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THE LEBESGUE DIFFERENTIATION THEOREM REL ."SITED

E. DUBON AND A. SAN ANTOLIN

ABSTRACT. We prove a general version of the Lebesgue diffe entiation -heorem
where the averages are taken on a family of sets that may -~ot shri k nicely
to any point. These families of sets involves the unit ' ™ ana ... dilated by
negative integers of an expansive linear map. We also ¢ .ve a - ... “cterization of
the Lebesgue measurable functions on R™ in terms ot = .oxim .te continuity
associated to an expansive linear map.

1. INTRODU ..o

A main result in mathematical analysis is the we.” known Lebesgue differentiation
theorem, which states that for almost eve v pr .., the value of a locally integrable
function is the limit of infinitesimal average. taken about the point. The averages
are taken on balls, or more generally, ¢~ ¢ fam ly of sets that shrink nicely to some
point. A consequence of the Lebesgue dii.~rentiation theorem is Lebesgue’s density
theorem. It states that the densi., o1 «.., Lebesgue measurable set is 0 or 1 at
almost every point. Furthermore, Den). - gave a characterization of the Lebesgue
measurable functions in terms ~¢ approximate continuity in 1915.

Here, we consider family ¢ sets 0. type {A7/B : j € Z}, where B is the unit ball
in R"™ and A is an expansive 1. ~ar me ) on R". We observe that for some anisotropic
linear maps, this family Lf sets - es not shrink nicely to the origin. We prove
a general version of the Leb :sgu~ differentiation theorem where the averages are
taken on this last family. ™ ws v e obtain an analogous result to Lebesgue’s density
theorem. Finally, we give a cu.racterization of the Lebesgue measurable functions
on R™ in terms of 2 ypro. ‘mate continuity associated with an expansive linear map.
The proof that we ~resent here is based on classical results of mathematical analysis:
the Vitali cover ng ' mma and estimations from the Hardy-Littlewood maximal
operator adapte. - the multivariate context with an expansive linear map.

Let us int- oduce o. = notation and basic definitions. The sets of strictly positive
integers, ra tons . nurabers, real numbers and complex numbers will be denoted by
N, Z, Q, R a.  C - sspectively. We will write x = (z1,...,7,)7 € R", n € N, and
the Euc’.ucan nor.n as x, ||x||. If » > 0 we will denote B, = {x e R" : ||x| <r}.

For 2 Cc R" we will denote by m*(E) and m.(E), the usual outer and inner
measure. of E If m*(E) = m.(FE), it is said that F is a Lebesgue measurable set
wit'. Lebesgue measure m(E) := m*(E).

Key wurds and phrases. A-approximate continuity, A-density point, Expansive linear maps,
Lebe .. measurable functions, Lebesgue differentiation theorem.
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2 THE LEBESGUE DIFFERENTIATION THEOREM REVISITED

If M is an invertible linear map on R™ and j € N, we will understar d M. 7 as the
j-th composition of M with itself, MY = I as the identity linear may ~n’ M~! as
the inverse of M.

We say that a linear map A : R™ — R™ is expansive if all its (con~lex) <" ~envalues
have modulus greater than 1. Obviously, if A is expansive tb .n ¢ - = |det A is
greater than 1, and as consequence, A is invertible. Geometric..'v, ’ nese conditions
are equivalent (see [8]) to the existence of two constants C' > M ana ™ < a < 1 such

that for all j € N we have
| A% ||< Cad || x ||, x € R".

Givenaset S C R",y € R" and a linear map M onT.*, wr ~ill write S¢ = R"\ S,
A(S)={A(x) : xe€ Stand S+y ={x+y : x€5; T add iion, xs will denote
the characteristic function of the set .S. We note thL.* if S i _Lebesgue measurable
then the volume of S changes under the action of A as «. m(S) = m(AS).

If we write f € L*(R™) we mean that f : R"™ * C is I :besgue measurable and
the norm is defined by

ey o= [ 176 i < 400,

Sometimes and since the context is clear. - will wiite simply dx instead of dm(x).
A function f is in L}, (R") if fxx € L*(k™) ‘or any compact set K in R"™.

The Lebesgue differentiation theoren. ca. be found in several textbooks, e.g. [7,
p. 93], [17, p. 157] and [9, p. 33].

Lebesgue Differentiation Theorc . 17 f € L}, (R"), then
1

1 - N — n
,.1_1f51+ m(By) /B,.+y [/, — f(x)|dm(x) =0 for a.e. y e R™.

Furthermore, this result is als. trv: if we replace balls by a family of sets that
shrink nicely to y € R™. A fa aily { £, },»~0 of Borel subsets of R" is said to shrinks
nicely toy € R™ if

(i) B, C B, +y for eal. sositive r;

(ii) there is a ¢y “ant o > 0, independent of r, such that m(E,) > am(B,).

We need the following ac.inition.

Definition 1. A print'y € R" is said to be a point of density for a Lebesque
measurable set £ = R"™, m(F) > 0, if

fim m(E N (B, + y))

=1.
r—0 m(Br)

A cor .equence Uf the Lebesgue differentiation theorem is Lebesgue’s density the-
orem, % e.g. | , p. 28].
Lebesg <’s T ensity Theorem. A set E C R" is Lebesque measurable if and
onl, vy almost every point of E is a point of density of E.

+ n extrasive study on differentiation of integrals is made in the book by M. de
“wman |9], where the author puts emphasis on several differentiation bases of sets,
sse atially on bases of balls, rectangles and unbounded sets.
The notion of approximate continuity was introduced by Arnaud Denjoy [5] (see
also [1], [14], [16]) to study derivatives and Lebesgue integration of functions.
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Definition 2. A point y in R"™ is said to be a point of approrimate _ont wity of
the function f if there exists E C R™, m(E) > 0, such that 'y is a po.~t [ density
for the set E and

(1) lim  f(x) = f(y).

X =Yy
xec FE

The following relationship between measurable functior w.d pou., of approxi-
mate continuity were proved by Denjoy and Stepanov (see [6, The. rem 2.9.13]).
Stepanov-Denjoy’s Theorem. Let f be a function defin ¥ in th . closed interval
[a,b] and taking finite values in almost all points. TF_w [ is a measurable func-
tion if and only if almost all points of [a, b] are points o, apr oxw. wate continuity of f.

Results related to Stepanov-Denjoy’s Theorem were . ~wved by Martin [13], Lahiri
and Chakrabarti [10] and Das, Rashid and Mamum [4] 1 the context of metric
spaces. When the notion of point of (s)-appro-imauv.'v » ntinuous of a function is
considered, see a result by Loranty [11]. See also 1.~ study of I-density continuous

functions by Ciesielski, Larson and Ostasze: .. o).
Here, we consider a kind of differentiation ba. - that does not seem to be treated
in the literature. For instance, let Q be . “near map on R? given by Q(z,y) =

(2z,3y) and consider the family of sets {¢, =" B;}jen C R%. We observe that this
family does not shrink nicely to the « "~in L -ause B(2—2j+3—2])1/2 is the smallest
ball containing the set Q7 B; and

» 3
lim @ )

=0.
Jj—o0 m(B(z—zyfg—zj‘)l/z)

Having in mind this type of f milic. we prove a new version of the Lebesgue differ-
entiation theorem and the £ ~nanov- Jensjoy theorem. The proof of those theorems
are usualy based on the < lassic.” Vitali covering lemma and some estimations of
Hardy-Littlewood maxir .al ¢ perator. In our context, this does not work, that is
why we need a version or "7i"ali ¢ vering lemma (Lemma 1 below) and of the Hardy-
Littlewood maximal “anction | e (5) below) adapted to our family of sets. For the
proof of our versio'. ¢. *he Stepanov-Densjoy theorem, we invoke the concept of
point of A-approximate co_.tinuity of a function. It was introduced in [3] as a
generalization o the 10tion of point of approximate continuity.

Definition 2. L. A : R" — R" be an expansive linear map. It is said that
v € R" is a poir* of n—density for a measurable set E C R", m(E) > 0 if for all
r>0,
- m(EN(ATB, +y))
lim

- =1.
j—00 m(A_JBr)

Given = e pansive linear map A : R" — R", and given y € R", we denote
Da(, ") = {E C R" measurable set : y is a point of A—density for E}.

Furt.. = ure, we will write D4 when y is the origin. Clearly, £ € D, if and only
u.e 7 eDaly).

D. fnition 4. Let A : R"™ — R" be an expansive linear map and let f : R" — C
be a function. It is said that y € R™ is a point of A-approzimate continuity of the
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function f if there exists a measurable set E C R™, m(E) > 0, suc’ thc 'y is a
point of A-density for the set E and

) T fx) = £()

The notion of point of A-approximate continuity depends o. *b . linear map A.
There are expansive linear maps for which the notions of poi~* of ap, -oximate con-
tinuity and A-approximate continuity are equal, and some 1mes, v. ey are different
(see [15]). In particular, it is not hard to prove that when .' is the lyadic dilation,
the notion of point of A-approximate continuity coincic .. witw .ue notion of point
of approximate continuity.

2. MAIN RESULTS AND ITS r. DOF.

In order to shorten our notation, we fix an ex ansive li iear map A : R™ — R™.
We prove a relationship between measurak'» sew. =v i A-density points. The
following result is related to the Lebesgue density .“eorem.

Proposition 1. Let E C R"™ be a measurable ~t. Then almost every point of E is
a point of A-density of F.
To prove Proposition 1 we need the foll v'ag lemma. This is related to Vitali’s
covering lemma (see e.g. [17, p. 155], . ». v Mor [9, p. 19]).
Lemma 1. Let r > 0 and let S, be the wion of a finite collection of sets
AViB, +x; CR", where i €{l,..,N}, 4, €Z, x;€R".
Thus, there exists a set I C {1 . N} such that
(a) AViB,+x;,i¢ I, are lisjoint.
(b) Q. C U;es A7 Ry, - x; where we choose ja € N such that Vj > ja
we have A~ B, T B,.
(¢) m(Q) <7 3 m(ATB,).
Proof. (a) We car -onsider che sets A7 B, + x; such that j; > jo > --- > jn.
We take ji- := j1 aad we -emove all the j;, i € {2, ..., N} such that
(A7 By +x;) (A" B, +x1/) # 0.

Let jor be one ot oo » jis (if it exists) such that it is the greatest of the j's that we
have not rer .ove! sucu that jor # jy/.
Now for th res. of *.e jls which were not deleted, we quit those such that

(A% B, +x;) [ J(A% B, +x21) # 0.
We rep at this ‘ >chnique and after a finite number of steps we conclude the process.
We domove 7 - {17, 2/, ..., M'}. Tt is clear that for this I, the condition (a) holds.

b) I-tie{l,..,N}\I, there exists ¢’ € I such that j > j; and

(3) (A7 By +x;) [ (A% By +x) # 0.
On ... other hand, since A is an expansive lineal map, there exists j4 € N such
ta ¢ if j > ja then A=/ B, C B,. Thus, we have
(1) AP B, C Aiatisp,.
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By (3) and (4), we have
(A9 B, + x;) (A% By + xir) # 0,
and bearing in mind that B, C A4 B,., we obtain
(A4 B, 4+ x,) (A7 B, + x0) # 0
Finally, we conclude that
(A7 B, +x;) C (A4 B 4+ x;) C (AAH9 33, 4%,

Therefore, the condition (b) follows.
(¢) The condition (c) is a direct consequence of ()) br _a. se

m() < m( |J (WB,+xi) <ml! (A2 By 4 xy))

i€{1,...N} i€l
< Z m(ATATI By, 4+ xp) =3 14 T m (A B,).
irel vel

Let 7 > 0. For each f € L}, (R"), we define tu. following maximal function:

() My, f(x) = sup

ml i B. + x)|dy.
ez m( YiB,) /4jBT|f(y )|dy

A related result to the following theo.=m '3 proved, for instance, in [17, p. 155]
and [7, p. 91)).
Theorem 1. Letr > 0 and let f € L'(ix™) and X > 0, then there exists a constant
C > 0 which only depends of *’ . ~mplication A and of the dimension n such that
- , C
m({x €R" " M, ‘(%) >A}) < + | fllorwn -

Proof. Let r,\ > 0, we ¢ enot :
b, = XER": Ma,f(x)> A}
We distinguish two < a. ~s. If m(E) ) = 0, then the conclusion of the theorem holds.
If mE) ) > 0. According . the regularity of the Lebesgue measure, we have
m Ey, ) =sup{m(K) : K CE),, K is a compact }.

We consider a cou._act set K C R" such that K C E) . So for each x € K exists
Jj=j(x) €7 suc™ thay

1
6 —_— / dy > \.
(©) SUB oy O

Noticir » that i for each x € K we take the set A7) B, + x defined in (6), the
union ot .~e v avious sets recovers K. Then, as K is a compact set, the conditions
(a* and () in Lemma 1 give us the existence of a disjoint subfamily

{A"B, +x1,.., A B, +xx}
_ -7 a constant C' > 0 depending on A and on the dimension n such that

N
(7, m(K) < CZm(AjiBr+xi).

=1
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Moreover, as the sets A% B, +x;, i = 1,..., N verify the inequalit- (6) and are
disjoint, we have

(8) CY m(A"B, +x)

i=1

IN

N

c) < |f(y)l dy
;)‘ AJi Bytx;

C O

= - LfD)dy < < “lloiny -

A Uﬁ\]:1(AjiB'r'+xi) \ I L*(R™)

By (7) and (8), we have

C
m(K) < By Il fllor @y -
Taking the supremum over all the compact sets K C Ej ., the proof is finished. [

The following is a version of the Lebesgue differenti. ‘ion theorem where the
family of sets does not necessarily shrink nicely to ny pec nt.

Theorem 2. Letr >0 and f € L}, . (R"). Then jo. almost all x € R" we have
1

B ATB) [y, T IO ARG =00
We need the following to prove Theoren ?

Proposition 2. Let r > 0, let x € K™ .~d w2t f be a continuous function at x.
Then

. 1
S g [, O )~ el dm(y) =0

Proof. Fix r > 0. Since f is ¢ .uun. ous at x and A is expansive, for all € > 0 there
exists jo € N such that if j > jo anc y € A=9 B, + x, then |f(y +x) — f(x)| < &.

Hence
1

m(A~IB, s ip,
that is the statement of the |~ position. ([

| fly +x) = f(x) [ dy <& Vj > jo.

Proof of Theorem /. Fix = > 0. Let R > 0. First, we prove the result for almost
all x € Bp.

Without loss in ¢ :nerality, we can assume that f € L'(R™). Otherwise, we
observe that in .~ cuture computation we are going to integrate f on A=/ B, +x,
j € N. Sincr A is exp .nsive, there exists C > 0 such that A=7B, C B¢, Vj € N.
Then A=97 .+ {C 3cyir, ¥j € N. In other words, we will evaluate f only on the
points of the . 11 7 gy . Thus we can consider f is zero for points which are not
in Br, , and this 1s why we can assume f € L'(R").

For €N, ad x € Bg, we denote

1
(Ta-i f)(x) = TTL(A_j-BT)/AJ'BT | fly +x) = f(x) [ dy

(T4 f)(x) = limsup(T f)(x).

Jj—+oo

ana

W have to show that
Taf(x)=0 a.e. on Bp.
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As the continuous functions with compact support in R", C.(R"), e ense in
L'(R™), then for & > 0 there exists g € C.(R") such that || f —g |- -» <e. For
x € Bg and by the triangle inequality, we can write

(Taf)(x) = li_liligf(TAﬂ ) (x)

= limsup | fly+x)—g(y+x)+g(y+x)—alx)~ ~x)—f(x) | dy

1 /
jotoo M(ATIB,) Ja-ip,
1

<limsup | —/———=—~ +x)—g(.+x)| !

< timsup (s /. L e el

1 p
i L, 1900 a6 Ly [ et g6 ).
By Proposition 2, Tyg = 0. Thus

(9) (Taf)(x) < Ma, (f —g)(x)+ " a(x) =) x) |
On other hand, given A > 0, we denote
F)HR:{XEBR:(’T"#,\/\"/\ )\},
E,\,R:{XEBR:MA,T(J ’I)(X)>)\}
and
Gyr=1{x€ Br:| f\7, —g(x) [> A}.
The inequality (9) shows that
(10) Foy ~CEArUGH\R

because if a point is not in Fy g neitu ~ in G g, it cannot be in Fyy g.
Ifxe GA}R

1
X a6 55 16— g(x) |,
and, bearing in mind that |[f - ~ll; @) <€, we have
1 1
() mGaw = abdx s [ 17660 | dx < e
JR A Jre A

According to The rem 1 there exists C7 > 0 which only depends of the applica-
tion A and of the ¢imewn. "~ so that

(12) m B < G 1560 - g0 | dx < e

where the las* iney “ality is true for how we have choose the function g.
Hence, t} - inrlusion (10) and the inequalities (11) and (12) yield

Ci+1
A

Observ : that t. = above estimation is independent of ¢, then m(F\, R) = 0.
Since

m(Fg,\R) < E.

{x€Br:(Taf)(x) > 0} C UNGNF%J%
we concluc @ that
m({x € Br : (Taf)(x) > 0}) < m(UyenFz ) =0.

¥ mauly, the statement of the theorem follows because the above estimations are
va. 4 for any R > 0.
O
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We are ready to prove Proposition 1.

Proof of Proposition 1. Fix r > 0. By Theorem 2 with f = xp and x € 7 we have
. m(EN(A7B, +x))
lim .
j—>00 m(A=IB,)
and the result holds. (I

=1, aex el

The following result is closely related to the Stepanov-Dr ajoy theorem. It shows
a relationship between Lebesgue measurable functions and \oints ol A-approximate
continuity.

Theorem 3. Let f : R" — C be a function. Then f i« a L ses, ue measurable func-
tion if and only if almost every point of R™ is a point v, A-ap sroximate continuity
of f.

To prove Theorem 3, we need another importa. * theore n in mathematical anal-
ysis proved by N.N. Lusin [12] (see also [17]).
Lusin’s theorem. Let U C R" be a Lebesgue meas. +ble set such that m(U) < co.
Let f : U — C be a measurable function su.n that m({x € U : f(x) # 0}) < oco.
Thus for all € > 0 there exists g : U — C a contv. rous function such that

m({xeU: f(x, # x,;5) <e.

The following proposition is the nece. sa. - condition in Theorem 3.

Proposition 3. Let f : R"™ — C v. 2 1o urable function. Then almost all points
of R™ are points of A-approzimate con.. ity of f.

Proof. For each k € Z", w uc ote gk(x) = f(X)xo1(x — k). As f(x) =
> kezn 9k(X), it is enough . we prc e the statement of the proposition for each
gk. Without loss in generality, e w (l show it for gg.

By Lusin’s Theorem t’.ere ~xists a sequence of compact sets , {K; };’il c [0,1]™,
such that K; C K1, % € "y, wtere all the points of K; are points of continuity of
the function f and m('J,1]" " 1°_; K;)) = 0. Furthermore, according to Proposition
1, we have that alr .. © every point of K, j € {1,2,...}, is a point of A-density of
K. Therefore the prootf 1. Snished. O

In order to pove "heorem 3, we also need the following results.

Lemma 2. Jet 1 - a set of index non necessarily numerable, {Eqs}tacr C R™ be
an arbitrary fam ly of Lebesque measurable sets such that every point of E, is an
A-density , ~in’ of F,. Then E := Uqc1E, is Lebesgue measurable.

Proof. V. ¢ will p1eceed by contradiction. Without loss in generality, we assume that
all the sets F, e contained in a cube, otherwise, we consider their intersections
with a 1. -ed or :n cube.

Ty defimition, there exist Borel sets G, H such that G ¢ E C H C R" with
m (E) = (G) and m*(FE) = m(H) . We assume that E is not a measurable
set, *hen 1(G) = my(F) < m*(E) = m(H). Since G C H, m(H\ G) > 0 and
~*E\G)>0.

Ty the previous inclusions, we have E\ G C H \ G. By Proposition 1, almost
ev. vy point of H \ G are point of A-density for H \ G. Thus among those points
there exists x € E'\ G such that E'\ G € D4(x). It is true because otherwise and
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according to the definition of the set F, we have E \ G is the empty set nd this
contradicts that m*(E \ G) > 0. Therefore, we have that there exit. v & I such
that x € E,,. Furthermore, it is not hard to prove that E,, N(H\ ™\ =._ \G €
Da(x). Then m(E,, \ G) > 0 follows. This is a contradiction *ith ..~ equality
m«(E) = m(G). O

Corollary 1. Let I be a set of index non necessarily numerable, 1."-}oer C R™ be
an arbitrary family of Lebesgue measurable sets. Denote by £% thr set of all points
of A-density of E,. Then J := UserEL and L := User ESNE ) are Lebesgue
measurable.

Proof. Observe that E4 and EZNE,, are Lebesgue me sur- ole ets. Then the proof
is finished by Lemma 2. O

To finish the proof of Theorem 3, we need to orove the following result.

Proposition 4. Let f : R" — C be a funct.. ~ suc. .aat almost every point of
R"™ is a point of A-approzimate continuity for the ;. ~ction f. Then [ is Lebesgue
measurable.

Proof. Without loss in generality, we asc = -~ that f is a real function. Let r € R
and P = {x € R" : f(x) < r}. Denote by

Q ={xeR" : xis apoint 0. .. app. *ximately continuity of f }.

Let y € PN Q. By definition, ther- ~vists » measurable set @y C R" such that the
point y belongs to the set Qy with ,, in 4 (y) and the restriction of the function
f to Qy is continuous at the point y. Since f(y) < r, one can find an open ball Uy,
centered at y such that f(z) ./ Jrallz e U, NQy.

Now, if we denote by E the set Uy N Qy and by E;‘f the set of all points of

A-density of Eg, we have thay 7 := Uye(me)(E;,i () Ey) contains (PN Q). Since

(PNQ) C S C P, we hawv. P=SU(P\Q). By Corollary 1, the set S is
measurable, and since 1. ‘P’ Q) =0, then we conclude that P is a measurable set,
and by consequence t e func ca f is Lebesgue measurable. O
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