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ABSTRACT 

 

A modified He’s homotopy perturbation method is used to calculate higher-order 

analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The 

He’s homotopy perturbation method is modified by truncating the infinite series 

corresponding to the first order approximate solution before introducing this solution in 

the second order linear differential equation, and so on. We find this modified homotopy 

perturbation method works very well for the whole range of initial amplitudes, and the 

excellent agreement of the approximate frequencies and periodic solutions with the exact 

ones has been demonstrated and discussed. The approximate formulas obtained show 

excellent agreement with the exact solutions, and are valid for small as well as large 

amplitudes of oscillation, including the limiting cases of amplitude approaching zero and 

infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the 

solutions with a maximal relative error for the approximate frequency of less than 1.6% 

for small and large values of oscillation amplitude, while this relative error is 0.65% for 

two iterations with two harmonics and as low as 0.18% when three harmonics are 

considered in the second approximation. For the Duffing-harmonic oscillator the relative 

error is as low as 0.078% when the second approximation is considered. Comparison of 

the result obtained using this method with those obtained by the harmonic balance 

methods reveals that the former is very effective and convenient. 

 

 

Keywords: Nonlinear oscillator; Relativistic oscillator; Duffing-harmonic oscillator; 

Approximate solutions; Homotopy perturbation method. 
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1. Introduction 

Considerable attention has been directed towards the study of strongly nonlinear 

oscillators and several methods have been used to find approximate solutions to nonlinear 

problems, such as perturbation techniques [1-6], variational methods [7-13] or harmonic 

balance based methods [14-21]. An excellent review of some asymptotic methods for 

strongly nonlinear equations can be found in detail in references [22] and [23]. In general, 

given the nature of a nonlinear phenomenon, the approximate methods can only be 

applied within certain ranges of the physical parameters and to certain classes of 

problems.  

The purpose of this paper is to calculate higher-order analytical approximations to 

the periodic solutions to the relativistic and Duffing-harmonic oscillators. The relativistic 

oscillator is a nonlinear oscillator whose nonlinearity (anharmonicity) is a relativistic 

effect. When the energy of a simple harmonic oscillator is such that the velocities become 

relativistic, the simple harmonic motion (linear oscillations) at low energy becomes 

anharmonic (nonlinear oscillations) at high energy. Then, the strength of the nonlinearity 

increases with increasing total relativistic energy, and in the non-relativistic limit the 

oscillator becomes linear. Duffing-harmonic oscillator. This oscillator is a conservative 

non-linear oscillatory system modelled by a potential having a rational form for the 

potential energy [41]. This system leads to a differential equation for which the usual, 

expansion in a small parameter, perturbation procedures do not apply because a linear 

term and a perturbation parameter are not present. 

The homotopy perturbation method [22-38], which requires neither a small 

parameter nor a linear term in a differential equation, yields a very rapid convergence of 

the solution series; in most cases only one iteration leads to high accuracy of the solution. 

This method provides an effective and convenient mathematical tool for nonlinear 

differential equations [22]. To obtain higher-order analytical approximate periodic 

solutions for the relativistic and Duffing-harmonic oscillators, we apply a modified He’s 

homotopy perturbation method (HHPM). Applying the standard He’s homotopy 

perturbation method (HHPH) to this oscillator, an infinite series is obtained for the first 

analytical approximate solution [39, 40] and this series must be introduced in the linear 

differential equation to obtain the second-order approximate solution. However, since it is 
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difficult to work with an infinite series, we truncate this series before solving the 

subsequent linear differential equation considering only two harmonics for the second 

order approximation, three harmonics for the third order approximation, and so on. In this 

sense, the truncated approximate solutions have the same form as those considered when 

harmonic balance methods are applied. As we can see, the results presented in this paper 

reveal that the method is very effective and convenient for conservative nonlinear 

oscillators for which the restoring force has a non-polynomial form. 

He’s homotopy perturbation method changes a difficult problem into a simple 

problem which can be easily solved. This method, in contrast to the traditional 

perturbation methods, requires neither a small parameter nor a linear term in a differential 

equation. In He’s technique a homotopy with an imbedding parameter 

 

p! [0,1] is 

constructed, and this parameter is considered ‘small parameter’, so the method is called 

the homotopy perturbation method, which can take full advantage of the traditional 

perturbation and homotopy technique [22, 38]. This perturbation approach has been 

applied not only to nonlinear oscillators but also to other nonlinear problems. This 

technique yields a very rapid convergence of the solution series; in most cases only one 

iteration leads to high accuracy of the solution. As we will see, some of the most 

interesting features of He’s homotopy perturbation method are its simplicity and its very 

good accuracy in whole range of amplitude of oscillation. 

 

2. Relativistic oscillator 

2.1.- Solution procedure 

The governing non-dimensional equation of motion for the relativistic oscillator is 

[41] 

   

 

! ! x + (1" ! x 
2
)
3 /2

x = 0  (1) 

 

where x and t are dimensionless variables and  

 

! x = dx /dt  and   

 

! ! x = d
2
x /dt

2 . 

Eq. (1) is based on taking the rest mass of the particle, m, and the elastic constant, 

k, of the one-dimensional harmonic oscillator force 

 

F( ˜ x ) = !k˜ x  (Hooke’s force law), to be 

unity, where 

 

˜ x  is a dimensional variable. Eq. (1) is obtainable from Newton’s equation of 
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motion in the form   

 

F = dp /d˜ t , by replacing the Newtonian momentum p with its 

relativistic form 

 

p =   

 

mv(1! v
2
/c

2
)
!1/2, where   

 

v = d˜ x /d˜ t  is the speed of the particle, c is 

the speed of light and 

 

˜ t  is the coordinate time (dimensional variable) related with the 

proper time 

 

!  by   

 

d˜ t = (1! v
2

/c
2
)
!1/2

d" . We can easily verify that the dimensionless 

length x and the dimensionless time t are related to the dimensional variables 

 

˜ x  and 

 

˜ t  

through x =   

 

!
0
˜ x /c  and   

 

t = !
0
˜ t , respectively, where   

 

!
0

= 

 

k /m  is the angular frequency 

for the non-relativistic oscillator (linear oscillator). 

On the other hand, the even power term in Eq. (1),   

 

! x 
2

= (dx /dt)
2  acts like the 

powers of coordinates in that it does not cause a damping of the amplitude of oscillations 

with time. Therefore, Eq. (1) is an example of a generalized conservative system [14]. At 

the limit when   

 

(dx /dt)
2

<< 1, Eq. (1) becomes   

 

! ! x + x = 0, the oscillator is linear and the 

proper time 

 

!  becomes equivalent to the coordinate time t to this order. 

Introducing the phase space variable (x,y), Eq. (1) can be written in the system 

form 

 

 

! x = y ,       

 

! y = "(1" y
2
)
3 /2

x  (2) 

 

Consequently, the trajectories in phase space are given by solutions to the first order, 

ordinary differential equation 

 
  

 

dy

dx
= !

(1! y
2
)
3 /2
x

y
 (3) 

 

As Mickens pointed out, since the physical solution of both Eq. (1) and Eq. (3) are real, 

the phase space has a “strip” structure [41], i.e., 

 

 

 

!" < x < +" ,        
  

 

!1 < y < +1    (4) 

 

Then unlike the usual non-relativistic harmonic oscillator, the relativistic oscillator 

is bounded in the y variable. Mickens has proved that all the trajectories to Eq. (3) are 
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closed in the open region of phase space given by Eq. (4) and then all the physical 

solutions to Eq. (1) are periodic [41].                 

The homotopy perturbation method can now be applied to obtain analytic 

approximations to the periodic solutions of Eq. (1). First we make a change of variable, 

 

y! u , such that 

 

!" < u < +". The required transformation is [41] 

 

 
  

 

y =
u

1+ u
2

 (5) 

It follows that 

  

 

 

! u = "x  (6) 

 

And then, the corresponding second order differential equation for u is 

 

 
  

 

! ! u +
u

1+ u
2

= 0 (7) 

 

which corresponds to a conservative nonlinear oscillator. We consider the following initial 

conditions to Eq. (7) 

   

 

u(0) = B, ! u (0) = 0  (8) 

 

Eq. (7) can be re-written in the form 

 

 
  

 

! ! u + u = u "
u

1+ u
2

 (9) 

 

For Eq. (9) we can establish the following homotopy 

 
  

 

! ! u + 1" u = p u #
u

1+ u
2

$ 

% 

& 

' 

( 

)  (10) 
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where p is the homotopy parameter. When p = 0, Eq. (10) becomes a linearized equation 

and for the case p = 1, Eq. (10) becomes the original problem. Now the homotopy 

parameter p is used to expand the solution u(t) in powers of the parameter p 

  

 

 

u(t) = u
0
(t) + pu

1
(t) + p

2
u
2
(t) + ... (11) 

 

 

 

1= !
2
" p#

1
" p

2
#
2
" p

3
#
3
" ... (12) 

 

where αi (i = 1, 2, …) are to be determined and where 

 

!  is the unknown angular 

frequency of the nonlinear oscillator. Substituting Eqs. (11) and (12) into Eq. (10), and 

equating the terms with identical powers of p, we can obtain a series of linear equations, 

of which we write only the first three 

 

  

 

! ! u 
0

+ "
2
u

0
= 0,

    
  

 

u
0
(0) = B ,   

 

! u 
0
(0) = 0   (13) 

 

  

 

! ! u 
1

+ "
2
u

1
= (1+ #

1
)u

0
$

u
0

1+ u
0

2
,          

 

u
1
(0) = 0 ,     

 

! u 
1
(0) = 0  (14) 

 

  

 

! ! u 
2

+ "
2
u

2
= #

2
u

0
+ (1+ #

1
)u

1
$

u
1

(1+ u
0

2
)
3 /2

,      

 

u
2
(0) = 0 ,     

 

! u 
2
(0) = 0  (15) 

 

In these equations we have taken into account the following expression 

 

 

f (u) = f (u
0

+ pu
1

+ p
2
u
2

+ ...) = f (u
0
) + pu

1
! f (u

0
) + p

2
u
2
! f (u

0
) +
1

2
u
1

2 ! ! f (u
0
)

" 

# 
$ 

% 

& 
' + O(p

3
)  

  (16) 

where 
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f (u) =
u

1+ u
2

 (17) 

 

The solution of Eq. (13) is 

   

 

u
0
(t) = Bcos!t  (18) 

 

Substituting Eq. (18) into Eq. (14), we obtain the following differential equation for 
  

 

u
1  

 

 
  

 

d
2
u

1

dt
2

+ !
2
u

1
= (1+ "

1
)Bcos!t #

Bcos!t

1+ B
2
cos

2
!t

 (19) 

 

It is possible to do the following Fourier series expansion 

 

 
  

 

Bcos!t

1+ B
2
cos

2
!t

= a
2n+1

n=0

"

# cos[(2n + 1)!t] (20) 

 

where the first term of this expansion can be obtained by means of the following equation 

 

 
  

 

a
1

=
4

!

Bcos"

1+ B
2
cos

2"0

! /2

# cos"d" =
4

!B
[E($B2

) $K($B2
)] (21) 

 

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 

respectively, defined as follows [42] 

 

 
  

 

K(m) =
d!

1"msin2!0

# / 2

$  (22) 

 

 
  

 

E(m) = 1!msin2" d"
0

# / 2

$  (23) 



 
 
 

 
 
 
 
 

9 

 

Substitution of Eq. (20) into Eq. (19) gives 

 

 
  

 

d
2
u

1

dt
2

+ !2
u

1
= 1+ "

1
#
a

1

B

$ 

% 
& 

' 

( 
) Bcos!t # a

2n+1

n=1

*

+ cos[(2n + 1)!t] (24) 

 

If there are to be no secular terms in 
  

 

u
1
(t) , contributions proportional to 

 

cos!t  on the 

right of Eq. (24) must be eliminated 

 

 
  

 

1+ !
1
"
a

1

B
= 0  (25) 

 

Substituting Eq. (21) into Eq. (25) and reordering, we can easily find that the solution α1 

is 

 

 
  

 

!
1

= "1+
4

#B
2
[E("B

2
) "K("B

2
)] (26) 

 

From Eqs. (12) and (26), writing p = 1, we can easily find that the first order approximate 

frequency is  

 
  

 

!
1
(B) =

2

"B
E(#B

2
) #K(#B

2
)  (27) 

 

We re-write Eq. (24) in the form 

 

 
  

 

d
2
u

1

dt
2

+ !
2
u

1
= " a

2n+1

n=1

#

$ cos[(2n + 1)!t] (28) 

 

where the coefficients 
  

 

a
2n+1

 are obtained by means of the following equation 
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a
2n+1

=
4

!

Bcos"

1+ B
2
cos

2"0

! /2
# cos[(2n + 1)"]d"  (29) 

 

The solution of Eq. (28) can be written as follows 

 

 
  

 

u
1
(t) = d

2n+1

n=0

!

" cos[(2n + 1)#t] (30) 

 

Substituting Eq. (30) into Eq. (28) gives 

 

 
  

 

! "
2
4n(n + 1)d

2n+1

n=1

#

$ cos[(2n + 1)"t] = ! a
2n+1

n=1

#

$ cos[(2n + 1)"t] (31) 

 

and we can easily obtain 

 
  

 

d
2n+1

=
a

2n+1

4n(n + 1)!
2

 (32) 

 

for  n  ≥ 1. Taking into account that u1(0) = 0, Eq. (30) gives 

 

 
  

 

u
1
(0) = d

2n+1

n=0

!

" = 0  (33) 

 

and the value of coefficient d1 is given by the following expression 

 

 
  

 

d
1

= ! d
2n+1

n=1

"

# = !
1

4$
2

a
2n+1

n(n + 1)
n=1

"

#  (34) 
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To determine the second-order approximate solution it is necessary to substitute 

Eq. (30) into Eq. (15). Then secular terms are eliminated and parameter α2 can be 

calculated. However, it is difficult to solve the new differential equation because, as 
  

 

u
1
(t)  

has an infinite number of harmonics, it would be necessary to multiply this infinite series 

by   

 

!(1+ u
0

2
)
!3 /2 .  At this moment we introduce a modification in He’s homotopy 

perturbation method to simplify the solution procedure [36]. 
  

 

u
1
(t)  has an infinite number 

of harmonics, however we can truncate the series expansion at Eq. (30) and write an 

approximate equation 
  

 

u
1

(N )
(t) in the form 

 
  

 

u
1

(N )
= d

2n+1

n=0

N

! cos[(2n + 1)"t] (35) 

 

which has only a finite number of harmonics. Comparing Eqs. (30) and (35), it follows 

that 

 
  

 

lim
N!"

u
1

(N )
(t) = u

1
(t)  (36) 

 

In the simplest case we consider N = 1 (n = 0, 1) and Eq. (35) becomes 

 

   

 

u
1

(1)
(t) = !d

3
(cos"t ! cos3"t)= 4d

3
(cos"t ! cos

3
"t)  (37) 

 

which has a similar form than the second order approximate solution considered in 

harmonic balance methods [34]. From Eqs. (29) and (32) the following expression for the 

coefficient   

 

d
3
 is obtained 

 

 
  

 

d
3

= !d
1

=
a

3

8"
2

=
(8 + B

2
)E(!B

2
) ! (8 + 5B

2
)K(!B

2
)

6#B
3
"

2
 (38) 

where 
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a
3

=
4

!

Bcos"

1+ B
2
cos

2"0

! /2

# cos3"d" =
4[(8 + B

2
)E($B2

) $ (8 + 5B
2
)K($B2

)]

3!B3
 (39) 

 

Substitution of Eq. (37) into Eq. (15) gives the following equation for gives the following 

equation for 
  

 

u
2
(t) 

 
  

 

! ! u 
2

+ "
2
u

2
= #

2
u

0
+ (1+ #

1
)u

1

(1)
$

u
1

(1)

(1+ u
0

2
)
3 /2

  (40) 

 

and taking into account Eqs. (32) and (37), Eq. (40) becomes  

 

  

 

! ! u 
2

+ "
2
u

2
= #

2
Bcos"t $

a
3
(1+ #

1
)

2"
2

(cos"t $ cos
3
"t) +

a
3
(cos"t $ cos

3
"t)

2"
2
(1+ B

2
cos

2
"t)

3 /2
 (41) 

 

The secular term in the solution for 
  

 

u
2
(t)  can be eliminated if  

 

  

 

!
2
Bcos" #

a
3
(1+ !

1
)

2$2
(cos" # cos3") +

a
3
(cos" # cos3")

2$2
(1+ B

2
cos

2")3 /2
% 

& 
' 

( 

) 
* 

0

+ /2

, cos"d" = 0 (42) 

 

The integration of Eq. (42) gives 

 

 
  

 

!a
3

32"
2
(1+ #

1
) $

!

4
B#

2
+

a
3

"
2
B

4
E($B) $

(2 + B
2
)a

3

2"
2
B

4
K($B

2
) = 0 (43) 

 

Substituting Eqs. (26), (38) and (39) into Eq. (36), and reordering, Eq. (36) can be solved 

for α2, that is 

 
  

 

!
2

= "
2[(8 + B

2
)E("B

2
) " (8 + 5B

2
)K("B

2
)]

2

3#
2
B

8
$

2
 (44) 
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From Eqs. (12), (26) and (44), and taking p = 1, one can easily obtain the following 

expression for the second order approximate frequency is  

 

 
  

 

!
2

(1)
(B) =

6B
2
[E("B

2
) "K("B

2
)]+ 6#

3$B
4

 (45) 

where  

 

  

 

!(B) = ("64 "16B
2

+ 5B
4
)E

2
("B

2
)

+ (128 + 96B
2
"10B

4
)E("B

2
)K("B

2
) " (64 + 80B

2
+ 19B

4
)K

2
("B

2
)
 (46) 

 

In references [39] and [40] it was proved that the simplest approximation for u(t) is 

 

 
  

 

u(t) = u
0
(t) + u

1
(t) ! u

0
(t) = Bcos" j t ,       

 

j = 1,2  (47) 

 

gives very good results for 

 

x(t). In order to find an approximate expression for 

 

x j (t) we 

use Eqs. (5) and (47) and obtain  

 

 
  

 

y j (t) !
Bcos" j t

1+ B
2
cos

2
" j t

,    
  

 

j = 1,2  (48) 

 

However, we should not forget that we are really looking for is an approximate analytical 

solution to Eq. (1), that is, x(t). In order to find an approximate expression for 

 

x j (t)  (j = 

1,2) we integrate Eq. (48) taking into account that y = dx/dt and we obtain 

 
  

 

x j (t) =
1

! j (B)
sin

"1 B

1+ B
2
sin[! j (B)t]

# 

$ 

% 

& 

' 

(  (49) 

 

Moreover, it is convenient to express the approximate angular frequency and the solution 

in terms of oscillation amplitude A rather than as a function of B. It is now necessary to 
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find a relation between oscillation amplitude A and parameter B used to solve Eq. (1) 

approximately. From Eq. (3) we get 

 

 
  

 

1

(1! y
2
)
1/2

+
1

2
x

2
= C  (50) 

 

where C is a constant to be determined as a function of initial conditions. From Eqs. (5) 

and (8) we can easily obtain 

 

C = (1+ B
2
)
1/ 2  and Eq. (50) can be written as follows 

 

 
    

 

1

(1! y
2 )1/2

+
1

2
x

2
= (1+ B

2 )1/2 (51) 

 

In addition, when x = A, the velocity   

 

y = dx /dt  is zero. Taking this into account in Eq. 

(51), we obtain the following relation between amplitude A and parameter B  

 

 
    

 

1+
1

2
A

2
= (1+ B

2 )1/2  (52) 

 

From the above equation we can easily find that the solution for B is 

 

 
    

 

B = A 1+
1

4
A

2
! 

" 
# 

$ 

% 
& 

1/2

 (53) 

 

Substituting Eq. (53) into Eqs. (27) and (45) and we can obtain the first- and second-order 

approximate angular frequencies, 
  

 

!
1
(A)  and 

  

 

!
2
(A) "!

2

(1)
(A) , respectively, for the 

relativistic oscillator as a function of the oscillation amplitude A 

 

 
  

 

!
1
(A) =

4

A

E(" ) #K(" )

$(4 + A
2
)

 (54) 
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!
2
(A) =

2

3"A4
(4 + A

2
)

2
(384A

6
+ 288A

8
+ 72A

10
+ 6A

12
)(E(# ) $K(# )) + 6A

4
(4 + A

2
)

2 %[ ]
1/2

  (55) 

where 

 
  

 

! (A) = "
1

4
A

2
(4 + A

2
)  (56) 

and 

 

 

  

 

!(A) = ("1024 " 256A
2

+ 16A
4

+ 40A
6

+ 5A
8
)E

2
(# )

" 2("1024 " 768A
2 "176A

4
+ 8A

6
+ A

8
)E(# )K(# )

" (1024 + 1280A
2

+ 624A
4

+ 152A
6

+ 19A
8
)K

2
(# )

 (57) 

 

The approximate solution 

 

x j (t) is obtained by substituting Eqs. (54) or (55) and 

Eq. (53) in Eq. (49) 

 
  

 

x j (t) =
1

! j (A)
sin

"1 4A
2

+ A
4

4 + 4A
2

+ A
4
sin[! j (A)t]

# 

$ 

% 

% 

& 

' 

( 

( 

 (58) 

 

where 

 

! j (A)  (j = 1,2) are obtained from Eqs. (54) and (55). 

Since the dimensionless variable y is equal to v/c, where v is the particle velocity 

and c the velocity of light, from Eqs. (51) and (53) we have 

 

 
  

 

!
0

= y(0) =
v

0

c
=

B

1+ B
2

=
4A

2
+ A

4

4 + 4A
2

+ A
4

 (59) 

 

 

2.2.- Results and discussion 

In this section we illustrate the accuracy of the proposed approach by comparing 

the second-order approximate frequency 
  

 

!
2
(A)  (Eq. (55)) obtained using the modify 
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homotopy perturbation method considered in this paper, with the exact frequency 

 

!
e
(A)  

and with the first-order approximate frequency 
  

 

!
1
(A)  (Eq. (54)). The exact angular 

frequency is calculated as follows. Substituting Eq. (53) into Eq. (51), we obtain 

 

 
    

 

1

(1! y
2 )1/2

=
1

2
( A

2
! x

2 ) (60) 

 
The exact frequency can then be derived as follows 

 

 

  

 

!
e
(A) =

"

2

1+ 1
2
(A2 - x2 )

A
2 - x2 + 1

4
(A2 - x2 )20

A

# dx

$ 

% 

& 

& 

' 

( 

) 

) 

*1

   (61) 

 
which can be written in terms of elliptical integrals as follows 

 

 
  

 

!
e
(A) = 2" 4 4 + A

2
E

A
2

4 + A
2

# 

$ 

% 

& 

' 

( )
8

4 + A
2
K

A
2

4 + A
2

# 

$ 

% 

& 

' 

( 

* 

+ 

, 

- 

. 

/ 

)1

 (62) 

 

where K(m) and E(m) are the complete elliptic integrals of the first and second kind, 

respectively, defined in Eqs. (22) and (23), respectively. 

For small values of the amplitude A it is possible to take into account the following 

power series expansions 

 

 

 

!
e
(A) =1"

3

16
A
2

+
51

1024
A
4
"
233

16384
A
6

+
17499

4194304
A
8
" ...   (63) 

  

 

 

!1(A) =1"
3

16
A
2

+
54

1024
A
4
"
278

16384
A
6

+
24984

4194304
A
8
" ... (64) 

  

 

 

!2(A) =1"
3

16
A
2

+
51

1024
A
4
"
239

16384
A
6
+
19302

4194304
A
8
" ...        (65) 
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which were carried out using MATHEMATICA. As can be seen, in the expansion of the 

angular frequency 
  

 

!
1
(A)  (Eq. (64)), only the first two terms are the same as the first two 

terms of the equation obtained in the power-series expansion of the exact angular 

frequency 

 

!
e
(A)  (Eq. (63)). Whereas, in the expansion of the angular frequency 

  

 

!
2
(A)  

(Eq. (65)), the first three terms are the same as the first three terms of the equation 

obtained in the power-series expansion of the exact frequency 

 

!
e
(A)  (Eq. (63)). If we 

compare the fourth term in Eq. (65) with the fourth term in the series expansion of the 

exact frequency 

 

!
e
(A)  (Eq. (63)), we can see that the relative error of the four term of 

series expansion of 
  

 

!
2
(A)  is 2.6%. This implies that the second order approximate 

angular frequency 
  

 

!
2
(A)  obtained in this paper provides excellent approximations to the 

exact frequency 

 

!
e
(A) .  

For very large values of the amplitude A it is possible to take into account the 

following power series expansions 

 

 

 

!
e
(A) =

1.57080

A
+ ... (66) 

 

 

 

!1(A) =
1.59577

A
+ ... (67) 

  

 

 

!2(A) =
1.56062

A
+ ... (68) 

 

Once again we can see than the frequency 
  

 

!
2
(A)  obtained in this paper provides excellent 

approximations to the exact frequency 

 

!
e
(A)  for very large values of oscillation 

amplitude. Now, the relative errors of the first term of series expansions of 
  

 

!
1
(A)  and 

  

 

!
2
(A)  are 1.6% and 0.65%, respectively.  
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In Figure 1 we plotted the relative errors for the approximate frequencies 
  

 

!
1
(A)  

and 
  

 

!
2
(A). In this figure the percentage errors were calculated using the following 

equation 

     
  

 

Relative error of ! j (%) = 100
! j "!e

!e

 (69) 

 

Figure 1 indicates that 
  

 

!
2
(A)  provides excellent approximations to the exact frequency 

 

!
e
(A)  for the range of values of oscillation amplitude.  

Furthermore, we have the following equations 

 

 
  

 

lim
A!0

"
e
(A) = lim

A!0

"
1
(A) = lim

A!0

"
2
(A) =1 (70) 

 

 
  

 

lim
A!"

#
e
(A) = lim

A!"

#
1
(A) = lim

A!"

#
2
(A) = 0   (71) 

 

 
  

 

lim
A!"

#1(A)

#
e
(A)

=1.01590  (72) 

  

 
  

 

lim
A!"

#2(A)

#
e
(A)

= 0.99352  (73) 

 

Eqs. (70)-(73) illustrate very good agreement of the second order approximate frequency 

obtained in this paper, 
  

 

!
2
(A) , with the exact frequency 

 

!
e
(A). 

The exact periodic solutions x(t) achieved by numerically integrating Eq. (1), and 

the proposed normalized second-order approximate periodic solution 
  

 

x
2
(t) in Eq. (58) for 

one complete cycle are plotted in Figures 2, 3, 4 and 5 for oscillation amplitudes A = 1, 2, 

10 and 100, respectively. In these figures parameter h is defined as follows 
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h =
t

T
e
(A)

=
!

e
(A)t

2"
 (74) 

 

As we can see, in all cases, approximate solutions coincide with the exact one. 

Figures 2-5 show that Eq. (58) provides a good approximation to the exact periodic 

solutions and that the approximation 

 

u(t) !   

 

u
0
(t)  

 

= Bcos! j t  (  

 

j = 1,2) considering in Eq. 

(47) is sufficient to calculate an approximate expression for x(t). As we can see, for small 

values of A (Figure 2) x(t) is very close to the sine function form of non-relativistic simple 

harmonic motion. For A ≥ 2 the curvature becomes more concentrated at the turning 

points (x = ± A). For these values of A, x(t) becomes markedly anharmonic and is almost 

straight between the turning points. Only in the vicinity of the turning points, where the 

magnitude of the Hooke’s law force is maximum and the velocity becomes relativistic, is 

the force effective in changing the velocity [43]. Figures 4 and 5 are two typical examples 

of the motion in the ultra-relativistic region where   

 

!
0
"1. 

 

2.3.- A more accurate second-order approximate solution 

If we consider N = 2 (n = 0, 1,2) in Eq. (35), we have 

 

   

 

u
1

(2)
(t) = !d

3
(cos"t ! cos3"t)! d

5
(cos"t ! cos5"t)  (75) 

where 

 
  

 

d
5

=
a

5

24!
2

 (76) 

 

  

 

a
5

=
4

15!B
5
[(128 + 88B

2
+ 3B

4
)E("B

2
) " (128 + 152B

2
+ 39B

4
)K("B

2
)] (77) 

 

and  

   

 

d
1

= !(d
3

+ d
5
)  (78) 
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Substituting Eq. (75) into Eq. (15), eliminating the secular term in the solution for u2(t) 

and taking p = 1 in Eq. (12), one can easily obtain the following expression for the second 

order approximate frequency 

 

 
  

 

!
2

(2)
(B) =

90B
4
[E("B

2
) "K("B

2
)]+ 2 15F

45#B
6

 (79) 

 

where 

 

  

 

F(B) = (!8192 ! 8192B
2
! 3200B

4
! 288B

6
+ 117B

8
)E

2
(!B

2
)

+ 2(8192 + 12288B
2

+ 6784B
4

+ 1632B
6
! 45B

8
)E(!B

2
)K(!B

2
)

! (8192 + 16384B
2

+ 12416B
4

+ 4512B
6

+ 603B
8
)K

2
(!B

2
)

 (80) 

 

Substituting Eq. (53) into Eqs. (79) and (80) we can obtain 
  

 

! " 
2
#"

2

(2) as a function 

of A. For small values of the amplitude A it is possible to take into account the following 

power series expansion 

 

 

 

! " 2(A) =1#
3

16
A
2

+
51

1024
A
4
#
233

16384
A
6

+
17398

4194304
A
8
# ... (81) 

 

As can be seen, in the expansion of the angular frequency 
  

 

! " 
2
(A)  (Eq. (81)), the first four 

terms are the same as the first four terms of the equation obtained in the power-series 

expansion of the exact frequency 

 

!
e
(A)  (Eq. (63)).  If we compare the fifth term in Eq. 

(81) with the fifth term in the series expansion of the exact frequency 

 

!
e
(A)  (Eq. (63)), 

we can see that the relative error of the fifth term of series expansion is less than 0.6%. 

This implies that the second order approximate angular frequency 
  

 

! " 
2
(A)  obtained in this 

paper provides excellent approximations to the exact frequency 

 

!
e
(A) .  

For very large values of the amplitude A it is possible to take into account the 

following power series expansion 
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! " 2(A) =
1.56798

A
+ ... (82) 

 

If we compare Eqs. (66) and (82), we can see than the frequency 
  

 

! " 
2
(A)  obtained in this 

paper provides excellent approximations to the exact frequency 

 

!
e
(A)  for very large 

values of oscillation amplitude. Now, the relative error of the first term of the series 

expansion of 
  

 

! " 
2
(A)  is 0.18%. Furthermore we have 

 

 
  

 

lim

A!"

# $ 
2
(A)

$
e
(A)

= 0.998205 (83) 

 

In Figure 6 we plotted the relative errors for the approximate frequencies 
  

 

!
2
(A)  

and 
  

 

! " 
2
(A). This figure indicates that 

  

 

! " 
2
(A)  provides excellent approximations to the 

exact frequency 

 

!
e
(A)  for the range of values of oscillation amplitude. The exact periodic 

solution x(t) achieved by numerically integrating Eq. (1), and the proposed normalized 

second-order approximate periodic solution 
  

 

x
2
(t) for one complete cycle when 

  

 

! " 
2
(A)  is 

considered is plotted in Figures 7 for A = 100. As we can see the coincidence is complete. 

From these figures we can see that for large values of the amplitude, the normalized 

solutions appear to be composed of straight line segments. 

 

3. Duffing-harmonic oscillator 

3.1.- Solution procedure 

The governing non-dimensional equation of motion for the Duffing-harmonic 

oscillator is [44] 

 
    

 

d
2
x

dt
2

+
x

3

1+ x
2

= 0                       (84) 

with the initial conditions 

 

     

 

x(0) = A    and   
    

 

dx

dt
(0) = 0              (85) 
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Equation (84) is a conservative nonlinear oscillatory system having a rational form for the 

non-dimensional restoring force F(x) 

 

 
    

 

d2
x

dt
2

= F( x),     
    

 

F( x) = !
x

3

1+ x
2

        (86) 

 

It has been demonstrated that all the curves in the phase-space corresponding Eq. 

(84) are closed, an all motions for arbitrary initial conditions give periodic solutions [44]. 

We denote the angular frequency of these oscillations by ω and note that one of our major 

tasks is to determine ω(A), i.e., the functional behaviour of ω as a function of the initial 

amplitude.  

For small x, the restoring force does have a dominant term proportional to x and 

Eq. (84) approximates that of a truly Duffing-type nonlinear oscillator 

 

 
    

 

d
2
x

dt
2

+ x
3

= 0     for  x << 1 (87) 

 

and ω ≈ 0.84721A [45], which tends to zero when A decreases. While for large x, the 

equation of motion approximates that of a linear harmonic oscillator 

  

 
    

 

d
2
x

dt
2

+ x = 0     for  x >> 1               (88) 

 

so, for large A, we have ω ≈ 1. Consequently the angular frequency ω increases from 0 to 

1 as the initial value of x(0) = A increases.  

Equation (84) is not amenable to exact treatment and, therefore, approximate 

techniques must be resorted to. There is no small parameter in Eq. (84), so the standard 

perturbation methods cannot be applied directly. Due to the fact that the homotopy 
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perturbation method requires neither a small parameter nor a linear term in a differential 

equation, one possibility to approximately solve Eq. (84) using the homotopy perturbation 

method.  

Equation (84) can be re-written in the form 

 

 
    

 

d
2
x

dt
2

+ x = x !
x

3

1+ x
2

 (89) 

 
For equation (89) we can establish the following homotopy 

 

 
    

 

d
2
x

dt
2

+ 1! x = p x "
x

3

1+ x
2

# 

$ 

% % 

& 

' 

( ( 
 (90) 

 
where p is the homotopy parameter. When p = 0, Eq. (90) becomes a linear differential 

equation for which an exact solution can be calculated; for p = 1, Eq. (90) then becomes 

the original problem. Now the homotopy parameter p is used to expand the solution x(t) 

and the square of the unknown angular frequency ω  as is shown in equations (11) and 

(12), where αi (i = 1, 2, …) are to be determined. 

Substituting Eqs. (11) and (12) into Eq. (90) gives 

 

 

( ! ! x 
0

+ p ! ! x 
1

+ p
2 ! ! x 

2
+ ...) + (" 2 # p$

1
# p

2$
2
# ...)(x

0
+ px

1
+ p

2
x
2

+ ...)

= p (x
0

+ px
1

+ p
2
x
2

+ ...) #
(x

0
+ px

1
+ p

2
x
2

+ ...)
3

1+ (x
0

+ px
1

+ p
2
x
2

+ ...)
2

% 

& 
' 

( 

) 
* 

 (91) 

 

and equating the terms with identical powers of p, we can obtain a series of linear 

equations, of which we write only the first three 

 

    

 

! ! x 0 + "
2
x0 = 0 ,            

 

x0(0) = A, ! x 0(0) = 0   (92) 
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! ! x 1 +"
2
x1 = (1+ #1)x0 $

x0
3

1+ x0
2

,            

 

x1(0) = ! x 1(0) = 0 (93) 

    

 

! ! x 2 + "
2
x2 = #2x0 + (1+ #1)x1 $

(3 + x0
2 )x0

2
x1

(1+ x0
2 )2

,            

 

x2(0) = ! x 2(0) = 0 (94) 

   

 

! 

 

In Eqs. (93) and (94) we have taken into account the following expression 

 

 

 

f (x) = f (x
0

+ px
1

+ p
2
x
2

+ ...) =

= f (x
0
) + !x

1
" f (x

0
) + p

2
x
2

" f (x
0
) +
1

2
x
1

2 " " f (x
0
)

# 

$ 
% 

& 

' 
( + O(p

3
)

 (95) 

 

where     

 

! f ( x) = df (x) / dx . 

The solution of Eq. (92) is 

 

     

 

x0(t ) = Acos!t  (96) 

 

Substitution of this result into the right side of Eq. (93) gives 

 

 
    

 

! ! x 1 +"
2

x1 = (1+ #1) Acos"t $
A

3 cos3
"t

1+ A
2 cos2

"t

 (97) 

 
It is possible to do the following Fourier series expansion 

 

 

A
3
cos

3
!t

1+ A
2
cos

2
!t

= a
2n+1

n= 0

"

# cos[(2n +1)!t] = a
1
cos!t + a

3
cos3!t + ... (98) 

 

where 
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a
2n+1

=
4

!

A
3
cos

3 "

1+ A
2
cos

2 "0

! / 2

# cos[(2n +1)" ]d"  (99) 

 

and the first term of this expansion can be obtained by means of the following equation 

 

 
  

 

a
1

=
4

!
A
3
cos

3 "
1+ A

2
cos

2 "0

! / 2

# cos" d" = A +
2

A

1

1+ A
2
$1

% 

& 
' 

( 

) 
*        (100) 

 

where τ = ωt. Substituting Eq. (98) into Eq. (97), we have 

 

 

 

! ! x 
1

+"
2
x
1

= [(1+ #
1
)A $ a

1
]cos"t $ a

2n +1

n=1

%

& cos[(2n +1)"t] (101) 

 

No secular terms in x1(t) requires eliminating contributions proportional to cosωt 

on the right-hand side of Eq. (101) 

 

     

 

(1+ !1)A" a1 = 0 (102) 

 

and we can easily find that the solution α1 is 

 

 
    

 

!
1

=
a

1

A
"1 (103) 

 

From Eqs. (12) and (103), writing p = 1, we can easily find that the first order 

approximate frequency is  

 
    

 

!1( A) =
a1

A
 (104) 
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and substituting Eq. (100) into Eq. (104) we obtain 

 

 
    

 

!1( A) = 1+
2

A
2

1

1+ A
2
"1

# 

$ 

% % 

& 

' 

( ( 
 (105) 

 

Now in order to obtain the correction term x1 for the periodic solution x0 we 

consider the following procedure. Taking into account Eqs. (101) and (102), we re-write 

Eq. (20) in the form  

 
    

 

! ! x 1 +"
2
x1 = # a2n+1

n=1

$

% cos[(2n + 1)"t] (106) 

 

with initial conditions     

 

x1(0) = 0  and     

 

! x 1(0) = 0 . The periodic solution to Eq. (106) can be 

written 

 
    

 

x1(t ) = c2n+1

n=0

!

" cos[(2n + 1)#t] (107) 

 

Substituting Eq. (107) into Eq. (106) gives 

 

 
    

 

!"
2 4n(n + 1)c2n+1

n=0

#

$ cos[(2n + 1)"t] = ! a2n+1

n=1

#

$ cos[(2n + 1)"t] (108) 

 

and then we can write the following expression for the coefficients c2n+1 

 

 

    

 

c2n+1 =
a2n+1

4n(n + 1)!2
          (109) 

 

for n ≥ 1. Taking into account that x1(0) = 0, Eq. (107) gives 
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c1 = ! c2n+1

n=1

"

#  (110) 

 

To determine the second-order approximate solution it is necessary to substitute Eq. 

(107) into Eq. (93). Then secular terms are eliminated and parameter α2 can be calculated. 

However, it is difficult to solve the new differential equation because, as x1(t) has a 

infinite number of harmonics, it would be necessary to multiply this infinite series by 

    

 

(3 + x0
2 )x0

2(1+ x0
2 )!2 . At this moment we introduce a modification in He’s homotopy 

perturbation method to simplify the solution procedure. x1(t) has an infinite number of 

harmonics, however we can truncate the series expansion at Eq. (107) and write an 

approximate equation     

 

x1
( N )

(t )  in the form 

 

 

 

x
1
(N )

= c2n+1

n=0

N

! cos[(2n +1)"t]    and     
    

 

c
1

= ! c
2n+1

n=1

N

"  (111) 

 

which has only a finite number of harmonics. Comparing Eqs. (107) and (111), it follows 

that 

 
    

 

lim
N !"

x1
( N )

(t ) = x1(t ) (112) 

 

In the simplest case we consider N = 1 (n = 0, 1) in Eq. (111) and Eq. (110) becomes 

 

     

 

x1
(1)

(t ) = c3(cos3!t " cos!t )  (113) 

 

which has a similar form than the second order approximate solution considered in 

harmonic balance methods [15, 17]. It is possible to do this approximation because the 

absolute value of the coefficient c2n+1 decreases when n increase as we can easily verify 

from Eq. (109). From Eq. (109) the following expression for the coefficient c3 is obtained 

 



 
 
 

 
 
 
 
 

28 

 
    

 

c
3

=
a

3

8!
2

 (114) 

where, from Eq. (99) we obtain 

 

    

 

a
3

=
4

!
A

3
cos

3 "
1+ A

2
cos

2 "0

! /2# cos3" d" =
2

A
4 $

3

1+ A
2

% 

& 

' ' 

( 

) 

* * 
+

8

A
3

1$
1

1+ A
2

% 

& 

' ' 

( 

) 

* * 
 (115) 

 

Substitution of Eq. (113) into Eq. (94) gives the following equation for x2(t) 

 

 
    

 

! ! x 2 + "
2
x2 = #2x0 + (1+ #1)x1

(1)
$

(3 + x0
2 )x0

2
x1

(1)

(1+ x0
2 )2

 (116) 

 

and taking into account Eqs. (96), (103), (113) and (114), Eq. (116) becomes  

 

    

 

! ! x 2 + "
2
x2 =

= #2 Acos"t +
a1a3(cos3"t $ cos"t )

8 A"
2

$
a3 A

2(3 + A
2 cos2

"t )(cos3"t $ cos"t )cos2
"t

8"2(1+ A
2 cos2

"t )2

 

  (117) 

It is possible to do the following Fourier series expansion 

 

 

A
2
(3+ A

2
cos

2
!t)(cos3!t " cos!t)cos

2
!t

(1+ A
2
cos

2
!t)

2
=

= b
2n+1

n= 0

#

$ cos[(2n +1)!t] = b
1
cos!t + b

3
cos3!t + ...

 (118)  

 

where the first term of this expansion can be obtained by means of the following equation 
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b1 =
4

!
A

2(3 + A
2 cos2 " )(cos3" # cos" )cos2 "

(1+ A
2 cos2 " )20

! /2$ cos" d" =

= #1+
4

A
2

1+
4

1+ A
2

% 

& 

' ' 

( 

) 

* * 
#

24

A
4

1#
1

1+ A
2

% 

& 

' ' 

( 

) 

* * 

 (119) 

 

From Eqs. (117) and (118), the secular term in the solution for x2(t) can be eliminated if  

 

 
    

 

!
2
A"

a
1
a

3

8A#
2
"

a
3
b

1

8#
2

= 0 (120)  

 

Equation (119) can be solved for α2 and we obtain 

 

 
    

 

!
2

=
a

1
a

3

8A
2
"

2
+

a
3
b

1

8A"
2

 (121) 

 

From Eqs. (12), (100), (115) and (119), and taking p = 1, one can easily obtain the 

following expression for the second-order approximate frequency is  

 

 
    

 

!2( A) =
a1

2A
+

a1
2

4A
2

+
a1a3

8A
2

+
a3b1

8A
 (122) 

 

With the requirement of Eq. (120), we can re-write Eq. (117) in the form  

 

 
    

 

! ! x 2 + "
2
x2 =

a1a3 cos3"t

8A"
2

#
a3

8"2
b2n+1

n=1

$

% cos[(2n + 1)"t] (123) 

 

with initial conditions     

 

x2(0) = 0  and     

 

! x 2(0) = 0 . The general solution of this equation is 
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x2(t ) = d2n+1

n=0

!

" cos[(2n + 1)#t] (124) 

 

Substituting Eq. (124) into Eq. (123) gives 

 

    

 

!"
2 4n(n + 1)d2n+1

n=0

#

$ cos[(2n + 1)"t] =
a1a3 cos3"t

8A"
2

!
a3

8"2
b2n+1

n=1

#

$ cos[(2n + 1)"t] (125) 

 

and then we can write the following expression for the coefficients d2n+1 

 

 
    

 

d
3

= !
a

1
a

3

64A"
2

+
a

3
b

3

64"
2

 (126) 

 

 
    

 

d2n+1 =
a3b2n+1

32n(n + 1)! 4
    for   n ≥ 2 (127) 

 

where ω is given by Eq. (122) and b3 can be calculated as follows 

 

    

 

b3 =
4

!
A

2(3 + A
2 cos2 " )(cos3" # cos" )cos2 "

(1+ A
2 cos2 " )20

! /2$ cos3" d" =

= 1+
8

A
2

1#
6

1+ A
2

% 

& 

' ' 

( 

) 

* * 
+

40

A
4

3#
5

1+ A
2

% 

& 

' ' 

( 

) 

* * 
+

160

A
6

1#
1

1+ A
2

% 

& 

' ' 

( 

) 

* * 

 (128) 

 

Taking into account that x2(0) = 0, Eq. (124) gives 

 

 
    

 

d
1

= ! d
2n+1

n=1

"

#  (129) 
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and truncating the infinite series at Eq. (124), it is possible to obtain the following second-

order approximate solution for x2 

 

 

 

x
2
(N )
(t) = d2n+1

n=0

N

! cos[(2n +1)"t]     and     
    

 

d
1

= ! d
2n+1

n=1

N

"  (130) 

 

which has only a finite number of harmonics. Comparing Eqs. (124) and (130), it follows 

that 

 
    

 

lim
N !"

x2
( N )

(t ) = x2(t ) (131) 

 

As we are analyzing the second-order approximation we consider N = 2 in Eq. (131), in 

other words, only three harmonics (n = 0, 1, 2). In this situation, it is easy to verify that  

 

 
    

 

d
5

=
a

3
b

5

192!
4

 (132) 

 

where ω is given by Eq. (122) and b5 can be calculated as follows 

 

    

 

b5 =
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A

2(3 + A
2 cos2 " )(cos3" # cos" )cos2 "
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! /2$ cos5" d" =

= #
8

A
2

1#
1

1+ A
2

% 

& 

' ' 

( 

) 

* * 
#

8

A
4

39 #
795

1+ A
2

% 

& 

' ' 

( 

) 

* * 
#

224

A
6

5#
7

1+ A
2

% 

& 

' ' 

( 

) 

* * 
#

896

A
8

1#
1

1+ A
2

% 

& 

' ' 

( 

) 

* * 

 

  (133) 

 

From Eq. (130) we obtain the following value for d1 
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Taking this into account,     

 

x2
(2) can be written as follows  

 

     

 

x2
(2)

(t ) = d3(cos3!t " cos!t ) + d5(cos5!t " cos!t )  (135) 

 

From Eqs. (11), (96), (113) and (135), and taking p = 1, one can easily obtain the 

following expression for the second-order approximate solution 

 

    

 

x(t ) = x0(t ) + x1
(1)(t ) + x2

(2)(t ) = ( A! c3 ! d3 ! d5 )cos"t + (c3 + d3 )cos3"t + d5 cos5"t  

  (136) 

 

which has a similar form to the third-order approximate solution considered in harmonic 

balance methods. 

 

3.2.- Comparison with the exact and other approximate solution 

We illustrate the accuracy of the modified approach by comparing the approximate 

solutions previously obtained with the exact frequency ωe and other results in the 

literature. In particular, we will consider the solution of Eq. (84) using the harmonic 

balance method applied to Eq. (84) [16]. This method is a procedure for determining 

analytical approximations to the periodic solutions of differential equations using a 

truncated Fourier series representation. Like the homotopy perturbation method, the 

harmonic balance method can be applied to nonlinear oscillatory problems where a linear 

term does not exist, the nonlinear terms are not small, and there is no perturbation 

parameter. However, it is very difficult to use the harmonic balance method to construct 

higher-order analytical approximations because this method requires solving analytical 

solutions of sets of algebraic equations with very complex nonlinearities. 

Calculation of the exact angular frequency,     

 

!
e
( A),  proceeds as follows. By 

integrating Eq. (84) and using the initial conditions in Eq. (85), we arrive at  
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From the representation above, we can derive the exact frequency as follows 
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Lim and Wu [16] approximately solved Eq. (84) by using an improved harmonic 

balance method in which linearization is carried out prior to harmonic balancing. They 

achieved the following results for the first and the second approximation orders 
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!LW 2( A) = g( A) + g2( A) " h( A)  (140) 

 

where the expressions for g(A) and h(A) are given in the Appendix. From Eqs. (105) and 

(139), we can see that the first-order homotopy perturbation method and the first-order 

harmonic balance method give the same result for the approximate frequency. 

For small values of the amplitude A it is possible to take into account the following 

power series expansions 
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!2(A) =
1

4
6 + 30A " ...= 0.846951A " ... (142) 

 

 

 

!
LW 2(A) =

1

6

31+ 421

2
A " ...= 0.845891A " ...   (143) 

 

In Eq. (141), K(m) is the complete elliptical integral of the first kind defined in equation 

(22) and K(-1) = 1.31103. If we compare the first term in the expansion of the angular 

frequency     

 

!2( A)  (Eq. (142)) and in the expansion of the angular frequency     

 

!
LW 2( A)  (Eq. 

(143)) with the first term in the series expansion of the exact angular frequency ωe (Eq. 

(141)), we can see that the relative errors in the first term in the series expansions of ω2 

and ωLW2 are 0.031% and 0.16%, respectively. This implies that the second-order 

approximate angular frequency 
  

 

!
2
(A)  obtained in this paper provides excellent 

approximations to the exact frequency 

 

!
e
(A) . 

For very large values of the amplitude A it is possible to take into account the 

following power series expansions 
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Furthermore, we have the following equations 
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In Figure 8 we plotted the relative errors for the approximate frequencies     

 

!2( A)  

(Eq. (122)) and     

 

!
LW 2( A)  (Eq. (140)). In this figure the percentage errors were calculated 

using the following equation 

 

 
  

 

Relative error of ! j (%) = 100
! j "!e

!e

      j = 2, LW2 (151) 

 

As we can see from Figure 8, the relative errors for     

 

!2( A)  are lower than 0.078% (value 

for A = 0.9870) for all the range of values of amplitude of oscillation A, and these relative 

errors tend to 0.031% when A tends to zero and tend to zero when A tends to infinity (see 

Eqs. (147) and (149)). However, the relative errors for     

 

!
LW 2( A)  are lower than 0.17% 

(value for A = 0. 5960) for all the range of values of amplitude of oscillation A, and these 

relative errors tend to 0.16% when A tends to zero and tend to zero when A tends to 

infinity (see Eqs. (148) and (150)). Figure 8 indicates that 
  

 

!
2
(A)  provides excellent 

approximations to the exact frequency 

 

!
e
(A)  for the range of values of oscillation 

amplitude.  

The exact periodic solutions x(t) achieved by numerically integrating Eq. (84), and 

the proposed normalized second-order approximate periodic solution x(t) in Eq. (136) for 

one complete cycle are plotted in Figure 9 for oscillation amplitude A = 0.9870 (value of 

A for which the relative error for the approximate frequency ω2 is maximum). In this 
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figure parameter h is defined in equation (74). Figure 9 shows that Eq. (136) provides a 

good approximation to the exact periodic solution. The results presented here illustrated 

very good agreement of the second-order approximate frequency obtained in this paper, 

  

 

!
2
(A) , with the exact frequency 

 

!
e
(A). It is clear that at the second approximation order, 

the result obtained in this paper is better than those obtained previously by other authors.  

 

4. Conclusions 

The homotopy perturbation method has been used to obtain two approximate 

frequencies for a relativistic oscillatory system. An approximation to the periodic 

solutions was calculated by transforming to a new set of variables, 

 

(x,y)! (x,u), and the 

homotopy perturbation method was applied. Excellent agreement between approximate 

frequencies and the exact one has been demonstrated and discussed, and the discrepancy 

of the second-order approximate frequency, 
  

 

! " 
2
(A) , with respect to the exact one is as low 

as 0.18%. The power series expansions of the exact and approximate frequencies were 

also compared for low as well as large values of the oscillation amplitudes. Some 

examples were presented to illustrate the excellent accuracy of the approximate analytical 

solutions. The homotopy perturbation method has been also used to obtain the second 

order approximate frequency for the Duffing-harmonic oscillator. Although the lowest 

order homotopy perturbation method approximation to the Duffing-harmonic oscillator 

[34] is very good for all values of oscillation amplitude (Eq. (105)), the second analytical 

approximation derived here is even better. Excellent agreement between the second-order 

approximate frequency, ω2(A), and the exact one has been demonstrated and discussed, 

and the discrepancy of this second-order approximate frequency with respect to the exact 

one is as low as 0.078% and tends to 0.031% when A tends to zero and the discrepancy 

tends to 0% when A tends to infinity. Finally, we can see that the method considered here 

is very simple in its principle, and very easy to apply, and we think that the method has 

great potential and can be applied to other strongly nonlinear oscillators with non-

polynomial terms. 

 

Appendix 
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The second-order approximate frequency obtained by Lim and Wu [16] applying 

the harmonic balance method to Eq. (84) is given in Eq. (126) 

 

 
    

 

!LW 2( A) = g( A) + g2( A) " h( A)  (A1) 

where 

 
    

 

g( A) =
(b0 ! b2 ! b4 + b6 ) A + 18a1 + 2a3

36A
 (A2) 

 

 
    

 

h( A) =
a1(b0 ! b2 ! b4 + b6 ) + a3(b0 ! b4 )

18A
 (A3) 

 

where a1 and a3 are given in Eqs. (100) and (115), respectively, and 
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FIGURE CAPTIONS 

 

Figure 1.- Relative error for approximate frequencies 
  

 

!
1
 (dashed line) and 

  

 

!
2
"!

2

(1) 

(continuous line) for the relativistic oscillator. 

 

Figure 2.- Comparison of the analytical approximate solution   

 

(!)  with the exact solution 

(continuous line) for A = 1 (β0 = v0/c = 0.74536) for the relativistic oscillator. 

 

Figure 3.- Comparison of the analytical approximate solution   

 

(!)  with the exact solution 

(continuous line) for A = 2 (β0 = v0/c = 0.94281) for the relativistic oscillator. 

 

Figure 4.- Comparison of the analytical approximate solution   

 

(!)  with the exact solution 

(continuous line) for A = 10 (β0 = v0/c = 0.99981) for the v. 

 

Figure 5.- Comparison of the analytical approximate solution   

 

(!)  with the exact solution 

(continuous line) for A = 100 (β0 = v0/c = 0.99999998) for the relativistic oscillator. 

 

Figure 6.- Relative error for approximate frequencies 
  

 

!
2
"!

2

(1) (dashed line) and 
  

 

! " 
2
#"

2

(2) 

(continuous line) for the relativistic oscillator 

 

Figure 7.- Comparison of the analytical approximate solution   

 

(!)  with the exact solution 

(continuous line) for A = 100 100 (β0 = v0/c = 0.99999998) when the approximate 

frequency 
  

 

! " 
2
#"

2

(2) is considered (relativistic oscillator). 

 

Figure 8.- Relative errors for second-order approximate frequencies     

 

!
LW 2( A), Eq. (140) 

(dashed line) and     

 

! 2( A), Eq. (122) (continuous line). For the doffing-harmonic oscillator. 
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Figure 9.- Comparison of the second-order analytical approximate solution for the 

doffing-harmonic oscillator, Eq. (136) (dashed line and circles) with the numerical exact 

solution (continuous line) for A = 0.9870. 
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