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THE LEBESGUE DIFFERENTIATION THEOREM REVISITED

E. DUBON AND A. SAN ANTOLÍN

Abstract. We prove a general version of the Lebesgue differentiation theorem

where the averages are taken on a family of sets that may not shrink nicely

to any point. These families of sets involves the unit ball and its dilated by
negative integers of an expansive linear map. We also give a characterization of

the Lebesgue measurable functions on Rn in terms of approximate continuity

associated to an expansive linear map.

1. Introduction

A main result in mathematical analysis is the well known Lebesgue differentiation
theorem, which states that for almost every point, the value of a locally integrable
function is the limit of infinitesimal averages taken about the point. The averages
are taken on balls, or more generally, on a family of sets that shrink nicely to some
point. A consequence of the Lebesgue differentiation theorem is Lebesgue’s density
theorem. It states that the density of any Lebesgue measurable set is 0 or 1 at
almost every point. Furthermore, Denjoy gave a characterization of the Lebesgue
measurable functions in terms of approximate continuity in 1915.

Here, we consider family of sets of type {A−jB : j ∈ Z}, where B is the unit ball
in Rn and A is an expansive linear map on Rn. We observe that for some anisotropic
linear maps, this family of sets does not shrink nicely to the origin. We prove
a general version of the Lebesgue differentiation theorem where the averages are
taken on this last family. Thus we obtain an analogous result to Lebesgue’s density
theorem. Finally, we give a characterization of the Lebesgue measurable functions
on Rn in terms of approximate continuity associated with an expansive linear map.
The proof that we present here is based on classical results of mathematical analysis:
the Vitali covering lemma and estimations from the Hardy-Littlewood maximal
operator adapted to the multivariate context with an expansive linear map.

Let us introduce our notation and basic definitions. The sets of strictly positive
integers, rational numbers, real numbers and complex numbers will be denoted by
N, Z, Q, R and C respectively. We will write x = (x1, . . . , xn)T ∈ Rn, n ∈ N, and
the Euclidean norm as x, ‖x‖. If r > 0 we will denote Br = {x ∈ Rn : ‖x‖ < r}.

For E ⊂ Rn, we will denote by m∗(E) and m∗(E), the usual outer and inner
measures of E. If m∗(E) = m∗(E), it is said that E is a Lebesgue measurable set
with Lebesgue measure m(E) := m∗(E).
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2 THE LEBESGUE DIFFERENTIATION THEOREM REVISITED

If M is an invertible linear map on Rn and j ∈ N, we will understand M j as the
j-th composition of M with itself, M0 = I as the identity linear map and M−1 as
the inverse of M .

We say that a linear mapA : Rn → Rn is expansive if all its (complex) eigenvalues
have modulus greater than 1. Obviously, if A is expansive then dA = |detA| is
greater than 1, and as consequence, A is invertible. Geometrically, these conditions
are equivalent (see [8]) to the existence of two constants C > 0 and 0 < α < 1 such
that for all j ∈ N we have

‖ A−jx ‖≤ Cαj ‖ x ‖, x ∈ Rn.
Given a set S ⊂ Rn, y ∈ Rn and a linear map M on Rn, we will write Sc = Rn\S,

A(S) = {A(x) : x ∈ S} and S+y = {x+y : x ∈ S}. In addition, χS will denote
the characteristic function of the set S. We note that if S is Lebesgue measurable
then the volume of S changes under the action of A as dAm(S) = m(AS).

If we write f ∈ L1(Rn) we mean that f : Rn → C is Lebesgue measurable and
the norm is defined by

‖f‖L1(Rn) :=

∫

Rn
|f(x)| dm(x) < +∞.

Sometimes and since the context is clear, we will write simply dx instead of dm(x).
A function f is in L1

loc(R
n) if fχK ∈ L1(Rn) for any compact set K in Rn.

The Lebesgue differentiation theorem can be found in several textbooks, e.g. [7,
p. 93], [17, p. 157] and [9, p. 33].
Lebesgue Differentiation Theorem. If f ∈ L1

loc(R
n), then

lim
r→0+

1

m(Br)

∫

Br+y

|f(y)− f(x)| dm(x) = 0 for a.e. y ∈ Rn.

Furthermore, this result is also true if we replace balls by a family of sets that
shrink nicely to y ∈ Rn. A family {Er}r>0 of Borel subsets of Rn is said to shrinks
nicely to y ∈ Rn if

(i) Er ⊂ Br + y for each positive r;
(ii) there is a constant α > 0, independent of r, such that m(Er) ≥ αm(Br).

We need the following definition.

Definition 1. A point y ∈ Rn is said to be a point of density for a Lebesgue
measurable set E ⊂ Rn, m(E) > 0, if

lim
r→0

m
(
E ∩ (Br + y)

)

m(Br)
= 1.

A consequence of the Lebesgue differentiation theorem is Lebesgue’s density the-
orem, see e.g. [9, p. 28].
Lebesgue’s Density Theorem. A set E ⊂ Rn is Lebesgue measurable if and
only if almost every point of E is a point of density of E.

An extensive study on differentiation of integrals is made in the book by M. de
Guzman [9], where the author puts emphasis on several differentiation bases of sets,
essentially on bases of balls, rectangles and unbounded sets.

The notion of approximate continuity was introduced by Arnaud Denjoy [5] (see
also [1], [14], [16]) to study derivatives and Lebesgue integration of functions.
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Definition 2. A point y in Rn is said to be a point of approximate continuity of
the function f if there exists E ⊂ Rn, m(E) > 0, such that y is a point of density
for the set E and

(1) lim
x→ y
x ∈ E

f(x) = f(y).

The following relationship between measurable function and point of approxi-
mate continuity were proved by Denjoy and Stepanov (see [6, Theorem 2.9.13]).
Stepanov-Denjoy’s Theorem. Let f be a function defined in the closed interval
[a, b] and taking finite values in almost all points. Then f is a measurable func-
tion if and only if almost all points of [a, b] are points of approximate continuity of f .

Results related to Stepanov-Denjoy’s Theorem were proved by Martin [13], Lahiri
and Chakrabarti [10] and Das, Rashid and Mamum [4] in the context of metric
spaces. When the notion of point of 〈s〉-approximately continuous of a function is
considered, see a result by Loranty [11]. See also the study of I-density continuous
functions by Ciesielski, Larson and Ostaszewski [2].

Here, we consider a kind of differentiation bases that does not seem to be treated
in the literature. For instance, let Q be the linear map on R2 given by Q(x, y) =
(2x, 3y) and consider the family of sets {Q−jB1}j∈N ⊂ R2. We observe that this
family does not shrink nicely to the origin because B(2−2j+3−2j)1/2 is the smallest

ball containing the set Q−jB1 and

lim
j→∞

m(Q−jB1)

m(B(2−2j+3−2j)1/2)
= 0.

Having in mind this type of families, we prove a new version of the Lebesgue differ-
entiation theorem and the Stepanov-Densjoy theorem. The proof of those theorems
are usualy based on the classical Vitali covering lemma and some estimations of
Hardy-Littlewood maximal operator. In our context, this does not work, that is
why we need a version of Vitali covering lemma (Lemma 1 below) and of the Hardy-
Littlewood maximal function (see (5) below) adapted to our family of sets. For the
proof of our version of the Stepanov-Densjoy theorem, we invoke the concept of
point of A-approximate continuity of a function. It was introduced in [3] as a
generalization of the notion of point of approximate continuity.

Definition 3. Let A : Rn −→ Rn be an expansive linear map. It is said that
y ∈ Rn is a point of A−density for a measurable set E ⊂ Rn, m(E) > 0 if for all
r > 0,

lim
j−→∞

m
(
E
⋂

(A−jBr + y)
)

m(A−jBr)
= 1.

Given an expansive linear map A : Rn −→ Rn, and given y ∈ Rn, we denote

DA(y) = {E ⊂ Rn measurable set : y is a point of A−density for E}.
Furthermore, we will write DA when y is the origin. Clearly, E ∈ DA if and only
if E + y ∈ DA(y).

Definition 4. Let A : Rn → Rn be an expansive linear map and let f : Rn −→ C
be a function. It is said that y ∈ Rn is a point of A-approximate continuity of the



4 THE LEBESGUE DIFFERENTIATION THEOREM REVISITED

function f if there exists a measurable set E ⊂ Rn, m(E) > 0, such that y is a
point of A-density for the set E and

(2) lim
x→ y
x ∈ E

f(x) = f(y).

The notion of point of A-approximate continuity depends of the linear map A.
There are expansive linear maps for which the notions of point of approximate con-
tinuity and A-approximate continuity are equal, and sometimes, they are different
(see [15]). In particular, it is not hard to prove that when A is the dyadic dilation,
the notion of point of A-approximate continuity coincides with the notion of point
of approximate continuity.

2. Main Results and its proofs

In order to shorten our notation, we fix an expansive linear map A : Rn → Rn.
We prove a relationship between measurable sets and A-density points. The

following result is related to the Lebesgue density theorem.

Proposition 1. Let E ⊂ Rn be a measurable set. Then almost every point of E is
a point of A-density of E.

To prove Proposition 1 we need the following lemma. This is related to Vitali’s
covering lemma (see e.g. [17, p. 155], [7, p. 90] or [9, p. 19]).

Lemma 1. Let r > 0 and let Ωr be the union of a finite collection of sets

AjiBr + xi ⊂ Rn, where i ∈ {1, ..., N}, ji ∈ Z, xi ∈ Rn.
Thus, there exists a set I ⊂ {1, ..., N} such that

(a) AjiBr + xi, i ∈ I, are disjoint.

(b) Ωr ⊂
⋃
i∈I A

jA+jiB3r +xi where we choose jA ∈ N such that ∀j ≥ jA
we have A−jBr ⊂ Br.

(c) m(Ωr) ≤ 3ndjAA
∑
i∈I m(AjiBr).

Proof. (a) We can consider the sets AjiBr + xi such that j1 ≥ j2 ≥ · · · ≥ jN .
We take j1′ := j1 and we remove all the ji, i ∈ {2, ..., N} such that

(AjiBr + xi)
⋂

(Aj1′Br + x1′) 6= ∅.
Let j2′ be one of the j′is (if it exists) such that it is the greatest of the j′s that we
have not removed such that j2′ 6= j1′ .
Now for the rest of the j′is which were not deleted, we quit those such that

(AjiBr + xi)
⋂

(Aj2′Br + x2′) 6= ∅.
We repeat this technique and after a finite number of steps we conclude the process.
We denote I = {1′, 2′, ...,M ′}. It is clear that for this I, the condition (a) holds.

(b) Let i ∈ {1, ..., N} \ I, there exists i′ ∈ I such that ji′ ≥ ji and

(3) (AjiBr + xi)
⋂

(Aji′Br + xi′) 6= ∅.
On the other hand, since A is an expansive lineal map, there exists jA ∈ N such
that if j ≥ jA then A−jBr ⊂ Br. Thus, we have

(4) AjiBr ⊂ AjA+ji′Br.
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By (3) and (4), we have

(AjA+ji′Br + xi)
⋂

(Aji′Br + xi′) 6= ∅,

and bearing in mind that Br ⊂ AjABr, we obtain

(AjA+ji′Br + xi)
⋂

(AjA+ji′Br + xi′) 6= ∅.
Finally, we conclude that

(AjiBr + xi) ⊂ (AjA+ji′Br + xi) ⊂ (AjA+ji′B3r + xi′).

Therefore, the condition (b) follows.
(c) The condition (c) is a direct consequence of (b) because

m(Ωr) ≤ m(
⋃

i∈{1,...N}
(AjiBr + xi)) ≤ m(

⋃

i′∈I
(AjA+ji′B3r + xi′))

≤
∑

i′∈I
m(AjA+ji′B3r + xi′) = 3ndjAA

∑

i′∈I
m(Aji′Br).

�

Let r > 0. For each f ∈ L1
loc(R

n), we define the following maximal function:

(5) MA,rf(x) = sup
j∈Z

1

m(AjBr)

∫

AjBr

|f(y + x)|dy.

A related result to the following theorem is proved, for instance, in [17, p. 155]
and [7, p. 91]).

Theorem 1. Let r > 0 and let f ∈ L1(Rn) and λ > 0, then there exists a constant
C > 0 which only depends of the application A and of the dimension n such that

m({x ∈ Rn : MA,rf(x) > λ}) ≤ C

λ
‖ f ‖L1(Rn) .

Proof. Let r, λ > 0, we denote

Eλ,r = {x ∈ Rn : MA,rf(x) > λ}.
We distinguish two cases. If m(Eλ,r) = 0, then the conclusion of the theorem holds.
If mEλ,r) > 0. According to the regularity of the Lebesgue measure, we have

m(Eλ,r) = sup{m(K) : K ⊂ Eλ,r, K is a compact }.
We consider a compact set K ⊂ Rn such that K ⊂ Eλ,r. So for each x ∈ K exists
j = j(x) ∈ Z such that

(6)
1

m(AjBr)

∫

AjBr+x

|f(y)| dy > λ.

Noticing that if for each x ∈ K we take the set Aj(x)Br + x defined in (6), the
union of the previous sets recovers K. Then, as K is a compact set, the conditions
(a) and (c) in Lemma 1 give us the existence of a disjoint subfamily

{Aj1Br + x1, ..., A
jNBr + xN}

and a constant C > 0 depending on A and on the dimension n such that

(7) m(K) ≤ C
N∑

i=1

m(AjiBr + xi).
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Moreover, as the sets AjiBr + xi, i = 1, ..., N verify the inequality (6) and are
disjoint, we have

C
N∑

i=1

m(AjiBr + xi) ≤ C
N∑

i=1

1

λ

∫

AjiBr+xi

|f(y)| dy(8)

=
C

λ

∫
⋃N
i=1(AjiBr+xi)

|f(y)| dy ≤ C

λ
‖ f ‖L1(Rn) .

By (7) and (8), we have

m(K) ≤ C

λ
‖ f ‖L1(Rn) .

Taking the supremum over all the compact sets K ⊂ Eλ,r, the proof is finished. �

The following is a version of the Lebesgue differentiation theorem where the
family of sets does not necessarily shrink nicely to any point.

Theorem 2. Let r > 0 and f ∈ L1
loc(R

n). Then for almost all x ∈ Rn we have

lim
j→∞

1

m(A−jBr)

∫

A−jBr

|f(y + x)− f(x)| dm(y) = 0.

We need the following to prove Theorem 2.

Proposition 2. Let r > 0, let x ∈ Rn and let f be a continuous function at x.
Then

lim
j→∞

1

m(A−jBr)

∫

A−jBr

|f(y + x)− f(x)| dm(y) = 0.

Proof. Fix r > 0. Since f is continuous at x and A is expansive, for all ε > 0 there
exists j0 ∈ N such that if j ≥ j0 and y ∈ A−jBr + x, then |f(y + x) − f(x)| < ε.
Hence

1

m(A−jBr)

∫

A−jBr

| f(y + x)− f(x) | dy < ε ∀j ≥ j0.

that is the statement of the proposition. �

Proof of Theorem 2. Fix r > 0. Let R > 0. First, we prove the result for almost
all x ∈ BR.

Without loss in generality, we can assume that f ∈ L1(Rn). Otherwise, we
observe that in our future computation we are going to integrate f on A−jBr + x,
j ∈ N. Since A is expansive, there exists C > 0 such that A−jBr ⊂ BC , ∀j ∈ N.
Then A−jBr + x ⊂ BC+R, ∀j ∈ N. In other words, we will evaluate f only on the
points of the ball BR+C . Thus we can consider f is zero for points which are not
in BR+C and this is why we can assume f ∈ L1(Rn).

For j ∈ N, and x ∈ BR, we denote

(TA−jf)(x) =
1

m(A−jBr)

∫

A−jBr

| f(y + x)− f(x) | dy

and

(TAf)(x) = lim sup
j→+∞

(TA−jf)(x).

We have to show that

TAf(x) = 0 a.e. on BR.
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As the continuous functions with compact support in Rn, Cc(Rn), are dense in
L1(Rn), then for ε > 0 there exists g ∈ Cc(Rn) such that ‖ f − g ‖L1(Rn)< ε. For
x ∈ BR and by the triangle inequality, we can write

(TAf)(x) = lim sup
j→+∞

(TA−jf)(x)

= lim sup
j→+∞

1

m(A−jBr)

∫

A−jBr

| f(y+x)−g(y+x)+g(y+x)−g(x)+g(x)−f(x) | dy

≤ lim sup
j→+∞

( 1

m(A−jBr)

∫

A−jBr

| f(y + x)− g(y + x) | dy

+
1

m(A−jBr)

∫

A−jBr

| g(y + x)− g(x) | dy+ | g(x)− f(x) |
)
.

By Proposition 2, TAg = 0. Thus

(9) (TAf)(x) ≤MA,r(f − g)(x)+ | g(x)− f(x) | .
On other hand, given λ > 0, we denote

Fλ,R = {x ∈ BR : (TAf)(x) > λ},
Eλ,R = {x ∈ BR : MA,r(f − g)(x) > λ}

and
Gλ,R = {x ∈ BR :| f(x)− g(x) |> λ}.

The inequality (9) shows that

(10) F2λ,R ⊂ Eλ,R ∪Gλ,R
because if a point is not in Eλ,R neither in Gλ,R, it cannot be in F2λ,R.

If x ∈ Gλ,R
χGλ,R(x) ≤ 1

λ
| f(x)− g(x) |,

and, bearing in mind that ‖f − g‖L1(Rn) < ε, we have

(11) m(Gλ,R) =

∫

Rn
χGλ(x) dx ≤ 1

λ

∫

Rn
| f(x)− g(x) | dx < 1

λ
ε.

According to Theorem 1 there exists C1 > 0 which only depends of the applica-
tion A and of the dimension so that

(12) m(Eλ,R) <
C1

λ

∫

Rn
| f(x)− g(x) | dx < C1

λ
ε,

where the last inequality is true for how we have choose the function g.
Hence, the inclusion (10) and the inequalities (11) and (12) yield

m(F2λ,R) <
C1 + 1

λ
ε.

Observe that the above estimation is independent of ε, then m(Fλ, R) = 0.
Since

{x ∈ BR : (TAf)(x) > 0} ⊂ ∪N∈NF 2
N ,R

,

we conclude that

m({x ∈ BR : (TAf)(x) > 0}) ≤ m(∪N∈NF 2
N ,R

) = 0.

Finally, the statement of the theorem follows because the above estimations are
valid for any R > 0.

�



8 THE LEBESGUE DIFFERENTIATION THEOREM REVISITED

We are ready to prove Proposition 1.

Proof of Proposition 1. Fix r > 0. By Theorem 2 with f = χE and x ∈ E, we have

lim
j−→∞

m
(
E ∩ (A−jBr + x)

)

m(A−jBr)
= 1, a.e.x ∈ E,

and the result holds. �
The following result is closely related to the Stepanov-Denjoy theorem. It shows

a relationship between Lebesgue measurable functions and points of A-approximate
continuity.

Theorem 3. Let f : Rn → C be a function. Then f is a Lebesgue measurable func-
tion if and only if almost every point of Rn is a point of A-approximate continuity
of f .

To prove Theorem 3, we need another important theorem in mathematical anal-
ysis proved by N.N. Lusin [12] (see also [17]).
Lusin’s theorem. Let U ⊂ Rn be a Lebesgue measurable set such that m(U) <∞.
Let f : U → C be a measurable function such that m({x ∈ U : f(x) 6= 0}) < ∞.
Thus for all ε > 0 there exists g : U → C a continuous function such that

m({x ∈ U : f(x) 6= g(x)}) < ε.

The following proposition is the necessary condition in Theorem 3.

Proposition 3. Let f : Rn → C be a measurable function. Then almost all points
of Rn are points of A-approximate continuity of f .

Proof. For each k ∈ Zn, we denote gk(x) = f(x)χ[0,1]n(x − k). As f(x) =∑
k∈Zn gk(x), it is enough if we prove the statement of the proposition for each

gk. Without loss in generality, we will show it for g0.
By Lusin’s Theorem there exists a sequence of compact sets , {Kj}∞j=1 ⊂ [0, 1]n,

such that Kj ⊂ Kj+1, ∀j ∈ N, where all the points of Kj are points of continuity of
the function f andm([0, 1]n\(∪∞j=1Kj)) = 0. Furthermore, according to Proposition
1, we have that almost every point of Kj , j ∈ {1, 2, ...}, is a point of A-density of
Kj . Therefore the proof is finished. �

In order to prove Theorem 3, we also need the following results.

Lemma 2. Let I be a set of index non necessarily numerable, {Eα}α∈I ⊂ Rn be
an arbitrary family of Lebesgue measurable sets such that every point of Eα is an
A-density point of Eα. Then E := ∪α∈IEα is Lebesgue measurable.

Proof. We will proceed by contradiction. Without loss in generality, we assume that
all the sets Eα are contained in a cube, otherwise, we consider their intersections
with a fixed open cube.

By definition, there exist Borel sets G,H such that G ⊂ E ⊂ H ⊂ Rn with
m∗(E) = m(G) and m∗(E) = m(H) . We assume that E is not a measurable
set, then m(G) = m∗(E) < m∗(E) = m(H). Since G ⊂ H, m(H \ G) > 0 and
m∗(E \G) > 0.

By the previous inclusions, we have E \ G ⊂ H \ G. By Proposition 1, almost
every point of H \ G are point of A-density for H \ G. Thus among those points
there exists x ∈ E \G such that E \G ∈ DA(x). It is true because otherwise and
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according to the definition of the set E, we have E \ G is the empty set and this
contradicts that m∗(E \ G) > 0. Therefore, we have that there exits α0 ∈ I such
that x ∈ Eα0 . Furthermore, it is not hard to prove that Eα0 ∩ (H \G) = Eα0 \G ∈
DA(x). Then m(Eα0

\ G) > 0 follows. This is a contradiction with the equality
m∗(E) = m(G). �

Corollary 1. Let I be a set of index non necessarily numerable, {Eα}α∈I ⊂ Rn be
an arbitrary family of Lebesgue measurable sets. Denote by Edα the set of all points
of A-density of Eα. Then J := ∪α∈IEdα and L := ∪α∈I(Edα ∩ Eα) are Lebesgue
measurable.

Proof. Observe that Edα and Edα∩Eα are Lebesgue measurable sets. Then the proof
is finished by Lemma 2. �

To finish the proof of Theorem 3, we need to prove the following result.

Proposition 4. Let f : Rn → C be a function such that almost every point of
Rn is a point of A-approximate continuity for the function f . Then f is Lebesgue
measurable.

Proof. Without loss in generality, we assume that f is a real function. Let r ∈ R
and P = {x ∈ Rn : f(x) < r}. Denote by

Q = {x ∈ Rn : x is a point of A-approximately continuity of f }.
Let y ∈ P ∩Q. By definition, there exists a measurable set Qy ⊂ Rn such that the
point y belongs to the set Qy with Qy in DA(y) and the restriction of the function
f to Qy is continuous at the point y. Since f(y) < r, one can find an open ball Uy

centered at y such that f(z) < r for all z ∈ Uy ∩Qy.
Now, if we denote by Ey the set Uy ∩ Qy and by Edy the set of all points of

A-density of Edy, we have that S := ∪y∈(P∩Q)(E
d
y

⋂
Ey) contains (P ∩ Q). Since

(P ∩ Q) ⊂ S ⊂ P , we have P = S ∪ (P \ Q). By Corollary 1, the set S is
measurable, and since m(P \Q) = 0, then we conclude that P is a measurable set,
and by consequence the function f is Lebesgue measurable. �
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