresb, M.N. Gonzálezc, F. Velascoa

a University Carlos III of Madrid. Material Science and Engineering Department-IAAB. Avda. Universidad 30. 28911 Leganés, Madrid, Spain

b University of Alicante. Civil Engineering Department. Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain

c Universidad Politéctica de Madrid. Escuela Técnica Superior de Edificación. Avda. Juan de Herrera 6. 28040 Madrid, Spain

Abstract

Thermomechanically treated (TMT) carbon steel bars, often known as “TempCore” bars, are commonly used as reinforcements in concrete structures. TMT causes the formation of a martensite case in the outer surface of the bars, increasing their hardness, while the remaining ferritic-perlitic core maintains the typical ductility of hot rolled bars. In this work, the effect of this TMT induced microstructure on the development of pitting attacks in chloride media has been analyzed in depth. Electrochemical impedance spectroscopy (EIS) measurements and polarization curves have been carried out in simulated pore solutions to understand the effect of the presence of different phases in the microstructure and to quantify the strength of the galvanic couple that the outer martensite can form with the inner core. Moreover, accelerated corrosion tests in chloride contaminated concrete slabs have also been performed. Bars from six different slabs where corrosive attack has been forced for different times have been studied. The shape of the main pits in the bars corroded in concrete has been analyzed through optoelectronic microscopy and the results obtained prove that the depth of the attack is related to the microstructure of the TMT bars.

Keywords: corrosion; pitting; chloride; concrete; thermomechanical treatment; carbon steel; galvanic coupling.

1 Corresponding author. E-mail address: mbautist@ing.uc3m.es
1. Introduction

Reinforcing steel bars are usually embedded in concrete to increase the tensile properties of this material. Cold rolled carbon steel bars can offer higher mechanical strengths than traditional hot rolled bars [1,2], but the former are less ductile than the latter. Moreover, the stresses in the microstructure of cold rolled bars can make them more prone to corrosion [3], and they present offer worse after-fire mechanical properties [1,2]. To increase the mechanical properties of hot rolled carbon steel bars, the addition of microalloying elements as well as thermomechanical treatment (TMT), can be used [4]. The addition of carbon in amounts ranging between 0.3 and 0.5% hardens the steel, but its bendability and weldability decrease [5].

TMT bars, often known as “TempCore” bars, are manufactured by passing the red heated steel -just after the rolling process- through a chamber with a control water flow that quenches the outer surface of the bars, while their core remains hot as austenite [6]. A martensite case is formed in the outer part of the bar. Then, in the core, the austenite is transformed into ferrite and perlite through a slow cooling, while the heat dissipated from the center of the bar to the surface causes the self-tempering of the previously formed martensite [7]. The martensitic case formed in the outer surface of the bars increases their hardness [8], while the remaining ferritic-perlitic core maintains the typical ductility of hot rolled bars. The final strength of the TMT rebars depends on the thickness of the outer tempered martensitic case as well as on the distribution of other phases inside the core of bar [9]. Nowadays, the use of TMT carbon steel bars has become common for reinforcing of concrete structures in Europe. The TMT bars reduce the amount of steel needed for reinforcing a given concrete structure as well as the global economic cost of the structure.

There are studies published on the influence of the microstructure of TMT carbon steel bars on the fracture mode and ultimate tensile strength of the bars [6]. Moreover, TMT bars have shown better results in tensile and impact tests than direct air-cooled microalloyed hot rolled bars [10]. The influence of high-temperature exposure on the mechanical properties of the TMT bar is a point that has also been studied [1,11], with their results being worse than those shown for traditional hot-rolled carbon steel bars [1]. The fatigue performance of TMT bars has also been investigated [12].

The corrosion performance of the steel reinforcements is another key factor for the in-service performance of the structures. The alkaline solution inside the concrete pore should be able to guarantee the chemical durability of the steel. However, factors
such as the presence of chlorides [13] or the decrease of the pore solution pH caused
by carbonation [14] often provoke the active corrosion of the reinforcing steel bars.
Microalloying elements that are able to improve the corrosion resistance of the steel
bars can also be added to TMT bars [15].

There is a corrosion study carried out with TMT bars where weight losses after
sea water and fresh water immersions were measured [3]. The results obtained in this
research suggest that the corrosion resistance of TMT bars could be higher than that of
conventional hot rolled reinforcing bars. Another corrosion study with TMT bars also
reports weight losses in NaCl solutions [4]. Recent preliminary results on about the
effect of the galvanic connection between TMT and conventional reinforcement steels
on their corrosion performance in simulated pore solutions have also been published
[16].

Moreover, it has been conclusively proved that the morphology of the pits is a
key factor influencing the tensile [17-19] and the fatigue [20,21] behaviors of the
reinforcing bars, and so, it determines the likelihood of dangerous pathologies or in-
service failures for the structures. The relationship between the microstructure of the
reinforcing bars and their pit morphology has been analyzed in depth for stainless steel
corrugated bars in simulated pore solutions [22]. There are also previous studies about
corrosion development of carbon steel in concrete [23,24], but they have not
considered the possible influence of the specific microstructure that appears in the bars
after TMT.

The frequent use of TMT bars and the clear interest of corrosion performance
evidence the need for obtaining more complete information about how the phases
present in their microstructure can influence the development of the attack in the bars.
In this work, the influence of the microstructure originated by the TMT on the corrosion
behavior of reinforcing bars is analyzed in solution tests, using different electrochemical
techniques. The obtained results are verified through a morphological analysis of the
shape of the main pits detected in bars corroded in concrete slabs.

2. Experimental

Carbon steel TMT bars type B-500-SD (UNE 36065) with 12-mm of diameter
were used for this study. The chemical composition of the bars was determined from X-
ray fluorescence and combustion infrared detection of C and S, which can be seen in
Table 1. The alloying content of this bars, makes their carbon equivalent –calculated
using the expression previously given by other authors [6,25]- becomes 0.45%. The Cu content detected is high enough to exert a slight corrosion inhibition effect [15].

The microstructure of cross-sectional views of the samples was observed in metallographically prepared samples etched using Nital (5% HNO₃ in ethanol). Microhardness Vickers HV0.1 (100 gf) profiles were carried out in the cross-sections of the bars. Measurements started about 50 μm from the ribbed surface of the bar and they were performed each 100 μm. For this study a Zwick Roell Indentec machine was used.

For the electrochemical corrosion tests carried out in solution, two types of samples were used: a) samples from the corrugated surface of the TMT bars, labelled as “Ribbed surface”; and b) samples machined from TMT bars where the martensite case had been fully removed, labelled as “Core”. The “Core” cylinders had a diameter of 9 mm. Both types of samples were cut into 3-cm long cylinders, as can be seen in Figure 1. The surface of the “Ribbed surface” samples were mechanically cleaned before the test to erase the oxides formed due to the atmospheric exposure of the as-received bars, using a Dremel Multipro tool. Before being immersed in the testing solution, a copper wire was glued to one of the cross-sections of each sample using silver paint. Then, both cross-sections were covered with epoxy coating to avoid their interference in the measurement results.

The testing solution used to simulate that contained inside the pores of a chloride contaminated concrete [16] was 0.1 M NaOH, 0.3 M KOH and 0.15 M NaCl. The pH of this solution was 13.2. Each electrochemical measurement was repeated 4 times.

The galvanic current flowing between “Ribbed surface” and “Core” samples in this solution was measured using a 263A Potentiostat/Galvanostat from PAR. For this measurement, the ratio of the surfaces Ribbed surface/Core was 1.66.

Polarization curves and electrochemical impedance spectroscopy (EIS) measurements were carried out for the “Ribbed surface" and “Core" samples in the previously detailed solution. Moreover, these electrochemical tests were also performed in short-circuited samples of “Core” and “Ribbed surface” connected through a wire. This third type of samples will be called “Galvanic couple” hereafter.

A three-electrode cell was used in these studies. A saturated calomel electrode (SCE) was used as reference electrode, and an AISI 316 stainless steel coiled wire as
counter electrode. The open circuit potential (OCP) of all the samples was allowed to stabilize for 45 min in the testing solution. Then, the non-destructive EIS tests were carried out and, finally, the polarization curves were performed. EIS measurements were carried out from 100 kHz to 10 mHz applying a sinusoidal perturbation of 10 mV$_{\text{rms}}$. The polarization curves started at -200 mV from the previously determined OCP, and the potential was increased towards more anodic values at a rate of 0.5 mV/s. Those electrochemical measurements were done using a Solartron Analytical Potentiostat/Galvanostat from Ametek.

On the other hand, 50-cm long bars of the same TMT steel were used to perform corrosion studies in concrete slabs with 500 x 265 x 100 mm dimensions. Six slabs were manufactured, embedding in each one 10 steel bars with a 37-mm distance between each bar. The cement used was CEM II/B-L 32.5 N, and the water/cement ratio was 0.45. The aggregate/cement ratio was 5, with 1.5 being the ratio between coarse aggregate and sand. A 3.3% CaCl$_2$ regarding the weight of cement was also added to the mixture. The regions of the bars close to the concrete-air interface were protected with an isolating tape, with an approximately 35-cm length of the bar exposed to corrosion inside the concrete.

After casting, the 6 slabs were cured at high relative humidity and room temperature for 28 days, and then the corrosion of the rebar was accelerated by impressed currents. The current average density in each of the bars was approximately 30 µA/cm2. This corrosion density was moderately higher than that determined for steel in in-service structures exposed to chloride environments and high relative humidity [26]. The method was already used and described in previous studies [27,28]. Bars embedded in the different slabs were submitted to accelerated corrosion for different times to achieve different levels of attack. After the accelerated corrosion tests in concrete, the slabs were broken, and the oxides generated on the surface of the reinforcing bars were cleaned using a HCl solution inhibited with urotrophine. The main pits in each bar were identified and their morphology was characterized by optoelectronic microscopy, with the measurements done using an Olympus DSX500. Optoelectronic microscopy is a technique that has recently been used to characterize the morphology of pits and evaluate its dangerousness in other materials [29]. Moreover, scanning electron microscopy (SEM) was used to check the relationship between pit depth and microstructure.
3. Results and discussion

In Figure 2, optical microscopy images corresponding to etched cross-sections of the TMT bars can be observed. In Figure 2a, the outer case -with a clearly darker microstructure after the attack- can be easily distinguished from the inner region of the corrugated bar. In Figure 2b, obtained at higher magnifications obtained, it can be checked that the inner core of the bar is formed by ferrite and perlite, as corresponds to a steel with a C content as that shown in Table 1 and which has been cooled from the austenitic state at a slow enough cooling rate. Figure 2c shows the transition region between the core and the outer case. The thickness of the transition interlayer seems to be much reduced, which suggests that the quenching procedure to form the outer layer has been carried out adequately [6]. The presence of bainite in this interlayer has been often mentioned in previous literature [10], but, for the studied bars, it is difficult to assure with reliability the presence of this phase. Moreover, other authors have neither found noticeable bainite in the microstructure of the bars nor have predicted its presence by the modeling of the TMT process [8]. The microstructure observed in the transition zone is compatible with ferritic and perlitic phases, which close to the martensite case would become finer -with a smaller grain size- than in the bulk of the bar (Figure 2b). In Figure 2d, the typical microstructure of martensite, has been obtained by the quenching and tempering of the surface during bar manufacture, can be observed.

Some representative microhardness profiles obtained measuring from the surface of the bars towards regions where the micromechanical properties become stable can be seen in Figure 3. These results show a plateau with the highest hardness for regions close to the surface, proving the improvement in this property caused by the formation of martensite (Figure 2d). The thickness of this high hardness region depends on the exposure time to the water cooling during the martensite formation and on the cooling-water flow rate [8]. The length of the highest hardness plateau slightly oscillates (Figure 3). This result is coherent with the slight dispersion in the thickness of the outer martensite case observed in different sections of the bars and that can be guessed in images as that shown in Figure 2a. This lack of uniformity for the outer case could be related to the dispersion in the prior austenite grain sizes in the red heated steel during the bar processing [8]. Moreover, if the microhardness profiles start from a rib of the surface, the highest hardness plateau is defined at slightly higher values, probably because the faster cooling rate of this particular region causes the formation of a finer grain martensite. The decrease in hardness after the plateau is very steep, which corresponds to the observations in Figure 2c.
There is also another plateau for the lowest measured hardness (Figure 3). The microhardness values can be considered completely stable from a surface distance higher than about 2.2 mm, if the profiles start from a point between ribs. Obviously, this stabilization distance is much higher if the measurement starts in a rib. Between this plateau of complete stabilization and the decrease in hardness corresponding to the transition zone, a region of hardness very slightly higher than that of the plateau can be observed. This region with slightly higher hardness can be identified with finer perlite and ferrite than in the bulk material observed close to the martensite (Figure 2).

In chloride-containing solutions that, because of their pH, simulate those contained inside the concrete pores, there is a galvanic current density flowing between samples from the “Ribbed surface” and from the “Core” of the bars -as those shown in Figure 1- when they are short-circuited. The sign of the measured current always shows that the martensite from the surface of the ribbed bars acts as anode against the material in the core. Time records with oscillations and small transitories, as those shown in Figure 4, can be seen in this kind of experiments. To calculate the galvanic current density \(i_{\text{galv}}\), the surface of the anodic samples -that is to say, the area of the “Ribbed surface” samples- has been used. The mean values of \(i_{\text{galv}}\) determined in the different experiments performed always ranged between 0.7 and 1.0 \(\mu\text{A/cm}^2\). These results are coherent with the preferential corrosion of the martensite case of TMT rebars in chloride contaminated concrete reported in other works [27,28].

Examples of the polarization curves obtained for “Ribbed surface” and “Core” samples can be seen in Figure 5. Moreover, an example of one of the curves obtained for “Galvanic couple” samples has also been included in the figure. All the curves are quite similar, and they can be considered typical for systems that corrode actively at moderate rates. In Figure 6, the most relevant data that can be calculated from curves, as those shown in Figure 5, are plotted.

In Figure 6a, it can be seen that the corrosion potential \(E_{\text{corr}}\) determined for the different types of samples are typical of active steel following the criterion proposed by the ASTM C876 standard. There is some dispersion for measured \(E_{\text{corr}}\) values for the same type of samples. Bearing in mind the overlapping of the error bars, it could be concluded that the \(E_{\text{corr}}\) of the three studied types of samples are similar from a statistical point of view. However, the highest average value observed for the “Galvanic couple” can correspond to an increase in the cathodic area in these systems, which
slightly shifts the cathodic process to higher potentials, and so, increases the E_{corr}, which is the equilibrium potential between the anodic and the cathodic semireactions.

The corrosion current densities (i_{corr}) are also very similar for the three types of samples (Figure 6a). All the measured i_{corr} are about one order of magnitude higher than $0.1 \mu \text{A/cm}^2$, which is usually assumed to be the limit value for corrosion of carbon steel reinforcements [30]. The average value for the “Ribbed surface” is higher than for the “Core” (Figure 6a). The i_{corr} for the “Galvanic couple” is calculated using the surface of the martensite, instead of the surface of both short-circuited samples, the average i_{corr} value increases up to a value similar to that of the “Ribbed surface”.

The most relevant information that can be drawn from the obtained polarization curves are the Tafel slopes. In Figure 6b, it can be seen that, for the three systems, the anodic Tafel slopes (b_a) are always higher than the cathodic Tafel slopes (b_c). This fact means that the anodic process is the most hindered, and the i_{corr} is more controlled by anodic semireaction than by the cathodic one. At any rate, as the difference between b_a and b_c is not huge, a mixed control of the corrosion rate must be assumed, with a lower influence of the cathodic process. The b_c values are quite similar for all the studied systems, which implies that the oxygen reduction, that is the cathodic process in this medium, is not clearly easier on the microstructure of one surface than in that corresponding to the other. However, b_a is clearly higher for the “Core” than for other samples. This indicates that the anodic process is less favored in the ferrite and perlite than in the martensite. The b_a values allow to explain the i_{galv} observed and the preferential corrosion of the martensite.

Hence, a galvanic couple is formed between martensite and ferrite, but its performance does not coincide with that of the most well-known galvanic couples. The anodic process is mainly located in the martensite, being able then to assume a certain cathodic protection of the ferrite-perlite phases when the pits go deep down to the core region of the bar. For this reason, it is necessary to use only the surface of the martensite in the “Galvanic couple” samples to obtain reliable corrosion rates for the electrochemical tests.

On the other hand, the ferrite-perlite phase does not have an E_{corr} that is different from that of the martensite in the studied medium, and usually the cathodic metal in typical galvanic couples has an E_{corr} which is clearly higher than the anodic one. Moreover, the cathodic reaction of oxygen reduction is not more favored on the surface of the cathodic metal than on the anodic, which would be another typical characteristic of the most well-known galvanic couples. Due to the steep anodic branch
observed in the polarization curve for the “Ribbed samples” (Figure 5) and the small increase in the E_{corr} that takes place due to formation of Galvanic couple, the foreseeable increase in the i_{corr} for the “Galvanic couple” is lower than the experimental dispersion determined for this parameter for the corroding systems studied. Thus, short-circuiting ferrite-perlite with martensite would not meaningfully increase the corrosion rate of the martensite in spite of the formed galvanic couple. In addition, it should be borne in mind that, when the short circuiting takes place between the material of the core and that of the case because of a pit, the ratio anodic area/cathodic area is high, so the ability of the ferrite-perlite phase to increase the corrosion rate of the martensite will become quite reduced.

Examples of the EIS spectra obtained for the “Ribbed surface”, “Core” and “Galvanic couple” samples are shown, as Bode diagrams, in Figure 7. To obtain an adequate simulation of spectra like these, a circuit equivalent as that proposed in Figure 8 has been necessary. In this circuit, R_{sol} is the solution resistance between the counter electrode and the working electrode, and its influence can be seen at the highest frequencies. The electric behavior of the passive layer is simulated by the resistance R_{pas} and the constant phase element CPE_{pas}. Identification of the influence of the passive layer with the time constant that appears in the spectra at medium-high frequencies is commonly found in previous literature [31,32]. The corrosion activity inside the pits is identified with the resistance R_{pit} and the capacitive behavior of CPE_{pit}, which appear in the spectra at lower frequencies. Moreover, to obtain a good simulation of the experimental data at the lowest frequencies, it is necessary to include a Warburg element related to the diffusion impedance through a finite thickness (W_s). The equivalent circuit used to simulate the results is similar to the one already used to simulate the electrochemical behavior of corroding steel in concrete [31,33].

In steel embedded in chloride contaminated concrete, a diffusion impedance through a semi-infinite thickness is often identified at low frequencies. It has been assumed that this impedance reflects the influence that the diffusion impedance of oxygen through the concrete cover can have on the corrosion process. In solution tests such as those performed in this study, the access of oxygen to the rebar surface is higher and this hypothesis could be discarded, at least at moderate i_{corr} (Figure 6a). The diffusion of ions through the oxide layer has also been previously proposed as being responsible for the presence of diffusion impedance at the lowest-frequency part of the spectra in simulated pore solutions [34] and in concrete [32]. Hence, the W_s impedance could correspond to the diffusion through surface oxides. The polarization results (Figure 5) are coherent with this hypothesis because of the region defined at
anodic overvoltages and high current densities where the i hardly increases its values when E increases.

Due to their higher order of magnitude, the parameters that have the most determining effect on the corrosion rate are R_{pit} and $Ws-R$, which have been highlighted in bold in Table 2. For all the studied systems, R_{pit} is higher than $Ws-R$, so the charge transfer resistance inside the pits can be identified as the rate determining step. However, the difference between R_{pit} and $Ws-R$ is so small that it would be a sizeable mistake to omit the influence of the ions diffusion through the oxide. The global impedance of the process at low-frequencies (essentially $R_{pit}+Ws-R$) shows values for “Ribbed surface” that are half of those obtained for the “Core”, matching the trend obtained for the i_{cor}. (Figure 6a).

The influence of the microstructure on the development of the pits has been checked carrying out accelerated tests in concrete. The SEM images in Figure 9 allow to verify that the pits tend to initially develop through the martensite, forming a slightly jagged surface on this phase due to the attack (Figure 9a). When the corrosion reaches the thin interlayer formed between the martensite and the ferritic and perlitic region, the deepening of the attack seems restrained and the bottom of the pit becomes smoother (Figure 9b).

To perform a more exhaustive study regarding the pit morphology of TMT bars in chloride contaminated concrete, the depth and surface area of the main pits detected in corroded reinforcing TMT steel have been measured using optoelectronic microscopy. Images such as that shown in Figure 10 are obtained for the main pits formed in the bars. The mass loss of each studied pit plotted in Figures 11 and 12 has been calculated from the volume of the pit given by its optoelectronic characterization and using the density of the steel. Numerous pits whose mass losses differ more than two orders of magnitude –in grams- have been considered for this study.

In Figure 11, it can be seen that the increase in volume of the pits is clearly associated to an increase in the area of the pits mouths. Pits whose areas vary more than two orders of magnitude –in mm²- have been detected. The pits associated to the highest mass losses and with the highest mouth areas appear in bars embedded in the slabs that have been corroded for the longest times.
At any rate, the results in Figure 12 prove that the pits associated to the lowest mass losses tend to have maximum depths lower than that of the martensitic case, confirming the observation carried out for images like that in Figure 9a.

The obtained results suggest that the attack initially takes place in the martensitic case and that, when the corrosion reaches the martensite-ferrite interlayer, the pits tend to continue their growth by mouth widening through the martensitic case. Only when the pits become very big and/or concrete cracking takes place, can this trend disappear.

In Figure 12, the relationship between the volume/mass loss of each characterized pit and its maximum depth is plotted. The pit depth is a parameter that, for the pits most easily detectable by visual inspection, varies slightly. All the obtained values from the pit depth differ in less than one order of magnitude, though the volume of the pits is quite different. Moreover, most of the determined maximum pit depths are between 1-2 mm. If it is borne in mind that the software always takes into account the maximum height appearing in the image as a reference for calculating the height of the pits, and that the height of ribs and nerves often influence this value, it is obvious that the calculated maximum pit depth matches the thickness where the typical microstructure of the core appears (Figure 2) and the lowest hardness plateau onsets (Figure 3). Thus, these data confirm observations as those in Figure 9b, which suggest that the attack tends to be stopped in the transition interlayer. The fact that sometimes values for the pit depth slightly higher than the typical values obtained for the martensitic case of the studied TMT steel have been obtained with this technique could suggest that for the biggest pits, the cathodic protection that the martensite offers to the ferrite and perlite would disappear in a moderately resistive medium such as concrete or that the progress of the pits would be affected by the concrete cracking and direct exposure to the atmosphere of part of the reinforcing steel.

4. Conclusions

The results obtained in this study reveal how the microstructure characteristic of TMT affects the development of the pits in concrete with chlorides or another media simulating it. The main conclusions that can be drawn the results obtained are:

- The i_{corr} of the martensite is slightly higher than that of the ferrite-perlite in solution tests and their E_{corr} are similar.
• The galvanic coupling between the martensite and the ferrite-perlite in solution tests proves that the martensite tends to act as anode and the ferrite-perlite as cathode.

• The anodic semireaction of the martensite is more hindered than the cathodic one in the testing solution, so a small increase in the cathodic surface that a pit reaching to the core would imply, does not cause a meaningful increase in the corrosion rate of the outer case.

• Results obtained in concrete proved that the depth of the attack is determined by the microstructure of the TMT bars. Once the corrosion has reached the ferritic-perlitic core, the attack tends to progress mainly by pit widening until the volume of the pit is very large and/or the concrete covers cracks.

Acknowledgments

The authors acknowledge the financial support of Interreg SUDOE, through KrEaTive Habitat project (Ref. SOE1/P1/E0307),
References

Table 1. Chemical composition of the studied B-500-SD bars.

<table>
<thead>
<tr>
<th>Chemical composition (%)</th>
<th>C</th>
<th>Mn</th>
<th>S</th>
<th>Si</th>
<th>Cu</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.21</td>
<td>0.86</td>
<td>0.02</td>
<td>0.29</td>
<td>0.34</td>
<td>0.09</td>
<td>0.02</td>
<td><0.001</td>
<td>Balance</td>
</tr>
</tbody>
</table>

Table 2. Results obtained from the simulation of the EIS spectra obtained in simulated pore solution.

<table>
<thead>
<tr>
<th></th>
<th>R_{sol} (Ω·cm2)</th>
<th>R_{pas} (Ω·cm2)</th>
<th>C_{pas} (µF·cm$^{-2}$·s$^{-1}$)</th>
<th>n_{pas}</th>
<th>R_{pit} (kΩ-cm2)</th>
<th>C_{pit} (µF·cm$^{-2}$·s$^{-1}$)</th>
<th>n_{di}</th>
<th>W_s-R (kΩ·cm2)</th>
<th>W_s-T (s)</th>
<th>W_s-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribbed surface</td>
<td>7.1±0.5</td>
<td>13±5</td>
<td>78±24</td>
<td>0.81±0.03</td>
<td>5±2</td>
<td>151±56</td>
<td>0.77±0.01</td>
<td>4±1</td>
<td>85±7</td>
<td>0.50±0.01</td>
</tr>
<tr>
<td>Core</td>
<td>6.7±0.4</td>
<td>13±1</td>
<td>32±5</td>
<td>0.89±0.04</td>
<td>13±5</td>
<td>48±5</td>
<td>0.87±0.03</td>
<td>7±1</td>
<td>9±5</td>
<td>0.43±0.03</td>
</tr>
<tr>
<td>Galvanic couple</td>
<td>7.6±0.5</td>
<td>14±2</td>
<td>7±2</td>
<td>0.80±0.01</td>
<td>11±1</td>
<td>100±5</td>
<td>0.78±0.01</td>
<td>7±2</td>
<td>19±4</td>
<td>0.50±0.01</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Image of the samples used for the electrochemical studies in simulated pore solution.

Figure 2. Cross sectional images of the TMT reinforcing bar: a) whole cross-sectional view; b) microstructure of the core of the bar; c) microstructure of the transition region; d) microstructure of the outer region of the bar.

Figure 3. Microhardness profiles carried out on cross sections of the bars.

Figure 4. i_{galv} flowing between samples of corrugated surface of the bars and samples form the core of the bars when they are short-circuited and immersed in simulated pore solution.

Figure 5. Examples of polarization curves in simulated pore solution.

Figure 6. Results obtained from polarization curves as those shown in Figure 5: a) values corresponding to the i_{corr} and the E_{corr} of the studied samples; b) Tafel slopes calculated for the studied systems.

Figure 7. Examples of the EIS spectra obtained in simulated pore solution and plotted using Bode diagrams.

Figure 8. Equivalent circuit used to simulate the obtained EIS spectra.

Figure 9. Cross sectional views of pits generated in bars embedded in a chloride contaminated concrete slab. a) Pit with a moderate depth; b) Deep pit.

Figure 10. Example of the optoelectronic microscopy image for pit generated in a chloride contaminated concrete slab.

Figure 11. Relationship between the mass loss of each pit and its mouth surface. Results obtained from the optoelectronic characterization of the main pits formed on the six different studied chloride contaminated concrete slabs.

Figure 12. Relationship between the mass loss of each pit and its maximum depth. Results obtained from the optoelectronic characterization of the main pits formed on the six different studied chloride contaminated concrete slabs.
Figure 1

Click here to download Figure: Figure 1.docx
Figure 5

The figure shows a plot of potential (V vs. SCE) vs. current density (A/cm²). The curves represent different conditions:
- **Ribbed surface**
- **Core**
- **Galvanic couple**

The y-axis represents the potential range from -0.7 to 0.4, while the x-axis shows the current density range from 1E-08 to 1E-03.
Figure 6
Figure 8
Figure 11

Click here to download Figure: Figure 11.docx
Figure 12

Click here to download Figure: Figure 12.docx
Highlights:

- Corrosion studies of TMT bars in simulated pore solutions and in concrete slabs.
- The outer martensite acts as anode and the core as cathode when both parts of the bar are coupled.
- The core material does not meaningfully increases the corrosion rate of the outer martensite.
- The usual depth of the pits is related to the microstructure of the TMT bars.
- When pits reach the martensite-core interlayer, they progress by mouth widening.
Graphical Abstract

Martensite (anode)

Ferrite+Perlite (cathode)

Transition interlayer (usual maximum pit depth)