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ABSTRACT In this paper we give a characterization of the set RPN (z) :=
f<z : PN (z) = 0g, in terms of the position of a line with respect to an analytic
variety, with PN (z) belonging to a large class P(z) of exponential polynomials
which can be expressed of the form 1+

PN
j=1 aje

�zj :r, where N ,M are positive
integers, aj 2 R with aj 6= 0, j =

�
j1; j2; :::; jM

�
, j = 1; :::; N , are non- null

vectors, distinct, with non-negative integers components, r = (r1; r2; :::; rM ) is
a vector of RM with positive rationally independent components, j :r is the
inner product of j by r in RM , and, for some 1 � jN � N , is jN :j = 0, for
all j 6= jN .
AMS Subject Classi�cation: 30Axx, 30D05.
Key words: Zeros of the partial sums of the Riemann zeta function; Expo-

nential polynomials; Diophantine approximation.

1 Introduction

In [2,Th. 2] it was given a characterization of RGm(z) := f<z : Gm(z) = 0g,
m > 2, with Gm(z) being the particular exponential polynomial (brie�y, e.p.)
de�ned as

Gm(z) := 1 + 2
z + :::+mz,

in terms of the position of a vertical line x = c with respect to the analytic
variety jG�m(z)j = pcm, where pm is the last prime not exceeding m. However,
in [11], it was pointed out that the necessity of [2,Th. 2] could fail at one end-
point of the critical interval associated with Gm(z),

�
aGm(z); bGm(z)

�
, where

aGm(z) := inf f<z : Gm(z) = 0g , bGm(z) := sup f<z : Gm(z) = 0g .

In this paper it is shown that [2,Th. 2] remains true with a slight modi�cation
consisting on to add the possibility that the line considered to be an asymptote
of the analytic variety (see below Theorem 4). Furthermore, we prove that a
similar characterization to that of RGm(z) is also valid for a larger class, say
P(z), that contains all e.p. that can be written of the form

PN (z) = 1 +
NX
j=1

aje
�zj :r, z = x+ iy, (1.1)
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where aj 2 R n f0g, N , M are positive integers, j =
�
j1; j2; :::; jM

�
are

non-null vectors for all 1 � j � N having non-negative integers components, r
is a vector of RM whose components are positive and linearly independent over
the rationals (brie�y, r.i.), j :r is the inner product of j by r in RM , and for
some 1 � jN � N is jN :j = 0 for all j 6= jN (orthogonality condition).
We will suppose that all the e.p. considered are irreducible, i.e. , they cannot

be expressed as a product of two e.p. of the above class P(z). In order to point
out the usefulness of our theorem of characterization, it is relevant to stress, as
we can see in [1; 3; 4; 6; 7], that the expression (1.1) is frequently used to write
an e.p. in Theory of Stability of Di¤erential Equations, due to (1.1) contains
the three cases that can be considered to study the structure of the set

RPN (z) := f<z : PN (z) = 0g

with respect to the vector of exponents
�
j :r

�
j=1;:::;N

.

2 The theorem

Theorem 1 Let PN (z) = 1 +
PN

j=1 aje
�zj :r, N > 1, be an e.p. belonging to

the class P(z) and P �N (z) its e.p. associated de�ned as

P �N (z) := PN (z)� ajN e
�zjN :r. (2.1)

Then, a real number c 6= 0 belongs to RPN (z) if and only if the line x = c either
intersects or is an asymptote of the analytic variety jP �N (z)=ajN j = e�c�jN .

Proof. Firstly we de�ne �j := j :r, j = 1; :::; N . Let z0 be a zero of PN (z)
and c := <z0. Then, by (2.1), jP �N (z0)=ajN j = e�c�jN , so the line x = c meets
to jP �N (z)=ajN j = e�c�jN at the point z0. That is, given a zero of PN (z),
the vertical line, that passes through that zero, intersects the analytic variety
jP �N (z)=ajN j = e�c�jN , where c is the real part of that zero. Assume now c is a
real number belonging to the set RPN (z). Then there exists a sequence (zm)m
of zeros of PN (z) such that limm!1<zm = c. By de�ning cm := <zm, from
above, each line of equation x = cm meets to jP �N (z)=ajN j = e�cm�jN at the
point zm. Since the variety jP �N (z)=ajN j = e�c�jN is the limit of the varieties
jP �N (z)=ajN j = e�cm�jN , the line x = c either meets or it is an asymptote to
jP �N (z)=ajN j = e�c�jN .
Conversely, let c be a real number such that the line x = c intersects

jP �N (z)=ajN j = e�c�jN at a point z0 = c + iy0. Then, we claim that c is in
RPN (z). Indeed, since z0 satis�es jP �N (z0)=ajN j = e�c�jN , it follows the exis-

tence of a real � such that P �N (z0)=ajN = e
�c�

jN ei�. Thus, taking into account
(2.1), PN (z0) = ajN e

�c�jN ei� + ajN e
�z0�jN and then, by cancelling the term

ajN e
�z0�jN , we have

1 +
NX

j 6=jN

aje
�c�je�iy0�j � ajN e�c�jN ei� = 0. (2.2)
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Now, we are looking for a vector � 2 RM such that (2.2) can be written as

1 +
NX
j=1

aje
�cj :reij :� = 0. (2.3)

To do it, since z0 = c+ iy0, we �rst write (2.2) as

1 +
NX

j 6=jN

aje
�c�je�iy0�j + ajN e

�c�jN ei(�+�) = 0

and then the vector � must satisfy the equations

j :� = �y0j :r, for j 6= jN ; jN :� = �+ �. (2.4)

We put � := �y0r+ �jN , where � is an unknown real number. Then, noticing
the orthogonality condition, the value

� =
�+ � + y0�jN
jN :jN

turns the vector � into a solution of (2.4). Consequently, by applying [1, Th. 3.1]
to (2.3), c 2 RPN (z). This proves the claim.
Let us suppose the line x = c 6= 0 is an asymptote of jP �N (z)=ajN j = e�c�jN .

Then, for any increasing (decreasing) sequence (cm)m such that limm!1 cm = c,
each line x = cm meets to jP �N (z)=ajN j = e�c�jN at a point zm = cm + iym,
with cm 6= 0 for all m � m0, for some m0. Thus,

jP �N (zm)=ajN j = e�c�jN , for each m � m0. (2.5)

Given the vector jN =
�
jNk

�
k=1;:::;M

, for each m � m0, we de�ne a vector
rm = (rmk)k=1;:::;M , where

rmk :=

�
rk if jNk = 0
c
cm
rk if jNk 6= 0

, (2.6)

and let us consider the corresponding e.p.

PN;m(z) := 1 +
NX
j=1

aje
�zj :rm .

Then, from (2.6) and by using the orthogonality condition, it follows

j :rm = j :r for all j 6= jN ; � cmjN :rm = �cjN :r.

Therefore (2.5) is equivalent to��P �N;m(zm)=ajN �� = e�cmjN :rm ,
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which means that each line x = cm meets to
��P �N;m(z)=ajN �� = e�cmjN :rm at

the point zm = cm + iym for each m � m0. Then, from the above claim,

cm 2 RPN;m(z) := f<z : PN;m(z) = 0g, for each m � m0.

Now, by taking cm := qmc, where (qm)m is an increasing (decreasing) sequence
of positive rationals such that limm!1 qm = 1, from (2.6), the components of
each vector rm are r.i. for all m. Furthermore, we have rm ! r as m ! 1.
Then, from [1, Th. 2.2], the sets RPN;m(z) tend to RPN (z) in the Hausdor¤metric
as m ! 1. As a consequence, noticing cm 2 RPN;m(z) for each m � m0 and,
since limm!1 cm = c, we get c 2 RPN (z). This proves the theorem.

Remark 2 Observe that in Theorem 1 we have proved that if c is any real
number belong to RPN (z), then x = c either intersects or it is an asymptote of
jP �N (z)=ajN j = e�c�jN . It is also shown that if for any c 2 R, the line x = c
meets jP �N (z)=ajN j = e�c�jN , then c 2 RPN (z). However, the case c = 0 has been
excluded as asymptote of jP �N (z)=ajN j = 1 because of the independence of r with
respect to the fact that 0 to be or not a point of RPN (z) (see [1, Corollary 3.1]).
In fact, as we will prove in the next result, x = 0 is never an asymptote of
jP �N (z)=ajN j = 1 when PN (z) is any partial sum of the Riemann zeta function.

3 Application to the partial sums of the Rie-
mann zeta function

In this section we will obtain a particular version of Theorem 1 applied to the
partial sums

�m(z) :=
mX
j=1

1=jz, m > 2, z 2 C (3.1)

of the Riemann zeta function �(z) :=
P1

n=1 1=n
z, <z > 1. To do it, it is enough

to prove that �m(z) belongs to the class P(z) for all m > 2. Indeed, by (3.1),
we �rst put

�m(z) = 1 +

m�1X
j=1

e�z log(j+1) = 1 +

NX
j=1

aje
�zj :r. (3.2)

Now, by de�ning N := m � 1, aj := 1, we only need to have, for some integer
M � 1, vectors j 2 RM with non-negative integers components and r 2 RM
with positive r.i. components satisfying

j :r = log(j + 1), for all 1 � j � N , (3.3)

and the orthogonality condition, namely,

for some 1 � jN � N , jN :j = 0, for all j 6= jN .
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It is immediate that equations (3.3) are satis�ed by de�ning M as the number
of primes of the set fl : 1 � l � N + 1g, the vector r := (log 2; log 3; :::; log pN ),
i.e. , the components of r are log p with p prime of fl : 1 � l � N + 1g, so pN is
the last prime not exceeding N + 1, and j :=

�
j1; j2; :::; jM

�
is the vector

whose components are obtained by expressing j+1 as a product of primes, that
is,

j + 1 = 2j13j2 :::p
jM
N , 1 � j � N . (3.4)

On the other hand, according to Bertrand�s Postulate [5, Th. 418], 2pN > N+1,
so the orthogonality condition is ful�lled by the vector jN = (jNk)k=1;:::;M
with jN := pN � 1 because of, from (3.4), its components are jNk = 0 for
1 � k < M and jNM = 1. Consequently, for any m > 2, �m(z) 2 P(z).
Thus, by applying Theorem 1, we have the following result.

Theorem 3 Let �m(z) :=
Pm

n=1 1=n
z, m > 2, be the partial sum of order m of

the Riemann zeta function, ��m(z) := �m(z)� 1=pzm where pm is the last prime
not exceeding m and R�m(z) the closure of the real parts of the zeros of �m(z).
Then, i) a real number c 6= 0 belongs to R�m(z) if and only if the line x = c
either intersects or is an asymptote of the analytic variety j��m(z)j = 1=pcm, ii)
0 2 R�m(z), for all m � 2.

Proof. The part i) directly follows from Theorem 1. To prove part ii), we
observe that the zeros of �2(z) are given by the expression zl =

(2l+1)�i
log 2 , l 2 Z, so

<zl = 0 and then R�2(z) = f0g. Thus, form = 2, part ii) is true. Assumem > 2.
By changing the variable z by �z we obtain the e.p. Gm(z) := �m(�z) and
then, its associated e.p. is G�m(z) := Gm(z)�pzm. From [10, Chap. 3, Th. 3.19],
there exists at least a zero z�m of G�m(z) with <z�m � 0, so ��m(�z�m) = 0 and
then the point �z�m is interior to the analytic variety j��m(z)j = 1. Noticing the
domain of x in j��m(z)j = 1 is of the form (a;+1) and <(�z�m) � 0, necessarily
a < 0. Consequently, the line x = 0 meets to j��m(z)j = 1. Then, from Theorem
1, 0 2 R�m(z). This proves that we said in Remark 2, that is, the line x = 0
is not an asymptote for any analytic variety j��m(z)j = 1, where ��m(z) is the
associated e.p. with the partial sum �m(z), for any m > 2.
Thus, by denoting RGm(z) the closure of the real parts of the zeros of Gm(z),

we have the analogous result for these e.p.

Theorem 4 A real number c belongs to RGm(z), m > 2, if and only if the line
x = c either intersects or is an asymptote of jG�m(z)j = pcm.

Proof. It is enough to take into account that the domain of the variable x in
the analytic variety jG�m(z)j = pcm is the opposite of that of j��m(z)j = 1=pcm, and
the fact that of RGm(z) = �R�m(z). Thus, as the domain of x in j�

�
m(z)j = 1

is (a;+1), with a < 0, the domain of x in jG�m(z)j = 1 is (�1, � a). Thus,
the line x = 0 meets to jG�m(z)j = 1, so it is not an asymptote of jG�m(z)j = 1.
Then, because of Theorem 3 and taking in mind the Remark 2, the theorem
follows.
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As a consequence [2,Th. 2] (A real number c belongs to RGm(z), m > 2, if
and only if the line x = c intersects jG�m(z)j = pcm) should be substituted by the
above Theorem 4.
As we can see, Theorem 4 is exactly [2,Th. 2] by adding only that the line

x = c may be an asymptote of jG�m(z)j = pcm. Since the closedness of RGm(z)

implies that the end-points aGm(z), bGm(z) 2 RGm(z), the results obtained by
using [2,Th. 2] about the determination of RGm(z) should be true, noticing the
su¢ ciency is true, by proving, additionally to the necessity of [2,Th. 2], the
remaining case. That is, we only need to consider the case where the line x = c
can be an asymptote of jG�m(z)j = pcm , provided that c to be some of the end-
points aGm(z), bGm(z). Therefore [2,Th. 2]may be considered as an uncompleted
result with respect to Theorem 4, both having a notable geometric character.
Bearing in mind the above analysis, the use of [2,Th. 2] in [8, Lemma 6]

has no consequence since the point considered is distinct from aGm(z), bGm(z).
In [9, Theorem 10] it was used [2,Th. 2] to prove the following claim: if x0 2
RGn(z), then x0 � bn;x0 . Therefore it only remains to prove the claim in the case
that the line x = x0 can be an asymptote of jG�n(z)j = px0n . But, in that case,
from the de�nition of bn;x0 (is the upper end-point of the interval of de�nition of
x in the variety jG�n(z)j = px0n , so for x > bn;x0 there is no point of the variety),
we have x0 = bn;x0 whether x = x0 is the asymptote of the right-side. If the
line x = x0 is the asymptote of the left-side it is immediate that x0 < bn;x0 .
Consequently the claim trivially follows.
Finally, [2,Th. 2] was applied to prove in [10, Theorem 3.20] the following

claim: the level curve jG�n(z)j = px0n does not traverse the line x = x0. Then
it only remains to demonstrate the claim in the case that the line x = x0 can
be an asymptote of jG�n(z)j = px0n . But, since the claim was already proved by
assuming the line x = x0 intersects the level curve, if x = x0 is an asymptote,
then the claim obviously follows by taking into account the geometric de�nition
of asymptote.
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