
applied
sciences

Article

Framework for Fast Experimental Testing of
Autonomous Navigation Algorithms

Miguel Á. Muñoz–Bañón *,† , Iván del Pino † , Francisco A. Candelas and Fernando Torres

Group of Automation, Robotics and Computer Vision (AUROVA), University of Alicante,
San Vicente del Raspeig S/N, 03690 Alicante, Spain; ivan.delpino@ua.es (I.d.P.);
francisco.candelas@ua.es (F.A.C.); fernando.torres@ua.es (F.T.)
* Correspondence: miguelangel.munoz@ua.es
† These authors contributed equally to this work.

Received: 12 April 2019; Accepted: 10 May 2019; Published: 15 May 2019
����������
�������

Abstract: Research in mobile robotics requires fully operative autonomous systems to test and
compare algorithms in real-world conditions. However, the implementation of such systems
remains to be a highly time-consuming process. In this work, we present an robot operating
system (ROS)-based navigation framework that allows the generation of new autonomous navigation
applications in a fast and simple way. Our framework provides a powerful basic structure based
on abstraction levels that ease the implementation of minimal solutions with all the functionalities
required to implement a whole autonomous system. This approach helps to keep the focus in any
sub-problem of interest (i.g. localization or control) while permitting to carry out experimental tests in
the context of a complete application. To show the validity of the proposed framework we implement
an autonomous navigation system for a ground robot using a localization module that fuses global
navigation satellite system (GNSS) positioning and Monte Carlo localization by means of a Kalman
filter. Experimental tests are performed in two different outdoor environments, over more than
twenty kilometers. All the developed software is available in a GitHub repository.

Keywords: autonomous navigation; mobile robots; Monte Carlo localization; SLAM; GNSS; planning;
control; Kalman filter

1. Introduction

Autonomous navigation is currently one of the more important topics in robotics since robots
capable of moving freely in their environments can produce a large number of new applications in
many fields, like logistics [1], agriculture [2] or passenger transport [3]. There are researches covering
this topic since the nineteen-seventies [4], so it is a mature field with lots of published algorithms
and available tools. In addition, recent advances like the emergence of deep learning are providing
researchers with very advanced scene understanding algorithms [5,6]. However, real applications in
real conditions—especially in outdoor environments—remain to be a challenge [7].

The usual architecture of an autonomous navigation system—whether it be terrestrial, marine
or aerial—relies on the use of several dedicated subsystems, that solve different required tasks like
localization [8,9], mapping, path-planning, and control, among others [10–12]. Each one of these
tasks belongs to different research topics making mobile robotics an extremely interdisciplinary
field [13]. One approach to cope with this complexity is to study the different subsystems separately,
what simplifies—and reduces the costs of—the experimental processes. For instance, localization
algorithms can be developed making use of public datasets [14], and researchers in control can
take advantage of robotic simulators to develop their algorithms [15]. However, these approaches
are not sufficient to make a comprehensive evaluation of the developed algorithms, because real

Appl. Sci. 2019, 9, 1997; doi:10.3390/app9101997 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3220-2286
https://orcid.org/0000-0003-0516-7443
http://www.mdpi.com/2076-3417/9/10/1997?type=check_update&version=1
http://dx.doi.org/10.3390/app9101997
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 1997 2 of 23

systems present interactions—and even feedbacks—between their different modules whose effects
can only be observed when the whole system is implemented and tested in real-world conditions [16].
Only extensive experimental tests spanning different conditions and environments can bring enough
information for a comprehensive system evaluation. Moreover, these kinds of tests are extremely
useful to guide the development processes in a robust and productive way. In the present paper, we
introduce a robotic operating system (ROS)-based navigation framework that provides a powerful
basic structure based on abstraction levels. This framework is designed to generate minimal but
complete autonomous navigation solutions, thus speeding-up the implementation processes required
to obtain a full system suitable for experimental testing. This approach permits to save efforts and
to keep the focus in concrete research problems, without the drawbacks of simulators and datasets.
To show that our framework can be an excellent tool to test and compare different algorithms, we
first implement a fully operative autonomous navigation system and then we show how easy results
to modify it. Concretely, we change its initial 2D simultaneous localization and mapping (SLAM)
localization module by a new one that implements a loosely coupled architecture integrating global
navigation satellite system GNSS information and 2D SLAM by means of a Kalman filter. Thanks to
this GNSS fusion approach our ground vehicle is able to navigate autonomously in the University of
Alicante campus, going in and out from the mapped area. This mixed on-map/off-map navigation
is straightforward using our framework, but it would have been very hard to implement using the
existing alternatives, as explained later. The system has been evaluated through three experimental
sessions, in two different environments, with two different localization algorithms, accumulating more
than twenty kilometers of navigation in real-world conditions. Summarizing, our contributions are the
following (All the software described in this paper is publicly available and can be found in a GitHub
repository https://github.com/AUROVA-LAB/aurova_framework.):

• A generic navigation framework. We propose a conceptual structure for navigation problems that
permits to implement complete autonomous navigation systems in a fast and easy way (although
demonstrated in a ground vehicle, these implementations can be tailored to different kind of
robots, whether it be terrestrial, marine or aerial). This framework permits us to easily arrange
the system complexity, enabling researchers to focus on their topics of interest while generating
minimal but complete applications suitable for real-world experimental testing. This feature
improves the research productivity and is a direct consequence of the proposed architecture.

• A Kalman filter (KF)-based 2D SLAM and GNSS fusion module. To demonstrate how easy is to
replace any module using the proposed framework, we developed a new localization module
that became a contribution itself. This module is based on a Kalman filter that fuses the poses
generated by two complementary localization sources as 2D SLAM and GNSS are. This module
permits to recover the SLAM localization after exploring unmapped areas, so mixed navigation
on-map/off-map can be performed.

• A set of tools for basic system implementation. In addition to the conceptual framework,
we provide a set of tools that brings the basic functionalities required to implement a fully
operative terrestrial autonomous navigation system. It comprises planning, car-like control,
and reactive safety modules.

The rest of this paper is organized as follows: in Section 2, we describe some related works focusing
on general frameworks for developing autonomous navigation systems. In Section 3, we explain
the requirements and the design decisions to fulfill them, giving a conceptual architecture for our
framework. Then, in Section 4, we explain the basic implementation and its features, from perception
to control. Section 5 is devoted to explaining the second particularization of our framework, which
implements a fusion of GNSS and Monte Carlo localization by means of a Kalman filter. In Section 6,
the different experimental sessions are described and discussed, including real autonomous navigation
in two different challenging outdoor environments. Finally, in Section 7, we give conclusions and
future works.

https://github.com/AUROVA-LAB/aurova_framework

Appl. Sci. 2019, 9, 1997 3 of 23

2. Related Work

Due to the complexity of autonomous navigation systems, each work presenting a complete
application has—in one way or another—implemented its own system architecture and navigation
framework. Early examples of papers describing a complete system able to navigate outdoors in large
environments are found in the eighties, like in [17,18] where Carnegie Mellon researchers developed
a system to navigate autonomously through a network of sidewalks and intersections in the CMU
campus. More recently, the two editions of the DARPA grand challenge [19] and the DARPA urban
challenge [20] boosted the development of autonomous cars, producing a great number of contributions
to the field and several papers describing the architectures and designs developed by the participant
teams [11,21,22]. Observing these works, one can find that the different architectures share some
features—like parallel processes, communications, tasks, etc.—which could be reusable between them,
and that was one of the major reasons that motivated the creation of ROS [23]. The ROS navigation stack
is the most widely spread and well-known framework to develop autonomous navigation applications.
The navigation stack provides a great number of useful tools but has some limitations [24]: it is
designed to operate only with differential drive and holonomic robots, it assumes that the robot can be
controlled by means of a twist message indicating x, y and theta velocities, it needs a planar laser for
localization and mapping and it performs best with nearly square or circular robots. There exist some
workarounds like plug-ins to use it with car-like robots [25] and data conversions that can help to
incorporate other sensors like the well-known Kinect depth camera [24], however the tightly coupled
architecture of the navigation stack results rigid in operation [26]. In contrast, we adopt—as it will
be later explained with detail—a clear architecture based on abstraction levels that makes easy to
keep the system modular and scalable, so any module can be replaced without affecting the rest of
the system. Looking at other recent literature, one can find some complete applications like [27–29],
but these works aim to solve specific problems and are not designed for general purpose. Some efforts
in producing more general frameworks for different levels of autonomous system development can
also be found, ranging from very high-level project management and agile software development
like in [30] to intermediate and low levels, like local trajectory planning and obstacle avoidance in
car-like robots [31–33]. However, frameworks aiming to produce a fully operative “template system”
to develop and test autonomous navigation algorithms are less common. In [12] a framework for fast
designing and prototyping of autonomous multi-robot systems for unmanned aerial vehicles (UAV)
is presented. This work shares several aspects with our approach, but it is focused exclusively on
aerial multi-agent systems. A whole system architecture for autonomous surface vehicles (ASV) can be
found in [34], while in [35] a generic framework is presented as an alternative to the navigation stack,
but it focuses in planning and control of wheeled robots with different kinematic constraints rather
than covering the whole navigation problem.

3. Framework Design

Our research group is currently working on developing localization algorithms for mobile
robots. More specifically we are interested in the integration of GNSS information in graph SLAM
algorithms. On the other hand, we would like to test these algorithms in the context of a complete
autonomous application to study how the localization influences the system performance and to be able
of conducting such experiments in the widest possible variety of environments. With this purpose, we
first tried to implement an autonomous navigation system using the well-known ROS navigation stack.
Nevertheless, we found that the tools provided by this stack were too much geared towards the use of
two-dimensional grid maps, which makes difficult the integration of alternative localization algorithms
as can be seen in [36]. For this reason, we designed an alternative framework that—among other
interesting features—provides enough flexibility to integrate localization algorithms of different nature
in an easy and convenient way. In advance of what will be discussed in this section, we summarize
here the main advantages that our final framework design brings with respect to navigation stack:

Appl. Sci. 2019, 9, 1997 4 of 23

1. Our planning is independent of the environment representation. In the navigation stack, global
planning depends on a grid map, making it difficult to use alternative representations of the
environment. On the contrary, following our approach any planning module must be independent
of the environment representation, as can be seen in Figure 1. This favors modularity and
eliminates conversions and other undesired extra processes required to integrate alternative
environment representations with the navigation stack. An example of this can be found
in [36], where the authors explain the integration of a graph-based visual SLAM system with
the navigation stack planning and control modules. The authors report that they had to create a
grid map from their native graph representation and that this extra process introduced additional
problems that even forced to discard two of the three scenarios for the path-planning experiments
carried out for the paper.

2. Every ROS node belongs to a single module. The navigation stack does not follow this rule,
which makes difficult the substitution of certain components. For example, the move_base node
fuses planning and control, which makes it rigid in its operation [26]. In contrast, replacing
modules in our framework is as easy as changing a single line in the ROS launch file. This makes
the produced systems flexible and easy to adapt to different specifications (e.g., different robot
kinematics, highlighted as a ROS navigation stack limitation in [24,35]) because only the related
nodes need to be modified or substituted.

3. Our framework follows a clear conceptual structure. In [37] we see an example of how developing
a complex system using the navigation stack can lead to an intricate architecture. On the contrary,
we follow a conceptual structure based on abstraction levels to make the applications clear,
organized and scalable. Moreover, a neat division in conceptually different sub-problems makes
easier to keep the research focus on the topics of interest without giving up the advantages that
a complete system in real-world operation provides for experimental testing, as happens when
using datasets or simulators.

Exteroceptive
1

Propioceptive
1

Propioceptive
n

Odometry

SLAM or
Localization

GRAPH OF
POSSIBLE
TRAJECTORIES
(Optional)

REPRESENTATION
OF THE
ENVIROMENT
(Optional)

Sensors
Layer

Preprocessed
Layer

Perception
Layer

Exteroceptive
n

Planning

Control

Interface to
motors

Task
management

Planning
Layer

Control
Layer

Actuators
Layer... ...

Feature
extractor

Task
Layer

Figure 1. Proposed framework design. Each node represents a software module, and each solid line
represents a communication channel between modules. The dashed lines represent optional channels
that might connect the localization module with a map of the environment and the planning module
with a map of trajectories. The existence of these optional channels depends on the concrete localization
and planning algorithms used. The different modules are organized in abstraction layers (sensors,
preprocessed...) as well as in conceptual blocks denoted by colours: perception (blue nodes), motion
(green nodes) and high-level (white nodes).

Appl. Sci. 2019, 9, 1997 5 of 23

Next, we describe the design process, starting with the requirement analysis focused on obtaining
a framework flexible enough to allow fast and easy experimentation in different environments
with different robots. Then, we describe the proposed design solution taking into account the
specified requirements.

3.1. Framework Requirements

The key to developing a generic framework for mobile robotics is to identify precisely which parts
of the software are common to different applications and design neat interfaces that permit sufficient
modularity without adding unnecessary complexity to the system design. Therefore our framework
requires the formalization of different software modules with standardized inputs and outputs to ease
the test and comparison of different algorithms. Any algorithm change in any of its modules must be
carried out in a simple way, requiring minimal changes in the rest of the system. Moreover, in order
to be useful in the long term, we need to keep the framework as independent of the robot and the
environment as possible.

3.2. Proposed Approach

As mentioned above, in mobile robotics applications we can distinguish different abstraction
levels common to all of them. One of the requirements to develop the proposed framework is to
define these abstraction levels and the software modules that are part of each one, as well as their
communication channels. As shown in Figure 1, layers below task level are split in two halves to
separate perception from control, resulting in three areas: perception (blue nodes), motion (green
nodes) and high-level (white nodes). The links shown in the Figure 1 can be modified depending on
the inputs/outputs of each particular node.

3.2.1. Perception

The lowest level we define in perception is the sensor layer. Software modules belonging to
this abstraction layer are drivers to decode the information captured by the sensors. We divide the
sensors into two types: exteroceptive and proprioceptive. Exteroceptive sensors are those that provide
environment perception, while proprioceptive ones are those that give the information to generate
the odometry. In the next perception level, we define the preprocessing layer in which we place the
necessary modules to extract the information from the different sensors, implementing data fusion
algorithms if required. Then, we define the highest abstraction level in the perception area to place the
localization or SLAM module. Depending on the localization system we are using, the output pose
of this module can be expressed with respect to different frames (local, tracked object, map or global
coordinates). This localization module is designed to receive their inputs in a ROS standard format
making transparent the lower layers, so there is no difference if the data comes from the sensor layer
or preprocessing one. In this level, there might also be modules for scene understanding or to detect
obstacles and moving objects.

3.2.2. Motion

At the highest level of motion, we define the planning layer. In this level we can integrate different
software modules, that will be selected depending on the task we want to perform. Some task examples
could be reaching a global goal within an environment or following a moving target, such as a vehicle
or a pedestrian. For these two examples, we would need two different planners. Planner selection
comes from the high-level area of the system. We also receive the robot location from the perception
layer and the information obtained through the scene understanding. The intermediate level in motion
is the local control. Controllers integrated into this level receive local goals from the upper layer,
as well as the robot pose. The lower layer in the motion area is the actuators layer, where the software
modules are drivers for communication with the robot motors.

Appl. Sci. 2019, 9, 1997 6 of 23

3.2.3. High Level

At the highest level, we define the task management module. A task gets completely defined by a
specific combination of modules. Therefore the task manager is in charge of deciding which modules
of the lower layers will be executed. This module can also serve as a high-level interface with the agent
(the user) or other robots, allowing to develop collaborative robotics applications, which is a relevant
topic [38]. This last feature covers one of the limitations of the navigation stack described in [26].

4. Initial Framework Implementation

In this section we describe the basic implementation of the proposed architecture using the
abstraction levels described above (Figures 2 and 3). We can use this basic structure of nodes and topics
as a starting point to create more sophisticated applications easily and quickly, simply by replacing
the desired modules. The creation of a real-world autonomous navigation application using our
framework consists of two phases: pre-execution and execution. In the first one, we gather the data to
generate the environment information that we will need during the execution phase.

Of course, an equivalent system could have been generated using just the navigation stack since
in this first example we based the localization in a grid map. But our framework adds conceptual
structuring and better modularity. That is to say, in this implementation the only module depending
on the grid map is the localization. Therefore replacing this module would not affect the rest of the
system (as can be seen in Section 5) contrary to what happens with the navigation stack where the
planning needs a grid map to generate trajectories.

Velodyne IMU
Ackermann
(speed/steering)

Odometry

SLAM
Gmapping

TOPOLOGICAL-
METRIC
TRAJECTORIES
MAP

GRID MAP

Sensors
Layer

Preprocessed
Layer

Perception
Layer

Figure 2. Robot operating system (ROS) nodes scheme that shows the system architecture in the
pre-execution phase for our first framework implementation. Notice that each node is placed at its
corresponding abstraction level. In this phase we record data from the sensors layer and process them
offline using the architecture shown to obtain the grid map and trajectories that will be used in the
execution phase.

4.1. Pre-Execution Phase

In Figure 2 we show the pre-execution phase where we generate a grid map of the area in which
we want to run the application. Using the localization estimated through the SLAM node we can save
the trajectories traveled by the vehicle in order to reproduce them during the execution phase. In this

Appl. Sci. 2019, 9, 1997 7 of 23

case, we use a GMapping node [39] but it could be replaced by any other SLAM algorithm—if we
want to have an environment representation—or even by any localization algorithm (including GNSS)
if we do not need a map.

4.2. Execution Phase

Figure 3 shows the architecture proposed as a closed-loop application for testing software modules
in autonomous navigation. In the left part of the diagram, we show the different abstraction levels
in perception, from the sensor layer to the localization module. This localization module could be
replaced for any another, either SLAM-based or GNSS-based. This feature is useful to compare, in the
same environment, the localization algorithms under development with well-known state-of-the-art
algorithms. In the basic configuration, our localization module consists of a Monte Carlo localization
(AMCL) algorithm. On the right side of the diagram, we show the different abstraction levels in the
action domain, from high-level planning to the actuators layer. This is the closed-loop part where we
can observe how localization affects planning and control. In the upper part of the scheme, we show
a node that will serve as a high-level interface with the external agent. Using this interface we can
visualize the position of the robot in the map and we can act on the system by sending global goals.

Below we describe the most important modules of our application in perception and motion.
We also dedicate the last subsection to describe the reactive safety system implemented to
avoid collisions.

Velodyne IMU
Ackermann
(speed/steering)

Odometry

AMCL

TOPOLOGICAL-
METRIC
TRAJECTORIES
MAP

GRID MAP

Sensors
Layer

Preprocessed
Layer

Perception
Layer

Planning

Control

Motors

High Level
interface

Planning
Layer

Control
Layer

Actuators
Layer

Task
Layer

Figure 3. ROS nodes scheme that shows the system architecture in the execution phase for our first
framework implementation. Notice that each node is placed at its corresponding abstraction level.
The execution is now online because it is a closed loop application that acts on the environment through
the control node. For both localization and planning, we will use the files generated in the previous
phase shown in Figure 2.

4.2.1. Localization Module: AMCL

In the basic configuration of our system, once we have a grid map obtained using GMapping
(Figure 2), we need an algorithm to locate the robot inside it. We rely on the well-known AMCL.
This algorithm is based on the method described in [40] and is part of the ROS navigation stack [24].
AMCL is based on the Monte Carlo approximation applied sequentially, which in the literature is
called a particle filter. This method uses the sensor model described in the section beam models of
range finders in [40]. It also uses the action model described in the odometry motion model section
in [40]. In order to adjust the AMCL parameters, we must follow the processes described in the given
references. In Section 6.2 we show the parameters obtained through these processes. This module

Appl. Sci. 2019, 9, 1997 8 of 23

accepts as inputs the odometry of the robot, and laser scans from a light detection and ranging (LiDAR)
sensor, in our case a Velodyne VLP-16. These inputs are standard ROS messages, which eases the
process of using different LiDAR sensors or even robots with different odometers. The output of this
module is also a standard ROS pose message containing pose and covariance information. These
covariances will play an important role in the new localization module described in Section 5, where
the AMCL estimation will be fused with GNSS information by using a Kalman filter. Thanks to this
structure of inputs and outputs we can replace this localization node without affecting the rest of
the architecture.

4.2.2. Planning

At the top level of the motion part of the system, we defined the planning module. At first,
we assessed the possibility of implementing the planner available in the navigation stack of ROS.
Finally, we discarded this possibility due to the lack of versatility of this system in terms of the
localization algorithms that can be used, since the planners of this stack are based solely on grid maps
to obtain the trajectories. The interest of our research group is focused on the localization of robots,
and we plan to use other ways to represent the environment apart from grid maps, or even transit
through unmapped areas (Section 5). For this reason, we decided to develop our own system: a simple
and functional planner that is more easily adaptable to any localization algorithm.

For the developed planning module, we use a topological-metric map that contains all the
possible trajectories required by the target application that we want to generate using our framework.
This trajectory map is generated in the pre-execution phase as shown in Figure 2. We represent these
trajectories by means of a graph in which each node represents an intersection, and each link represents
the path between the intersections. Each node contains information of its location in map coordinates,
and each link contains equidistant points also expressed in map coordinates. This metric information
is obtained in pre-execution by recording the trajectories during manual driving, next sub-sampling
them, and finally assigning each point to the node or link to which it belongs. In Figure 4 we can see
an example of a graph that expresses in a topological way all the possible trajectories for a certain
environment and application. The inputs to this module are the graph described above, the position
obtained through AMCL (or an alternative localization module), and the global goal received from
the high-level interface. With this data, the module generates as output the combination of nodes and
links that describes the shortest path to the global goal within the graph. This path is composed of the
points expressed in map coordinates that are sent sequentially to the low-level control as local goals.
This planner assures that the robot circulates always through traversable areas.

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Link 1-2

Link 2-4

Link 1-3

Link 5-2

Link 4-6

Link 6-5 Link 7-8

Figure 4. Example of a trajectories graph expressed abstractly as a topological map. This map also
includes the metric information. Each node represents the location of roads intersections, and each link
contains a series of points in 2D Cartesian coordinates that will serve as local goals to the controller.
This graph is obtained as shown in Figure 2, and used in execution as shown in Figure 3.

Appl. Sci. 2019, 9, 1997 9 of 23

4.2.3. Control

At the level below the planning, we find the local control level of the vehicle. In this case, we also
developed a basic and functional controller designed for low-speed vehicles—in the case of our robot
roughly 1.3 m/s of maximum speed. The developed controller is designed for Ackermann vehicles,
but given the versatility of the framework, it would be easy to integrate a new controller for vehicles
with different kinematic constraints.

The aim of local control is to reach a local goal. Once it is reached, this module warns the upper
level (planning) requesting a new local goal. The controller tracks the straight line that joins two
consecutive goals (Figure 5, left). These lines can be generated with only one point since the orientation
is specified in the ROS pose message used to communicate the goals. The controller is proportional to
the error signals in distance and angle with respect to the line. Error signal in distance ed is obtained
as the distance between the vehicle base link and the nearest point in the goal straight line (green
in Figure 5, right). Error signal in angle eα is obtained as the angle between the goal line (green in
Figure 5, right) and the orientation vehicle line (red in Figure 5, right). The control action consists of
two variables: steering angle (u), and speed (v). On the one hand, we compute the desired steering
angle u as (Figure 6):

u = edkd + eαkα, (1)

where ed and eα are the errors in distance and orientation respectively, and where kd and kα are
constants adjusted experimentally for each vehicle in which the framework is implemented. On the
other hand, the ed error is saturated so that |u| does not exceed the maximum possible value umax.
This saturation is required because the linear speed applied as a part of a control action is calculated as
a function of the steering as:

v = vmax − |u|kv, (2)

where kv = vmax − vmin/umax, vmax, and vmin, are the maximum and minimum velocities configurable
as parameters. Note that if |u| > umax, the resulting speed would be less than vmin. For this reason we
saturated the ed error signal shown in (1). Figure 6 shows the block diagram of the described controller
for steering variable.

Figure 5. (left) Representation of local goals on the road. Each local goal is expressed as a point (x, y, θ).
With this information, we can generate a line (in green) with an orientation θ that crosses the point
(x, y) (in red). (right) Error signal in distance d is obtained as the distance between the vehicle base
link and the nearest point in the goal straight line (green). The error signal in angle a is obtained as the
angle between the goal line (green) and the orientation vehicle line (red).

Appl. Sci. 2019, 9, 1997 10 of 23

k1
k2

SYSTEM

u α map

P map

α goal

P goal

+

-

+

+

-

+

Figure 6. Block diagram that shows the proportional controller described in (1). The set-point is the
position and orientation of the point closest to the line shown in Figure 5, left. The error signals are
obtained depending on the position and orientation of the vehicle (Figure 5, right). Both, the set-point
and the vehicle pose are expressed in map coordinates. The control signal u is the steering value
expressed in degrees, that we send to the low-level control module of our vehicle.

4.2.4. Safety

Between the levels of sensors and preprocessing in perception, and between the levels of control
and actuators in motion, we implement a reactive hidden layer for safety reasons. In the perception
part, we designed a module that given the LiDAR point-clouds and the steering angle returns the
distance to the closest point of the closest reachable obstacle. Based on this distance and a safety
margin, we calculate the maximum safe speed that is defined as the one required to reach the minimum
distance allowed to the obstacle in a safety period of seconds (user configurable). As the vehicle gets
progressively closer to the object the speed is reduced due to the fact that the safety period is constant.
Finally, when the minimum distance is reached the safety speed is just zero. In the motion part,
we implement a speed recommender that reads the speed contained in the control action and the
maximum speed calculated by the obstacle detector sending the lowest of them to the actuators. Thus,
if the vehicle finds an obstacle along its trajectory it will stop at a defined safety distance and it will
wait until the obstacle gets away from the robot. If there are no close obstacles the vehicle will recover
its original speed.

5. New Localization Module: GNSS/SLAM Fusion

One of the research lines that our group wants to develop in the future is the fusion of SLAM
algorithms with GNSS-based systems. The motivation for this fusion is the complementarity of both
localization systems since SLAM algorithms need relatively close landmarks to extract positional
information—which can cause occlusions and multi-path problems to GNSS positioning—while GNSS
systems work better in clear areas that are challenging for SLAM algorithms because of landmark
scarcity. As a starting point for our future research and in order to demonstrate the versatility of our
framework, we developed a new localization system based on GNSS/SLAM fusion. Figure 7 shows
the ROS nodes scheme of our new localization module, and Figure 8 details its connection with the
rest of the system. In our solution, we fuse the positions obtained by the two systems using a Kalman
filter in which these positions will be considered asynchronous observations and the odometry is used
as a control signal in the prediction phase of the filter. This module allows off-map localization, so it
would be difficult to integrate it with the navigation stack but its integration is straightforward using
our framework. We next describe each subsystem shown in Figure 7.

Appl. Sci. 2019, 9, 1997 11 of 23

AMCL

odometry
GPS

Kalman
Filter

navsat

/pose

/odometry

/gps_pose

/acml_pose

/velodyne

gnss/fix

gnss/fix_velocity

/odometry

Figure 7. ROS nodes scheme that shows the combination of subsystems that make up the new
localization module that will be tested using our framework. This scheme corresponds to the “global
navigation satellite system (GNSS)-a Monte Carlo localization (AMCL) fusion” node shown in Figure 8.
The “Kalman filter” node uses odometry as a control action, and odometry-GNSS and pose AMCL
as observations.

Velodyne IMU
Ackermann
(speed/steering)

Odometry

GNSS-AMCL
fusion

TOPOLOGICAL-
METRIC
TRAJECTORIES
MAP

GRID MAP

Sensors
Layer

Preprocessed
Layer

Perception
Layer

Planning

Control

Motors

High Level
interface

Planning
Layer

Control
Layer

Actuators
Layer

Task
Layer

GNSS

Figure 8. ROS nodes scheme that shows the second implementation of our framework which
incorporates our novel GNSS fusion localization algorithm. This new implementation has been
completed just substituting the previous localization module and adding the GNSS sensor driver.
We show these modifications with solid fill in the nodes added or replaced with respect to Figure 3.

5.1. AMCL Subsystem

One of these subsystems is AMCL described in the previous section. To properly implement the
fusion, we need to pay attention to the variances that this subsystem provides, associated to each
estimated pose (Section 4.2.1) because they provide information about the confidence of the solution.
This information will be used by the Kalman filter in the correction step, and it also will be useful for
the integrity monitoring system.

5.2. GNSS Subsystem

The GNSS system provides geolocalization in world coordinates (world frame) but to perform
the fusion with the subsystem described above we need to convert the global coordinates to map
coordinates. For this we use the navsat node available in the ROS robot localization package [41]. In the
initialization step, this node receives a position expressed in the frame we want to use as reference—in

Appl. Sci. 2019, 9, 1997 12 of 23

our case the position calculated through AMCL depicted as a green dotted line in Figure 7—and
generates a T transformation between the pose in world frame to the map frame. Then T is applied
to all the measurements made by the GNSS. By using only the navsat node, we could only read the
GNSS fix and generate a 2D position in the map frame, but without orientation. To overcome this issue
we generated a new ROS node called odometry GPS (Figure 7) in which we receive the velocity fix
provided by the GNSS and the position and the T calculated by navsat. The output of this node is the
orientation in the map frame, obtained using the velocity vector (provided by GNSS velocity fix) and
the transform between the global frame and the map frame given by the navsat node.

5.3. Odometry

In a previous work [42], we described a generic module for low-level control of Ackermann type
vehicles, called control logic for easy Ackermann robotization (CLEAR). From this low-level module,
we obtain the linear speed and steering angle of the vehicle. For this first implementation of the
framework, we developed a module to extract the positions and orientations by fusing the information
obtained through CLEAR and an inertial measurement unit (IMU). This module provides as output
the standard ROS message for odometry.

5.4. Kalman Filter

As mentioned above, we decided to use a Kalman filter for the fusion of the two high-level
localization subsystems. This choice is motivated by the fact that we have found a simple linear
model with Gaussian noise that is sufficient to represent our fusion problem, and the Kalman filter
is the optimal solution under these assumptions. It should be noted that the aim of this filter is not
the localization itself, but to fuse sources from complex localization algorithms that provide filtered
information. For this reason, we can simplify the model and avoid the Extended Kalman filter and
its problems derived from linearization. The state vector in this model is a pose vector: x = (x y θ)T .
The state transition equations x← f (xk−1, u, w) are defined as:

xk = xk−1 + ∆ux + wx (3)

yk = yk−1 + ∆uy + wy (4)

θk = θk−1 + ∆uθ + wθ , (5)

where u = (ux uy uθ)
T is the control signal, which in this case is the odometry generated by our

low-level system, being ∆u = uk − uk−1 = (∆ux ∆uy ∆uθ)
T , where w = (wx wy wθ)

T is the system
perturbation noise. As the state is fully observable by the two subsystems described, the observation
equation is defined as:

y = Hxk + v, (6)

where y = (yx yy yθ)
T is the observation vector from the localization subsystems, and where v =

(vx vy vθ)
T is the observations noise. As the observations are of the same nature as the state vector,

the matrix that relates them is an identity matrix H = I3x3. Using this Kalman filter implementation,
we can obtain a high-frequency prediction step which rate is given by the odometry (see (3)–(5)),
while applying the filter correction step only when a new high-level observation becomes available.
In this way, the positioning rate is sufficient for the control loop. We follow the notation used in [40]
where a thorough explanation of Kalman filter equations can be found.

5.5. Integrity Monitoring

The entire information flow between the localization subsystems and the Kalman filter passes
through an integrity monitoring module to avoid possible undesired behaviors. Each time an
observation is generated from any high-level subsystem, we compute the Mahalanobis distance

Appl. Sci. 2019, 9, 1997 13 of 23

between the prediction and the observation to reject outliers. The rejected observations are excluded
from the Kalman filter correction step.

The integrity monitoring module also permits to correct the AMCL subsystem using the Kalman
filter output, as we can see in Figure 7. This recovery procedure is especially useful to leave and
return from/to the mapped area. The monitoring module will allow this correction step in cases where
the AMCL variances exceed a certain threshold. To ensure the localization stability, this correction is
applied only to the state vector of the AMCL, leaving the covariances as they are. This procedure helps
to the convergence of the system when re-entering to a previously mapped area.

6. Experiments

In this section, we give a brief description of the robotic research platform used for the
experimental sessions (Figure 9) and a thorough explanation of the experiments performed to test both
the autonomous navigation application proposed in Section 4 and the localization module proposed in
Section 5. In addition, we justify the choice of the adjustable parameters of the system.

Figure 9. Experimental platform BLUE. This professional research platform—derived from a
conventional electric cart—has been developed by our research group, in the University of Alicante. It
is integrated with ROS and provides all the features required for developing state-of-the-art research in
autonomous outdoor navigation.

6.1. Experimental Platform

To carry out the experimental part of this work, we implemented the solution described in
Section 4 using the robotic research platform BLUE. This robot is derived from a conventional electric
cart and has been developed entirely by our research group, AUROVA. It has been designed to ease
the experimental processes in mobile robotics research [42] and incorporates a powerful low-level
module—also developed by our group—that is called control logic for easy Ackermann robotization
(CLEAR). This module permits to turn conventional Ackermann vehicles into research robots
integrated into ROS [42], and provides—besides other interesting features—a very accurate estimation
of the steering angle and the platform speed even using extremely-low resolution sensors [43].
The robot main hardware components are the following: 3D LiDAR sensor Velodyne VPL16, 2D
LiDAR sensor Hokuyo UBG-04LX-F01, RGBD camera Intel Realsense D435, GNSS real-time kinematic
(RTK) capable Ublox M8P, and IMU sensor CHR-UM7, among others. It also has an onboard computer

Appl. Sci. 2019, 9, 1997 14 of 23

in which sensors and actuators are integrated via ROS. This computer is also used to run the system
implemented following the architecture shown in Figures 2 and 3.

6.2. Settings

In Sections 4 and 5, we commented about different configurable parameters, some that depend
on the robot used to implement the application, and others depending on the selected environment.
In Table 1 we specify the parameters used for the experimental sessions described in this section.
In [44], we can see the large number of default parameters that GMapping uses. We choose to limit the
experimental tunning process to just the three parameters shown in Table 1. However, our tunning
process ended up replicating the default values, so our GMapping configuration is the same as the
standard one. In the case of AMCL we obtained the α parameters from the motion model as described
in [40], leaving the rest of default AMCL parameters [45] unchanged. The planning module has only
one adjustable parameter, which is the distance between local goals (Section 4.2.2). For the control
subsystem, we show the value of the control adjustment constants described in (1) which are obtained
empirically, as well as the maximum and minimum speeds and the maximum steering angle, that were
selected by design, taking into account the physical limitations of the robot. For the Kalman filter based
fusion system, we adjusted the model noise variances empirically and used the variances provided
by the AMCL and the GNSS modules as observation noises. In Section 5.5 we discussed the outlier
rejection process—that depends on a Mahalanobis distance threshold—and the maximum AMCL
variance threshold that activates the recovery process of the Monte Carlo estimator. The adjustment of
these thresholds has been done experimentally, looking to obtain the best qualitative results.

In the rest of this section, we describe and discuss the experiments performed using the
configuration described in Table 1.

Table 1. Adjustable parameters grouped in subsystems. The table shows the values used in the
experimental sessions. Some parameters depend on the robot, as is the case with the parameters α of
AMCL, while others depend on the environment, as the map resolution in GMapping.

Module Parameter Value Units

GMapping Grid resolution 0.05 m
Maximum map dimensions 100 × 100 m

Number of particles 30 none

AMCL α1 1.12 none
α2 0.1 none
α3 1.05 none
α4 0.1 none

Planning Subsampling distance 2.0 m

Control Constant kd 8.0 none
Constant kα 0.5 none

Maximum speed 1.0 m/s
Minimum speed 0.6 m/s

Maximun steering 25.0 deg

Kalman filter Noise model for xy components 0.05 m
Noise model for θ component 0.58 deg

Integrity monitoring Mahalanobis distance threshold 3.0 none
AMCL correction threshold for xy components 3.0 m

AMCL correction threshold for θ component 10 deg

6.3. Initial Framework Experiments

To test the initial framework implementation described in Section 4, we carried out an
experimental session in the surroundings of the University Institute for Computing Research building,
where the secondary laboratory of our research group is located (Figure 10, right). For this experiment,

Appl. Sci. 2019, 9, 1997 15 of 23

we used our framework to create a basic but complete autonomous navigation application able to
navigate indefinitely repeating the same trajectory in the described environment. Following the
procedure detailed in Section 4, the experimental session was divided into two phases: pre-execution,
and execution.

In the pre-execution phase, we recorded a dataset in manual driving making a closed loop around
the building shown in Figure 10, right. Then, offline we ran this dataset in order to generate the inputs
for the architecture shown in Figure 2. As result of this process we obtained a grid map (shown in
Figure 10, left) and a subsampled trajectory as described in Section 4.2.2. Thanks to the use of standard
ROS launch files we can run the whole pre-execution system with just one click. In the online execution
phase, we used the architecture shown in Figure 3 to replicate autonomously the trajectory obtained in
the previous phase, cyclically and indefinitely.

The use of a roslaunch file made the starting process fast and easy. During the experiment,
the system behavior was quite good. The localization was very stable, allowing the robot to complete
the experiment—consisting in five consecutive laps around the building—without interruption.
The system demonstrated a good repetitiveness with very small variations in the trajectories from
lap to lap. The control was smooth and stable along the entire path adapting perfectly to the given
trajectories without suffering any oscillations. This first experiment proved that our framework is able
to produce a real autonomous navigation application quickly and easily, requiring just the execution of
two launch files. As we can see in [24], it would be also possible to perform an equivalent experiment
using the tools provided by the navigation stack and some plug-ins. However, in the following section,
we demonstrate the versatility of our framework by changing the localization system to navigate on
and off-map, which would have not been possible using the navigation stack.

Figure 10. (left) Grid map of the secondary laboratory building, obtained using the architecture shown
in Figure 2. (right) The actual building and the environment where the initial framework experiments
have been carried out.

6.4. GNSS/SLAM Fusion Framework Experiments

To demonstrate our framework versatility, we generated a second application in a different
environment. In this case, we replaced the original localization module with the fusion module
described in Section 5. Our framework permitted to make this replacement by just changing the
corresponding extensible markup language (XML) tag in the launch file of the execution phase
without worrying about other nodes and component interactions. The rest of the process to create the
application was exactly the same as the one described in the previous section. In this way, we verified
the easiness that our framework provides to test new algorithms within a fully operative autonomous

Appl. Sci. 2019, 9, 1997 16 of 23

navigation application. Concretely, in this case, it would have been very complicated to generate an
equivalent application using the navigation stack since it was not prepared for off-map navigation.

In the rest of this section, we describe and comment on the experiments carried out to test the
second application generated using our framework. We tested the new localization module observing
how it affected the whole autonomous navigation system. We performed these experiments on the
University of Alicante campus (in the area whose grid map is shown in Figure 11) because it was
an environment where we can find different scenarios that may affect the localization of our vehicle.
For example, there were areas with high trees and buildings—that could cause satellite occlusions
affecting the GNSS—and lots of dynamic obstacles, such as pedestrians, electric maintenance cars,
or even road vehicles, that can affect the Monte Carlo localization.

Figure 11. Grid map obtained in the pre-execution phase (Figure 2), and latter used in the execution
phase (Figure 3). We generated this map using datasets previously recorded during the experimental
sessions described in [42].

6.4.1. Localization

To test our new localization module (described in Section 5) we followed different paths through
the campus. These routes were recorded in manual driving using a remote control. To test the fusion
of the different localization subsystems these paths pass both within a grid map, previously obtained
using the architecture shown in Figure 2, and outside it. We obtained this map through the datasets
recorded for the experiments of our previous work [42]. Using this map, we are able to locate our
vehicle in the environment using AMCL. However, it has been six months since the data was captured.
This means that in the map may appear dynamic objects that were in the environment at the time
the map was made and that might not be in the environment when the AMCL runs. We can see this
map in Figure 11. The paths we followed in the experiments are those shown in Figures 12 and 13.
In the path R1 (Figure 12 left) we circulated entirely within the map. In the path R2 (Figure 12 right)
we circulated in part out of the map, in this way we tested how the system behaves when using

Appl. Sci. 2019, 9, 1997 17 of 23

only GNSS. In the path R3 (Figure 13 left) we circulated approximately the half of the route out of
map. The difference with respect to the path R2 is that in this case we went out and entered the map
describing a rectilinear trajectory, which can be more favorable to the relocation because AMCL suffers
in the turns. The last route was the R4 (Figure 13, right), in which we circulated most of the journey
off-map to test the non-divergence of the system. In this route, we found very unfavorable areas for
the GNSS because of high trees and nearby buildings. All the paths were done twice, once with GNSS
standalone, and another using the GNSS-RTK in floating mode (details about the single-frequency
RTK system used can be found in [42]).

Figure 12. (left) Path R1 around the building located in the upper right quadrant. This path runs
entirely through the map shown in Figure 11. (right) path R2 around the two buildings on the right
side of the image. This path leaves the map in the area of the building in the lower right quadrant of
the image.

Figure 13. (left) path R3 around the two buildings on the right side of the image. This path leaves the
map shown in Figure 11 in the area of the building in the lower right quadrant of the image. (right)
Path R4 around the two buildings on the right side of the image, and the building on the lower left
side of the image. This is the path that makes the longest journey off the map.

Appl. Sci. 2019, 9, 1997 18 of 23

In Figure 14 we can see the trajectories obtained when following the path R1, with GNSS
standalone (left), and with GNSS RTK floating (right). This is the only journey that we made entirely
within the map. In these conditions, the AMCL localization proved to be very robust. This translates
into very small variances what makes the KF output to be very similar to the output of the AMCL.
As we can see in Figure 14, the red line (KF) is superimposed on the green line (AMCL), as both
provide almost the same location. In both cases, we see that the blue line (GNSS) differs from the
fusion, although to a lesser extent in the case of RTK.

Figure 15 shows the paths obtained for R2. In this case, the behavior in the map area is the same as
shown in the previous case. However, in the area where we travel off-map (x > 75 m) the fusion adapts
to the observations provided by the GNSS-based subsystem. In this area, when the AMCL uncertainty
grows exceeding the thresholds, the Kalman filter output corrects the AMCL state estimation so that
when the robot re-enters to the mapped area the AMCL subsystem converges again.

-40 -20 0 20 40 60 80

x (m)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

y
 (

m
)

Amcl

GPS odometry

KF fusion

-40 -20 0 20 40 60 80

x (m)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

y
 (

m
)

Amcl

GPS odometry

KF fusion

Figure 14. Trajectories through the R1 path expressed by localization using the fusion described in
Section 5. (left) Using GNSS standalone. (right) Using GNSS floating point. In both cases, the fusion
gives more weight to AMCL, because the robot is inside the map during the whole trajectory.

-50 0 50 100 150

x (m)

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

-50 0 50 100 150

x (m)

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

Figure 15. Trajectories through the R2 path expressed by localization using the fusion described in
Section 5. (left) Using GNSS standalone. (right) Using GNSS floating point. In both cases, the loop
closure of the right quadrant is performed off-map. We see that thanks to the fusion of GNSS, we can
maintain the trajectory to re-enter the map area.

Figure 16 illustrates the trajectories made for the path R3. In this case, we can observe a behavior
similar to that of the path R2 where the fusion adapts to the GNSS system in the off-map area
(x > 75 m). In the case of the path made using the RTK system, we see that the low variances makes
the fusion to closely follow the observations. For this reason, we see how the red line (AMCL) is
superimposed to the rest of the subsystems in Figure 16 right.

Figure 17 shows the result of performing manual driving through the path R4. In this case,
the trajectories run off the map in the whole area defined by x > 75 m and y < −90 m. We see that the

Appl. Sci. 2019, 9, 1997 19 of 23

behavior is similar to the cases described for the paths R2 and R3 with the difference that in this case
most of the journey is off-map and verifying that the re-entry can be done successfully even after a
long journey without mapped references.

-50 0 50 100 150

x (m)

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

-50 0 50 100 150

x (m)

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

Figure 16. Trajectories through the R3 path expressed by localization using the fusion described in
Section 5. (left) Using GNSS standalone. (right) Using GNSS floating point. We see that in the case of
the fusion with GNSS real-time kinematic RTK floating point (right), in the off-map area the fusion
adapts to these observations.

-50 0 50 100 150

x (m)

-140

-120

-100

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

-50 0 50 100 150

x (m)

-140

-120

-100

-80

-60

-40

-20

0

20

y
 (

m
)

Amcl

GPS odometry

KF fusion

Figure 17. Trajectories through the R4 path expressed by localization using the fusion described in
Section 5. (left) Using GNSS standalone. (right) Using GNSS floating point. In this case, the whole
area x > 50 m is off-map. We see that in both cases we can make the re-entry on the map. However,
in the case of the GNSS RTK floating point (right) the trajectory seems more consistent except in the
curve located in the lower right quadrant, where conditions were very unfavorable due to occlusions
and multi-path produced by trees and buildings.

6.4.2. Autonomous Navigation

In the previous section, we described the experiments carried out to test the localization but
in that case, the control loop closure was being performed by the users who handle the remote
control. Because of this, we are influencing the localization by using our own human localization at
the cognitive level. In order to test how location affects control, we integrated into our vehicle the
architecture shown in Figure 3 to navigate autonomously in closed circuit. Using the paths recorded
during the previous experiments we generated two maps of trajectories through the routes R3 and R4
(Section 6.4.1), defining two different circuits. For these experiments, the application is configured to
run through the specified circuit indefinitely. In this way, we will be able to observe the repetitiveness
of the trajectories in each lap. With these conditions, we carried out four different experiments. First,
we performed the autonomous navigation along the circuit defined by the path R3 using the GNSS in
standalone mode. Next, we used the circuit described by the path R4 also with the GNSS configured

Appl. Sci. 2019, 9, 1997 20 of 23

in standalone mode. In order to see how the differential corrections of GNSS can affect navigation,
we repeated the two experiments previously described but using the RTK in floating mode.

The system behavior in the paths R3 and R4 with the standalone GNSS configuration was similar.
In both cases, the errors of the standalone GNSS system caused failures in the zones marked with
yellow circles in Figure 18. These errors resulted in emergency stops, thanks to the system described in
Section 4.2.4. However, it was possible to demonstrate the system recoverability since, after skipping
these areas in manual driving we were able to complete the circuit autonomously. During the RTK
experiments, the system was able to complete the circuit without interruptions including the off-map
areas. The behavior in these experiments was very similar to the described in the previous section:
the system shown repeatability and a smooth and stable control without oscillations. However, in these
experiments we were not able to circulate indefinitely, since in the second lap, in the areas marked
with yellow circles in Figure 18 we lost connection with the base station, disabling the RTK mode and
forcing to interrupt the autonomous navigation. As in the previous case, the system proved to be
recoverable as it returned to autonomous navigation after passing these critical points.

Figure 18. Representation of GNSS fixes in RTK floating point mode, recorded during autonomous
navigation. (right) Through the path R3. (right) Through the path R4. In both cases, if the link to the
base station is available, the closed loop is completed without problems. Areas marked with yellow
circles indicate problem zones for the link to the base station.

7. Conclusions and Future Work

In this paper, we presented a framework designed for fast prototyping of autonomous navigation
systems. This framework reduces dramatically the amount of work required to implement a whole
application, making easier to test and to compare different algorithms in real-world conditions.
The proposed architecture permits us to focus the efforts in the desired research topics, while the
provided basic set of tools enables the users to generate fully operative autonomous navigation
systems to perform experimental tests. To validate the described approach we used the framework
and the provided tools to implement an initial basic system that was able to complete successfully
several laps around a building autonomously in a challenging outdoor scenario. To demonstrate the
easiness of module substitution, we developed a novel algorithm that relies in a Kalman filter to fuse
2D SLAM and GNSS positioning and used it to replace the localization module of the initial basic
system. This new module was incorporated just changing a single line of the launch file. Extensive

Appl. Sci. 2019, 9, 1997 21 of 23

tests for this new localization module were performed navigating autonomously through mixed
on-map/off-map trajectories in the University of Alicante campus. This new localization module
has shown interesting properties on its own, and thus has become one of the contributions of the
present work. The experimental sessions covered more than twenty kilometers in two absolutely
different outdoor environments. All the software is publicly available in a GitHub repository (https:
//github.com/AUROVA-LAB/aurova_framework) with the aim of being a useful tool for research
groups interested in any of the fields related to autonomous navigation.

As future work, we want to extend provided set of tools, adding re-planning capabilities,
redundant safety modules and terrain analysis algorithms. In the localization part, we plan to
integrate a graph SLAM system implementing a tight integration of GNSS raw observables and to use
unsupervised learning techniques for landmark detection.

Author Contributions: Conceptualization, M.A.M. and I.d.P.; methodology, M.A.M. and I.d.P.; software, M.A.M.
and I.d.P.; validation, M.A.M. and I.d.P.; formal analysis, M.A.M. and I.d.P.; investigation, M.A.M., I.d.P., F.A.C.
and F.T.; writing–original draft preparation, M.A.M., I.d.P., F.A.C. and F.T.; writing–review and editing, M.A.M.,
I.d.P., F.A.C. and F.T.; supervision, F.A.C. and F.T.; project administration, F.T.; funding acquisition, F.A.C., and F.T.

Funding: This work has been supported by InterregV Sudoe and FEDER programs of European Commission
through the COMMANDIA project SOE2/P1/F0638, and by the Spanish Government through the FPU grant
FPU15/04446 and the research project RTI2018-094279-B-I00.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Niemueller, T.; Lakemeyer, G.; Ferrein, A. The RoboCup logistics league as a benchmark for planning
in robotics. In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS)—WS on Planning and Robotics (PlanRob), Jerusalem, Israel, 7–11 June 2015; Association for the
Advancement of Artificial Intelligence (AAAI): Palo Alto (CA), USA, 2015.

2. King, A. The future of agriculture. Nature 2017, 544, S21–S23.
3. Milanés, V.; Bergasa, L.M. Introduction to the Special Issue on “New Trends towards Automatic Vehicle

Control and Perception Systems”. Sensors (Basel) 2013, 13, 5712–5719.
4. Nilsson, N.J. A Mobile Automaton: An Application of Artificial Intelligence Techniques. In Proceedings of

the 1st International Joint Conference on Artificial intelligence (IJCAI’69), Washington, DC, USA, 7–9 May
1969; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1969; pp. 509–520.

5. Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A review of deep learning methods and
applications for unmanned aerial vehicles. J. Sens. 2017, 2017, 3296874.

6. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; 779–788.

7. Gomes, L. When will Google’s self-driving car really be ready? It depends on where you live and what you
mean by “ready” [News]. IEEE Spectr. 2016, 53, 13–14.

8. Canedo-Rodríguez, A.; Alvarez-Santos, V.; Regueiro, C.V.; Iglesias, R.; Barro, S.; Presedo, J. Particle filter robot
localisation through robust fusion of laser, WiFi, compass, and a network of external cameras. Inf. Fusion
2016, 27, 170–188.

9. Castro-Toscano, M.J.; Rodríguez-Quiñonez, J.C.; Hernández-Balbuena, D.; Rivas-Lopez, M.; Sergiyenko, O.;
Flores-Fuentes, W. Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta
Metodológica. Rev. Iberoam. De Automática E Informática Ind. 2018, 15, 391–403.

10. Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; Ingrand, F. An architecture for autonomy. Int. J. Robot. Res.
1998, 17, 315–337.

11. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.;
Hoffmann, G.; et al. Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 2006,
23, 661–692.

https://github.com/AUROVA-LAB/aurova_framework
https://github.com/AUROVA-LAB/aurova_framework

Appl. Sci. 2019, 9, 1997 22 of 23

12. Sanchez-Lopez, J.L.; Pestana, J.; de la Puente, P.; Campoy, P. A reliable open-source system architecture for
the fast designing and prototyping of autonomous multi-uav systems: Simulation and experimentation.
J. Intell. Robot. Syst. 2016, 84, 779–797.

13. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press:
Cambridge, MA, USA, 2011.

14. The Robotics Data Set Repository (Radish). Available online: http://radish.sourceforge.net (accessed on 5
May 2019).

15. Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004),
Sendai, Japan, 28 September–2 October 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2149–2154.

16. Calisi, D.; Iocchi, L.; Nardi, D. A unified benchmark framework for autonomous mobile robots and vehicles
motion algorithms (MoVeMA benchmarks). In Proceedings of the Workshop on Experimental Methodology
and Benchmarking in Robotics Research (RSS 2008), Zurich, Switzerland, 26–30 June 2008.

17. Kweon, I.S.; Goto, Y.; Matsuzaki, K.; Obatake, T. CMU sidewalk navigation system: A blackboard-based
outdoor navigation system using sensor fusion with colored-range images. In Proceedings of the Fall Joint
Computer Conference, Dallas, TX, USA, 2–6 November 1986; IEEE: Piscataway, NJ, USA, 1986.

18. Goto, Y.; Stentz, A. Mobile robot navigation: The CMU system. IEEE Expert 1987, 2, 44–54.
19. Buehler, M.; Iagnemma, K.; Singh, S. The 2005 DARPA Grand Challenge: The Great Robot Race; Springer-Verlag:

Berlin, Germany, 2007; Volume 36.
20. Buehler, M.; Iagnemma, K.; Singh, S. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic;

Springer-Verlag: Berlin, Germany, 2009; Volume 56.
21. Montemerlo, M.; Becker, J.; Bhat, S.; Dahlkamp, H.; Dolgov, D.; Ettinger, S.; Haehnel, D.; Hilden, T.;

Hoffmann, G.; Huhnke, B.; et al. Junior: The stanford entry in the urban challenge. J. Field Robot. 2008,
25, 569–597.

22. Urmson, C.; Anhalt, J.; Bagnell, D.; Baker, C.; Bittner, R.; Clark, M.; Dolan, J.; Duggins, D.; Galatali, T.;
Geyer, C.; et al. Autonomous driving in urban environments: Boss and the urban challenge. J. Field Robot.
2008, 25, 425–466.

23. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan,
17 May 2009; Volume 3, p. 5.

24. Guimarães, R.L.; de Oliveira, A.S.; Fabro, J.A.; Becker, T.; Brenner, V.A. ROS navigation: Concepts and
tutorial. In Robot Operating System (ROS); Springer International Publishing: Cham, Switzerland, 2016;
Volume 1, pp. 121–160.

25. Rösmann, C.; Hoffmann, F.; Bertram, T. Kinodynamic trajectory optimization and control for car-like robots.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5681–5686.

26. Conner, D.C.; Willis, J. Flexible navigation: Finite state machine-based integrated navigation and control for
ROS enabled robots. In Proceedings of the SoutheastCon 2017, Charlotte, NC, USA, 30 March–2 April 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 1–8.

27. Brahimi, S.; Tiar, R.; Azouaoui, O.; Lakrouf, M.; Loudini, M. Car-like mobile robot navigation in unknown
urban areas. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1727–1732.

28. Vivacqua, R.; Vassallo, R.; Martins, F. A low cost sensors approach for accurate vehicle localization and
autonomous driving application. Sensors 2017, 17, 2359.

29. Ferrer, G.; Zulueta, A.G.; Cotarelo, F.H.; Sanfeliu, A. Robot social-aware navigation framework to accompany
people walking side-by-side. Auton. Robot. 2017, 41, 775–793.

30. Dove, R.; Schindel, B.; Scrapper, C. Agile systems engineering process features collective culture,
consciousness, and conscience at SSC Pacific Unmanned Systems Group. INCOSE Int. Symp. 2016,
26, 982–1001.

31. Li, X.; Sun, Z.; Cao, D.; Liu, D.; He, H. Development of a new integrated local trajectory planning and
tracking control framework for autonomous ground vehicles. Mech. Syst. Signal Process. 2017, 87, 118–137.

32. Hernádez Juan, S.; Herrero Cotarelo, F. Autonomous Navigation Framework for a Car-Like Robot (Technical Report
IRI-TR-15-07); Institut de Robòtica i Informàtica Industrial (IRI): Barcelona, Spain, 2015.

http://radish.sourceforge.net

Appl. Sci. 2019, 9, 1997 23 of 23

33. Rodrigues, M.; McGordon, A.; Gest, G.; Marco, J. Developing and testing of control software framework for
autonomous ground vehicle. In Proceedings of the 2017 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), Coimbra, Portugal, 26–28 April 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 4–10.

34. Stateczny, A.; Burdziakowski, P. Universal autonomous control and management system for multipurpose
unmanned surface vessel. Pol. Marit. Res. 2019, 26, 30–39.

35. Huskić, G.; Buck, S.; Zell, A. GeRoNa: Generic Robot Navigation. J. Intell. Robot. Syst. 2018, 1–24.
36. Hartmann, J.; Klüssendorff, J.H.; Maehle, E. A unified visual graph-based approach to navigation for

wheeled mobile robots. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 3–7 November 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1915–1922.

37. Guzmán, R.; Ariño, J.; Navarro, R.; Lopes, C.; Graça, J.; Reyes, M.; Barriguinha, A.; Braga, R. Autonomous
hybrid GPS/reactive navigation of an unmanned ground vehicle for precision viticulture-VINBOT.
In Proceedings of the 62nd German Winegrowers Conference, Stuttgart, Germany, 27–30 November 2016.

38. Romay, A.; Kohlbrecher, S.; Stumpf, A.; von Stryk, O.; Maniatopoulos, S.; Kress-Gazit, H.; Schillinger, P.;
Conner, D.C. Collaborative Autonomy between High-level Behaviors and Human Operators for Remote
Manipulation Tasks using Different Humanoid Robots. J. Field Robot. 2017, 34, 333–358.

39. OpenSLAM: GMapping Algorithm. Available online: https://openslam-org.github.io (accessed on 5 May
2019).

40. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
41. Moore, T.; Stouch, D. A generalized extended kalman filter implementation for the robot operating system.

In Proceedings of the 13th International Conference IAS-13 (Intelligent Autonomous Systems 13), Padova,
Italy, 15–18 July 2014; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–348.

42. del Pino, I.; Muñoz-Bañon, M.Á.; Cova-Rocamora, S.; Contreras, M.Á.; Candelas, F.A.; Torres, F. Deeper in
BLUE. J. Intell. Robot. Syst. 2019, 1–19, doi:10.1007/s10846-019-00983-6.

43. del Pino, I.; Muñoz Bañón, M.A.; Contreras, M.Á.; Cova, S.; Candelas, F.A.; Torres, F. Speed Estimation
for Control of an Unmanned Ground Vehicle Using Extremely Low Resolution Sensors. In Proceedings of
the 15th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Portu,
Portugal, 29–31 July 2018.

44. Gmapping in ROS. Available online: http://wiki.ros.org/gmapping (accessed on 5 May 2019).
45. Amcl in ROS. Available online: http://wiki.ros.org/amcl (accessed on 5 May 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://openslam-org.github.io
http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Framework Design
	Framework Requirements
	Proposed Approach
	Perception
	Motion
	High Level

	Initial Framework Implementation
	Pre-Execution Phase
	Execution Phase
	Localization Module: AMCL
	Planning
	Control
	Safety

	New Localization Module: GNSS/SLAM Fusion
	AMCL Subsystem
	GNSS Subsystem
	Odometry
	Kalman Filter
	Integrity Monitoring

	Experiments
	Experimental Platform
	Settings
	Initial Framework Experiments
	GNSS/SLAM Fusion Framework Experiments
	Localization
	Autonomous Navigation

	Conclusions and Future Work
	References

