Pandeo de una barra delgada empotrada en un extremo: Análisis lineal de un problema no lineal

Tarsicio Beléndez, Cristian Neipp y Augusto Beléndez

Post-buckling analysis of a cantilever slender bar under the action of an external vertical concentrated load at the free end is analyzed. We present the differential equation governing the behavior of this physical system and show that this system is similar to another well-known physical system: the simple pendulum motion. A simple linearization of the non linear differential equation is presented and analyzed. We present numerical results for various cases and a comparison between the theoretical results and the experimental ones obtained in the laboratory by using a steel ruler as slender bar.

1. Introducción

En el presente trabajo se analiza, tanto teóricamente como experimentalmente, el pandeo o flexión lateral [1] de una barra delgada empotrada en un extremo y sobre la que se aplica una fuerza puntual de compresión en el extremo libre. En primer lugar se presenta la ecuación diferencial de la elástica de la barra y se comprueba, por una parte, que es una ecuación diferencial no lineal de segundo orden y, por otra, que formalmente es análoga a la del movimiento de un péndulo simple. A continuación se analizan distintas posibilidades de la linealización de esta ecuación diferencial y se hace uso de una que proporciona resultados óptimos para un amplio intervalo de fuerzas aplicadas. Teniendo en cuenta que los estudiantes de Ciencias e Ingeniería suelen estar familiarizados con software como Derive, Matlab o Mathematica, se utiliza este último tanto para encontrar la solución de una ecuación trascendente como para la realización de integraciones numéricas. Por último, se muestra una experiencia de laboratorio que permite analizar de forma sencilla el pandeo de una barra delgada utilizando como barra una regla de acero que se fija en un extremo, y sobre la que se aplica una fuerza puntual en el extremo libre. Los resultados experimentales se comparan con los teóricos obtenidos mediante las ecuaciones linealizadas comprobándose que existe una buena concordancia entre ambos.

2. Planteamiento del problema

Consideremos una barra delgada en posición vertical, empotrada en su extremo inferior y sometida a una fuerza vertical F en el extremo superior, tal y como se ve en la Figura 1. La barra tiene longitud L y sección rectangular constante de base b y altura h. Tomamos un sistema de coordenadas cartesianas con origen en el emportamiento de modo que (x, y) son las coordenadas de un punto A de la barra, s la longitud de arco entre el emportamiento y el punto A y φ es el ángulo que forma con la vertical la recta tangente a la barra en el punto A. En esta figura x_f y y_f son las coordenadas cartesianas del extremo libre de la barra, mientras φ_0 es el ángulo que forma con la vertical la recta tangente a la barra en el extremo libre. En la Figura 1 hemos denotado por δ_x y δ_y a los desplazamientos del extremo libre de la barra de manera que $\delta_x = x_f$ y $\delta_y = L - y_f$. Suponemos que el material del que está hecha la barra es elástico lineal, homogéneo e isotrópico, de modo que la relación de comportamiento de este material (relación tensión-deformación) es la ley de Hooke. Suponemos, además, que su longitud es mucho mayor que las dimensiones laterales de la misma, que la barra es inextensible y que las deformaciones son pequeñas. Bajo estas hipótesis podemos utilizar la ecuación de Euler-Bernoulli entre el momento flector M de la fuerza aplicada y el radio de curvatura ρ de la barra deformada [1]:

http://www.rser.org

REF Julio-Septiembre 2004
\[M = \frac{EI}{\rho} \]

(1)

donde \(E \) es el módulo de Young del material y \(I \) es el momento de inercia de la sección transversal de la barra respecto del eje neutro [2]. El producto \(EI \) recibe el nombre de "módulo de rigidez a la flexión" de la barra o simplemente "rigidez" y depende del tipo de material empleado y de las características geométricas de la sección de la barra.

Teniendo en cuenta la relación geométrica \(1/\rho = d\varphi/ds \), la ecuación (1) se puede escribir:

\[\frac{d\varphi}{ds} = \frac{M}{EI} \]

(2)

Vamos a considerar el pandoe o flexión lateral de la barra delgada suponiendo que el desplazamiento de la misma debido a su peso propio es nulo. Esto implica considerar una barra sin masa, aproximación válida si el peso propio de la barra es mucho menor que un parámetro que se conoce como fuerza crítica o fuerza de Euler [1], y que corresponde al mínimo valor de la fuerza \(F \) que hay que aplicar a la barra para que se produzca pandoe. Como veremos más adelante, para la barra de la Figura 1 el valor de la fuerza crítica es \(F_{cr} = \frac{\pi^2EI}{4L^2} \).

Para obtener la ecuación que gobierna el pandoe de la barra delgada es necesario conocer el momento flector \(M \). Para ello basta con calcular el momento de la fuerza \(F \) respecto a un punto \(A \) de la barra cuya distancia a la línea de acción de la fuerza \(F \) es, como se ve en la Figura 1, \(x - x_f \), es decir:

\[M(s) = F(x_f - x) \]

(3)

y sustituyendo en la ecuación (2):

\[\frac{d\varphi}{ds} = \frac{F}{EI}(x_f - x) \]

(4)

Derivando la ecuación (4) respecto a \(s \) y teniendo en cuenta que, de la Figura 1, se cumple \(\sin \varphi = ds/ds \), se obtiene:

\[\frac{d^2\varphi}{ds^2} + \frac{F}{EI} \sin \varphi = 0 \]

(5)

que es una ecuación diferencial de segundo orden no lineal. Esta ecuación, aunque sencilla en apariencia, es difícil de resolver debido a la no-linearidad inherente del término senj.

Las condiciones de contorno de la ecuación (5) son las siguientes:

\[\varphi(0) = 0 \quad \varphi(L) = 0 \]

(6)

Una vez resuelta la ecuación (5) el valor del ángulo en el extremo libre se obtiene fácilmente con la condición \(\varphi(L) = \varphi_0 \).

La ecuación (5) es formalmente igual a la ecuación general (para pequeñas y grandes oscilaciones) del movimiento de un péndulo simple, hecho que se conoce como "analogía dinámica de Kirchhoff" [3] y que utilizaremos más adelante.

La ecuación diferencial correspondiente al movimiento de un péndulo simple es [4]:

\[\frac{d^2\theta}{dt^2} + \frac{g}{l} \sin \theta = 0 \]

(7)

donde \(\theta \) es el ángulo que forma en cada instante el hilo del péndulo con la vertical, \(l \) la longitud del hilo, \(t \) el tiempo y \(g \) la aceleración de la gravedad. Si suponemos que en el instante inicial el ángulo \(\theta \) es nulo, se verifican las siguientes condiciones:

\[\theta(0) = 0 \quad \theta(T/4) = \theta_0 \quad \theta'(T/4) = 0 \]

(8)

donde \(T \) es el período del movimiento oscilatorio y \(\theta_0 \) la amplitud de las oscilaciones. Comparando las ecuaciones (5) y (6) con las ecuaciones (7) y (8) vemos que existe una analogía entre ambos problemas. En la Tabla 1 se muestran las magnitudes equivalentes entre el problema del péndulo simple y el del pandoe de una barra delgada empotrada en un extremo. Una característica importante es que el papel que juega la longitud \(L \) en el caso de la barra, lo juega \(T/4 \) en el caso del péndulo simple.

<table>
<thead>
<tr>
<th>Pandoe de una barra empotrada en un extremo</th>
<th>Movimiento oscilatorio de un péndulo simple</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(t)</td>
</tr>
<tr>
<td>(L)</td>
<td>(T/4)</td>
</tr>
<tr>
<td>(\varphi)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(\varphi_0)</td>
<td>(\theta_0)</td>
</tr>
<tr>
<td>(F/EI)</td>
<td>(g/L)</td>
</tr>
</tbody>
</table>

Cuando la amplitud de las oscilaciones del péndulo simple es pequeña es posible sustituir \(\sin \theta \) por \(\theta \) en la ecuación (7). Entonces se obtiene una ecuación diferencial lineal de segundo orden y el péndulo oscila con movimiento armónico simple alrededor de la posición de equilibrio (\(\theta = 0 \)). En esta situación el período es independiente de la amplitud de las oscilaciones \(\theta_0 \) y su valor es:

\[T_0 = 2\pi \sqrt{\frac{l}{g}} \]

(9)

Para grandes oscilaciones la ecuación diferencial (7) puede resolverse en términos de integrales elípticas y la expresión exacta para el período toma la forma [5]:

\[T = 4\sqrt{\frac{l}{g}} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1-q^2\sin^2\phi}} \]

(10)

donde \(q = \sin(\theta_0/2) \). El integrando de la ecuación (10) puede desarrollarse en serie e integrarse término a término dando lugar a una expresión para el período que, para valores pequeños de la amplitud \(\theta_0 \), puede encontrarse en la mayor
parte de los textos de Física de primer curso universitario [4]:

\[T = 2\pi \sqrt{\frac{1}{g}} \left(1 + \frac{1}{16} \theta_0^2 + ... \right) \]

(11)

Por analogía con la ecuación (10) el valor exacto de la longitud de la barra también podría expresarse fácilmente en términos de una integral elíptica como:

\[L = \sqrt{\frac{EI}{F}} \int_0^{\pi/2} \frac{d\phi}{\sqrt{1 - q^2 \sin^2 \phi}} \]

(12)

donde ahora \(q = \sin(\phi_0/2) \). Su valor aproximado para pequeñas pendientes vendría dado por una ecuación similar a la ecuación (11) y sería:

![Figura 2. Diversas aproximaciones lineales de la función \(\sin \phi \) para \(\phi_0 = 1.8 \) rad.](image)

\[L = \frac{\pi}{2} \sqrt{\frac{EI}{F}} \left(1 + \frac{1}{16} \phi_0^2 + ... \right) \]

(13)

ya que es fácil comprobar que el papel de \(EI/F \) en el pafdeo de la barra lo juega \(1/g \) en el caso del péndulo, mientras que la longitud de la barra \(L \) juega el papel de \(T/4 \) (ver ecuaciones (6) y (8) y Tabla 1). De todas formas, existe una diferencia importante entre las ecuaciones (11) y (13). Mientras que en el caso del péndulo simple la amplitud \(\theta_0 \) es un dato y el período \(T \) es una incógnita, en el caso del pafdeo de la barra delgada el ángulo en el extremo libre \(\phi_0 \) es la incógnita, mientras que la longitud de la barra \(L \) es conocida.

3. Linealización del problema del pafdeo de una barra

Consideraremos de nuevo la barra delgada de la Figura 1 y la ecuación diferencial no lineal de segundo orden (5) que vamos a linealizar. Una primera aproximación podría ser la sustitución de \(\sin \phi \) por \(\phi \) (recta (a) de la Figura 2), es decir, considerar:

\[\sin \phi = \phi \]

(14)

Sin embargo, esta sustitución sólo es correcta para ángulos pequeños. Una segunda aproximación podría consistir en la sustitución del término \(\sin \phi \) de la ecuación (5) por una función de la forma \(f(\phi_0)/\phi \) [6], donde \(f(\phi_0) \) depende del ángulo \(\phi_0 \) del extremo libre de la barra. El factor \(f(\phi_0) \) tendría que ser la unidad para pequeños valores del ángulo \(\phi_0 \) (pequeñas pendientes de la curva elástica), mientras que para ángulos \(\phi_0 \) cercanos a \(\pi \) este término debe anularse. Una posibilidad sería sustituir la función \(\sin \phi \) por una recta que pase por el origen y por el punto de coordenadas \((\phi_0, \sin \phi_0) \) como es la recta (b) de la Figura 2, es decir:

\[\sin \phi = \frac{\sin \phi_0}{\phi_0} \phi \]

(15)

Otra posibilidad es elegir una recta comprendida entre las dos anteriores (recta (c) de la Figura 2) y realizar la aproximación:

\[\sin \phi = \left(\frac{\sin \phi_0}{\phi_0} \right)^n \phi \]

(16)

donde \(n \) es un número entre 0 y 1 que habría que elegir convenientemente. Es fácil comprobar como las aproximaciones de las ecuaciones (14) y (15) se deducen de la ecuación (16) en los casos \(n = 0 \) y \(n = 1 \), respectivamente. Teniendo en cuenta la ecuación (16), es posible linealizar la ecuación (5) en la forma:

\[\frac{d^2 \phi}{ds^2} + \frac{F}{EI} \left(\frac{\sin \phi_0}{\phi_0} \right)^n \phi = 0 \]

(17)

Por lo que hemos convertido el problema no lineal del pafdeo de una barra delgada en un problema lineal, siendo necesario analizar el rango de validez de dicha aproximación. La ecuación (17) puede integrarse fácilmente y, considerando las condiciones de contorno (6), se obtiene:

\[\varphi(s) = \frac{\phi_0}{\rho_0} \frac{\sen \varphi s}{\sen \omega L} \]

(18)

donde \(\omega \) viene dado por la expresión:

\[\omega^2 = \frac{F}{EI} \left(\frac{\sin \phi_0}{\phi_0} \right)^n \]

(19)

Además, la condición \(\varphi'(L) = 0 \), implica que \(\cos \omega L = 0 \), lo cual significa que \(\omega \) tiene que tomar el valor \(\omega = \pi/2L \), y de la ecuación (19) se deduce la relación:

\[L = \frac{\pi}{2} \sqrt{\frac{EI}{F}} \left(\frac{\phi_0}{\sen \phi_0} \right)^{n/2} \]

(20)

Utilizando la ecuación (20) es posible determinar el valor del ángulo \(\phi_0 \) en el extremo libre de la barra en función de
los parámetros conocidos del problema E, I, L y F. Comparando las ecuaciones (13) y (20) en el caso de pendientes φ_0 pequeñas podemos encontrar el valor de n óptimo. Para ello desarrollamos en serie sen φ_0 en la ecuación (20):

$$L \approx \frac{\pi}{2} \sqrt{\frac{EI}{F}} \left(\frac{\varphi_0}{\varphi_0^3/6} \right)^{1/2} = \frac{\pi}{2} \sqrt{\frac{EI}{F}} \left(1 + \frac{n}{12} \varphi_0^2 + ... \right)$$

(21)

y comparando las ecuaciones (13) y (21) vemos que $n = 3/4$, por lo que la ecuación (20) puede escribirse en la forma:

$$L = \frac{\pi}{2} \sqrt{\frac{EI}{F}} \left(\frac{\varphi_0}{\text{sen}\varphi_0} \right)^{3/8}$$

(22)

que permite escribir la siguiente ecuación trascendente cuya solución proporciona el valor del ángulo φ_0 del extremo libre de la barra:

$$\text{sen}\varphi_0 - \left(\frac{\pi^2 EI}{4FL^2} \right)^{4/3} \varphi_0 = 0$$

(23)

En la Figura 3 se han representado las ecuaciones (14) y (16) con $n = 3/4$, junto a la función sen φ, para distintos valores de φ_0.
Utilizando la definición de la fuerza crítica de Euler para este tipo de barra (para calcularla basta tomar \(\varphi_0 = 0 \), por ejemplo en la ecuación (13)):

\[
F_{cr} = \frac{\pi^2 E I}{4L^2}
\]

la ecuación (23) puede escribirse:

\[
\sin \varphi_0 - \left(\frac{F_{cr}}{F} \right)^{4/3} \varphi_0 = 0
\]

Por otra parte, las coordenadas cartesianas \((x, y)\) de los puntos de la elástica de la barra pueden obtenerse mediante las integrales:

\[
x = \int_0^s \sin \varphi(s) \, ds
\]

\[
y = \int_0^s \cos \varphi(s) \, ds
\]

y para calcular las coordenadas cartesianas \((x, y)\) del extremo libre de la barra basta considerar \(s = L \) en las ecuaciones (26) y (27).

5. Resultados experimentales

Como ejemplo experimental vamos a considerar como barra delgada una regla de acero como la de la Figura 9. La longitud de la regla es \(L = 30 \) cm y tiene una sección rectangular constante de base \(b = 3.04 \) cm y altura \(h = 0.078 \) cm. El momento de inercia de la sección vale \(I = bh^3/12 = 1.20 \times 10^{-2} \) m\(^4\) y el peso de la barra es \(W = 0.554 \) N. En un trabajo anterior publicado en esta revista [7] se analizó experimentalmente la flexión de esta barra cuando estaba empotrada en

Tabla 2. Valores exactos, aproximados y errores relativos de \(\varphi_0 \), \(\delta_x/L \) y \(\delta_y/L \) para \(F/F_{cr} = 1.0633 \).

<table>
<thead>
<tr>
<th>(\varphi_0)</th>
<th>Exacto</th>
<th>Aproximación Lineal</th>
<th>Error relativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_x/L)</td>
<td>0.422</td>
<td>0.418</td>
<td>0.95%</td>
</tr>
<tr>
<td>(\delta_y/L)</td>
<td>0.119</td>
<td>0.117</td>
<td>1.68%</td>
</tr>
</tbody>
</table>

Figura 8. Elástica obtenida mediante la aproximación lineal con \(n = 3/4 \) para el caso \(F/F_{cr} = 1.0633 \).
un extremo y se aplicaba una fuerza puntual en el extremo libre, obteniendo para nuestro módulo de Young el valor $E = 200$ GPa, lo que implica que su rigidez es $EI = 0.240$ Nm². Como en la referencia 7, la regla es empotrada con ayuda de una doble nuez en el otro extremo. Mediante dos láminas metálicas colocadas una a un lado y otra al otro de la regla, en el empotramiento, se ajusta la longitud de la regla en la doble nuez.

Utilizando la ecuación (24) la fuerza crítica para esta barra es $F_{cr} = 6.580$ N, bastante mayor que el peso propio $W = 0.554$ N. Se han considerado seis fuerzas externas F entre 7.448 N y 8.624 N y se han medido experimentalmente los desplazamientos horizontal, x_p, y vertical, y_p, del extremo libre de la barra con ayuda de dos reglas perpendiculares, una horizontal para determinar x_p y otra vertical para obtener y_p. En la Figura 10 se muestran los resultados obtenidos junto con los calculated hijos haciendo uso de la aproximación lineal considerando $EI = 0.240$ Nm². Como puede verse, la coincidencia entre los resultados teóricos y las medidas experimentales es buena, y prácticamente ambos coinciden para valores de la fuerza aplicada $F/F_{cr} < 1.2$, es decir, para ángulos del extremo libre de la barra $\phi_0 < 70^\circ$.

6. Conclusiones

Se ha analizado el pondeo de una barra delgada empotrada en un extremo y con una fuerza puntual aplicada en el extremo libre. Se ha presentado la ecuación diferencial no lineal de segundo orden de la elástica de la barra, probándose que es análoga a la del movimiento de un péndulo simple. Se ha linealizado esta ecuación diferencial utili-