ALGEBRAIC RECONSTRUCTION TECHNIQUE FOR EXPERIMENTAL PHASE RETRIEVAL

Roberto Fernández Fernández¹,², Asier Marcos¹, Giannis Zacharakis³, Sergi Gallego², Manuel Desco¹,⁴,⁵, June Beléndez² and Jorge Ripoll¹,⁴

¹Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
²I.U. Física Aplicada a las Ciencias y las Tecnologías, Universidad de Alicante, Alicante, Spain
³Institute for Electronic Structure and Laser, Foundation for Research and Technology, Heraklion, Crete, Greece
⁴Experimental Medicine and Surgery Unit, Instituto de Investigación Sanitaria del Hospital Gregorio Marañón, Madrid, Spain
⁵Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
⁶Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain

Email: robferna@ing.uc3m.es

KEYWORDS: Algebraic reconstruction technique, phase retrieval, Fourier domain, iterative algorithm

Phase images provide better resolution than intensity images, even allowing the possibility of going considerably beyond the Rayleigh’s criterion limit [1]. Many methods and algorithms have been developed [2] and its application in a wide range of fields demonstrated [3]. We used a setup with dual acquisition to capture the data of the image plane and Fourier plane using a CCD camera. The Algebraic Reconstruction Technique (ART), based on Kaczmarz method for solving linear equation systems [4], allowed us to recover full amplitude and phase in real Fourier space from the images captured by the CCD camera. This solution avoids the loss of information introduced by measurement devices by the correlation of wavefronts in space and time and the impossibility of measuring the phases of the signal received at detectors. The important improvement of resolution and quantification power provided by this phase imaging technique makes it possible, for example, to account phase changes between interfaces in deep tissue imaging.

![Data of image plane and Fourier plane captured by CCD camera](image1)

![Error reduction in each iteration of the algorithm](image2)

![Full amplitude and phase recovered](image3)

Figure 1: Intensity and phase modulus captured by CCD camera and the reconstructed image using ART based technique, showing the error reduction in each iteration of the algorithm.

---


