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ABSTRACT
A validation of the graininess attribute was made by means of a psychophysical experiment and
the multidimensional scaling algorithm. A visual experiment was designed to obtain graininess dif-
ferences to be used like the dissimilarity matrix in the MDS algorithm. The results revealed that
two dimensions are needed to characterize the graininess effect. The BYK-mac-i instrument and
a gonio-hyperspectral imaging system were employed to evaluate the statistical dimensions. On
one hand, the first dimension correlated well with the graininess value provided by the BYK-mac-i
(r2 = 0.9566). However, we were unable to find a relationship with dimension 2 and any param-
eter measured by this instrument. Furthermore, the images captured by the gonio-hyperspectral
imaging system were processed. A good relationship with the correlation parameter was observed
(r2 = 0.8958). However, no relationship was established with dimension 2. Based on these conclu-
sions, further research is necessary that focuses on the new imaging processes and a new visual
experiment.
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1. Introduction

The visual appearance of a product is important for dif-
ferent reasons. On the one hand, visual appearance allows
the manufacturer to know about the reproducibility of its
production; i.e. it is an index of the quality control level.
In different industrial sectors (leather, glass, cosmetics,
ceramics, printedmaterials, etc.), the final quality control
is still done by making visual observations because mea-
surement systems have not yet reached the required level
of sensitivity. On the other hand, the visual appearance of
a product is a critical parameter implicated in customers’
purchase decisions. For these reasons, in recent years,
many different efforts have beenmade by industrial man-
ufacturers to provide attractive and sophisticated visual
effects by using, for instance, goniochromatic pigments
(1–5).

Goniochromatism is defined as an abrupt colour
change due to the light source and observer angle vari-
ations. In this way, it is possible to distinguish among
lightness variations due to metallic pigments (flakes),
and hue and chroma variations due to pearlescent or
diffraction pigments. Besides this angular dependence on
viewing/illumination direction, special-effect pigments
also exhibit a visually complex texture. Depending on the
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properties of the finish, and also on the viewing and illu-
mination conditions, flakes can exhibit a distinct spatial
appearance (6–8).

Under bright direct illumination conditions, such as
bright sunlight, the flakes in a metallic finish glitter cre-
ate a sparkling effect. Tiny bright sparkles of light that
vary in intensity can be seen, like stars in the night
sky. This effect is known as sparkle. Sparkle is observed
only at close distances and under bright direct illumi-
nation. On the other hand, with diffuse illumination,
such as a cloudy sky, metallic finishes do not sparkle.
Instead, they may create a salt-and-pepper appearance.
This effect may be referred to as graininess or coarse-
ness. In particular, graininess or diffuse coarseness is
the perceived contrast of the light/dark irregular pat-
tern on a scale of <100 μm (7, 8). Thus in order to
visualize the graininess effect, it is necessary to use dif-
fuse illumination and close observation distance; how-
ever, they are independent of the observation angle.
Both sparkle and graininess depend on flake size, ori-
entation and distribution (9–11). Metallic finishes with
larger coarse flakes show an intense sparkle, while those
with very fine flakes appear uniform, almost like a solid
colour.
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Nowadays, there is only one instrument on the mar-
ket able to measure the effects of texture, the multi-angle
spectrophotometer BYK-mac (12). This instrumentmea-
sures colour at six measurement geometries and includes
a CCD monochrome camera to measure texture effects.
To measure the sparkle effect, the sample is illuminated
directionally under 15°, 45° and 75°, counted to the nor-
mal direction from the sample surface. Three parameters
are obtained to characterize sparkle, sparkle intensity
(Si), sparkle area (Sa) and sparkle grade (SG), for the
three directional geometries. The total size of the small
and bright areas per unit area is called the sparkle area.
Sparkle intensity is specified as the intensity of the small
bright light spots in relation to the intensity of the sur-
rounding less bright. Sparkle area and sparkle inten-
sity are combined in the representative sparkle attribute
called sparkle grade (6, 7, 13). To measure the grain-
iness effect, the sample is diffusely illuminated by an
integrating sphere. To evaluate ormeasure graininess, the
non-uniformity of the light/dark areas is evaluated. These
areas are recorded by the CCD camera, which provides a
gray-scale picture. The uniformity of this image is a mea-
surement of graininess. Therefore, a higher graininess
value means an image with less uniformity. Graininess is
the sum of all the reflections in relation to a uniformly
reference coating and is finally defined by a relative value
(G) (6).

However, there are no standards like ISO, ASTM or
DIN which propose the mathematical and optical algo-
rithms required to measure and calculate the sparkle
or graininess effect implemented by the BYK-Gardner
company. Therefore, it is very important to visually vali-
date the sparkle and graininess effects in psychophysical
experiments as these texture effects are important for
the visual discrimination of many materials and quality
control (13).

In recent years, several studies have been carried out
to visually evaluate texture effects. This has led some
hypotheses widely discussed among the scientific com-
munity (e.g. in the CIE technical committee JTC 12
‘The measurement of sparkle and graininess’) suggesting
that the graininess effect is not well characterized with
a unique variable, but instead more variables or parame-
ters are needed. However, a recent paper was published to
propose traceable graininess measurements (14). In this
article, it is concluded that the average luminance factor
should be considered, and it is proposed as the second
relevant reflectance-based quantity for the quantification
of graininess.

The multidimensional scaling (MDS) technique
allows multivariate relationships or dimensions to be
determined to characterize an attribute (15–17). MDS
shows the perceived distances, orders or similarities

among stimuli as spatial maps. That is, a configuration
of n points representing the objects is distributed in a
p dimensional space. Each point represents one object.
Between pairs of points (i, j) there is a distance that is not
necessarily Euclidean, dij. Thus the aim of MDS is to find
a configuration in such a way that distances dij match the
previously measured dissimilarities xij. Therefore, simi-
lar stimuli are located together, whereas different stimuli
are far away. No previous knowledge about the number of
dimensions is required to apply this algorithm. However,
it is necessary to figure out the meaning of the dimen-
sions after the analysis; that is, what they represent in
terms of perceptual and physical attributes rather than as
mathematical correlates. As input, the distance or dissim-
ilarity between stimuli has to be computed. The exper-
imenter can choose the method to establish disparities.
The advantage of combining this algorithm with visual
perception is to quantify this distance by psychophysical
experiments.

Therefore, this technique determines a set of vectors
in a p-dimensional space, like those that correspond to
the matrix of Euclidean distances, that comes as close as
possible to a function of the input matrix according to
a criterion parameter called stress. Stress is a parameter
that defines the degree of correspondence between the
dissimilarities among the points in input data (X) mea-
sured by observers. The stress parameter is calculated by
the following equation:

stress =
√√√√

∑ ∑
(xij − dij)2∑

d2ij
(1)

In the equation, dij is the Euclidean distance across all
the dimensions between points i and j on the spatial map.
Therefore, a lower stress value means a better representa-
tion. The algorithm can be described as follows:

(1) assign points to the arbitrary coordinates in a p-
dimensional space;

(2) calculate Euclidean distances among all the pairs of
points to obtain the Dmatrix;

(3) compare the D matrix with the input X matrix by
evaluating the stress parameter;

(4) adjust the coordinates of each point to optimize the
stress value;

(5) repeat steps 2 through to 4 until stress is stabilized.

Therefore, the objective of this work is to evaluate the
graininess effect to findhowmanydimensions are needed
to totally characterize this texture effect by multidi-
mensional scaling after taking into account observers’
visual perception. Following this idea, Wang and Luo
(18) conducted different visual experiments to evaluate
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the texture perception on special coatings. They found
a correlation between the instrumental and the visual
graininess by using a second-order polynomial model.
However, the MDS technique was only applied to estab-
lish the dimensions for the glint/sparkle space.

2. Materials andmethods

The visual experiment to scale graininess differences was
based on the interval method (point-rating scaling). The
question that observers were asked was: how much do
these two samples differ in graininess? The difference
was specified on a line: the start point marked 0 and an
endpoint marked +++. The starting point (0) means
there is no difference between samples. The endpoint
(+++) means the difference between samples is very
big. This method was used to avoid any verbalization of
answers as it can imply misunderstanding the interpre-
tation. Observers indicated the perceived difference of
the pair presented on the line by a mark (x). To quan-
tify the perceived difference, the distance between the
starting point (0) and the observer’s mark (x) was mea-
sured. Each observer performed three repetitions after a
training session. During this training session, the pan-
els with a maximum difference in graininess were shown
to the observers to raise awareness and to stabilize their
answers. Seventeen observers participated in the experi-
ment (11 males and 6 females). Their average age was 33
years old. All the observers who participated in the exper-
iment had a best-corrected visual acuity of 1 (decimal
scale).

A VeriVide viewing booth was used to run the exper-
iment (Figure 1). Illumination was quite diffuse and it
was not possible to perceive sparkle on the samples. The
selected illuminant was the D65 illuminant. The col-
orimetric properties of this light source were measured
by a Photo Research PR-650 tele-spectroradiometer. The
measured chromatic coordinates were of x = 0.3127 and
y = 0.3383. The correlated colour temperature equalled
6439K, with a colour rendering index, Ra, of around 95
units. The experiment was conducted in a dark room
and the observers took 3min to adapt to the lightness
conditions.

A set of 25 samples was selected to run the exper-
iment. These samples belong to the Effect Navigator R©

chart from Standox (Figure 2). This chart was devel-
oped to select the exact flake size (texture effect) for
colour matching in the car refinishing industry. Samples
are painted in cardboard (size: 70× 120mm), composed
of five different grades of lightness and effect. Two dif-
ferent instruments were used to characterize samples.
TheBYK-mac-imulti-angle spectrophotometerwas used
to obtain the CIELAB values under the D65 illuminant

Figure 1. Setup of the visual experiment.

Figure 2. The set of samples (Effect Navigator chart) used in the
visual experiment. From top to bottom: L1 (lighter) to L5 (darker).
From left to right: increasing flake size.

at six different measurement geometries. In addition,
the texture of samples was determined by the sparkle
(Sa, Si, and SG) and graininess (G) parameters, which
were provided by this instrument. The measuring area
of this instrument had a 23-mm diameter. Furthermore,
a gonio-hyperspectral imaging system, developed in the
Centre for Sensors, Instruments and Systems Develop-
ment (CD6) at the Universitat Politècnica de Catalunya,
was used to acquire images with high spatial resolution
to evaluate graininess. The system characterizes sam-
ples by their spectral reflectance, and colour at differ-
ent geometries, and also through the textural effects of
sparkle, graininess andmottling. Regarding texturalmea-
surements, the graininess attribute is defined by specific
indices, based mainly on first- and second-order statis-
tics (19, 20). The measuring area of this instrument was
of 50× 37mm.

The lightness or colour background of samples can
influence the graininess perception. For this reason, the
selected samples were achromatic samples (C∗

ab < 10)
and were divided into different groups after taking into
account the lightness value. This classification avoided
other contributions to the graininess perception. Thus
the samples used for this experiment were divided into
five groups according to the lightness value for the
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Figure 3. Thegraininess valuemeasuredby theBYK-mac-i instru-
ment for the set of samples used in this experiment.

45°as45° measurement geometry. That is, the illumina-
tion angle was 45° regarding the normal direction from
the sample, and the measurement or observation angle
was 45° regarding the specular direction, or 0° regarding
the normal direction from the sample. Thismeasurement
geometry was considered to come closer to the illumi-
nation and viewing conditions inside the lighting booth
used for the visual experiment. In each one, there were
five samples with a different graininess value, ranging
from a weak to strong graininess effect (Figure 3):

L1 : L∗ = 60, G ε [3.5, 8]

L2 : L∗ = 45, G ε [4, 9.5]

L3 : L∗ = 35, G ε [4, 11]

L4 : L∗ = 25, G ε [4, 12.5]

L5 : L∗ = 15, G ε [4, 13]

Therefore, 10 different pairs per group were compared.
Then each observer made 50 visual assessments during a
30-min session to avoid fatigue. Three different sessions
per repetition were run. For this visual experiment, 2250
visual assessments were made.

The visual experiment was designed to obtain dis-
similarities. In this way, the dissimilarity matrix could
be computed to apply MDS. Therefore, the input matrix
(D) for MDS was that built according to the observer’s
answer; that is, perceived visual differences in graininess.
This matrix was square and symmetric, which indicates
relationships among samples. In fact, it was a dissim-
ilarity matrix as a higher value means less similarity.
The multidimensional analysis was implemented with
Matlab R© by using the mdscale function.

3. Results

The Results section is structured as follows: first, the out-
comes of the visual experiment were analysed. Observer
intra- and inter-variability was studied to know the con-
sistency of the input data for the MDS algorithm. Sec-
ond, the multidimensional analysis was carried out to
evaluate the minimum number of dimensions needed to
define or characterize the graininess attribute. Finally, the
correlation between the mathematical dimensions and
the physical or perceptual attributes of graininess was
studied.

3.1. Intra- and inter-variability analysis

Intra-observer variability refers to the differences between
the results obtained in each repetition conducted by
an observer. Inter-observer variability refers to differ-
ences between the results obtained by several observers.
To analyse both intra- and inter-variability, different
tests of normality were applied, which were carried
out with a 95% confidence level. After checking each
participant’s results, it was concluded that the data
were not distributed normally. The obtained p-values
were always lower than the level of significance (α = 0.
05). For instance, for one observer, the Pearson Chi-
Square normality test provided a p-value of 2.873e−11,
while that of the Lilliefors (Kolmogorov–Smirnov)
test was of 6.436e−5. Therefore, the final answer of
each observer was calculated by the median of the
three repetitions. Similarly, inter-variability was anal-
ysed by the same procedure. As expected, observers’
responses were not adjusted to a normal distribution
(p-value = .00064 for the Pearson Chi-Square normality
test and p-value = .00937 for the Lilliefors test). For this
reason, instead of computing the observer average, the
median was also calculated. These results were obtained
for all the considered groups (L1–5) and for all the eval-
uated pairs. To visualize this behaviour, Figure 4 shows
the box plot of the results for two lightness profiles (L1
and L5). The bottom and top of the box are the first and
third quartiles, and the red line inside corresponds to
the median. The ends of whiskers represent the mini-
mum and maximum values of all the data. Any data not
included between the whiskers were plotted as an out-
lier with a sum symbol (+). These results corroborate
the previous ones obtained with the tests of normality:
distribution was not normal.

3.2. MDS analysis

The mdscale function performs non-metric MDS on
the dissimilarity matrix D obtained by the previously
described visual experiment. As a result, theYmatrixwas
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Figure 4. Box plot for each pair for two lightness profiles. Left: light samples (L1); right: dark samples (L5).

obtained with information on P dimensions. Scaling was
computed by minimizing the stress parameter defined in
the Introduction. This analysis was carried out for each
lightness level.

First, the analysis explained how input data were dis-
tributed in a n-dimensional space, which is useful for
determining the number of dimensions needed for the
graininess characterization. In Figure 5, data are shown in
the two-dimensional space. The red symbols correspond
to themedian observer (calculated as themedian value of
observers). The other symbols are the individual answers
provided by each observer. The scatter obtained in this
figure corresponds to the variability between observers
shown in the previous section. As seen, data were not
distributed normally but, in standard deviation terms, a
mean value of 1.2 was obtained. This value proved good
to continue with further correlations. It is important to
mention that observers were quite consistent at evaluat-
ing samples with high lightness or low graininess, which
is why there were more scattered samples for L4 and L5.
From this figure, it would appear that two dimensions
were needed to define the graininess attribute, especially
for the dark lightness levels (L3–L5). However, for the
light lightness levels (L* > 45), one property was used
mainly by considering the observers’ median value. For
instance, the variation of D2 was only approximately 1/4
of the variation of D1 for L1 and L2, whereas it was ½
of D1 for L3–L5. One reason for this could be the influ-
ence of the panel set itself. The set or size of the dark
and light patterns could vary within this set, but could
not for the other two. Nevertheless, apparently the most
important reason was that this dark and light pattern was
more evident in dark samples (greater contrast). There-
fore, observers could visualize a second property on this
pattern much better.

The visual differences (dissimilarities) with the dis-
parities (or distances) obtained by the multidimensional
analysis were compared. Figure 6 shows two lightness
levels (L1 and L5). The black dots correspond to the

dissimilarities made by observers with the visual exper-
iment versus the distances predicted by applying MDS.
The red dots correspond to the transformed dissimilar-
ities versus predicted distances. This diagram is called
a Shepard diagram and indicates the goodness of MDS.
We can see that the visual differences were rather well
adjusted to the distances calculated by applying MDS.
Twodifferent linear adjustmentsweremade. The first was
made by imposing the intersection on 0, and the other
one was made with no restriction. The results associated
with both analyses were similar for all the lightness pro-
files. For the first analysis, the average correlation coef-
ficient equalled 0.8496± 0.0206. The average slope was
1.0077± 0.0058. This means that the multidimensional
technique goodness was quite good as the visual differ-
ences were similar to the differences predicted/calculated
by the model. However, the data dispersion was wider
when the differences in graininess were smaller. For this
reason, the second adjustment was made. In this case,
the average correlation coefficient was 0.9294± 0.0115.
The obtained slope equalled 0.8076± 0.0083 and the
constant parameter equalled 0.4758± 0.0178. Themodel
predicted by themultidimensional analysis overestimates
the small graininess differences; that is, the MDS tech-
nique was more sensitive to small graininess differences
than the visual graininess established by the observers.
Generally speaking, the MDS goodness was excellent
when considering the Shepard diagram.

Mathematically, any dataset can be described using
n− 1 dimensions, where n is the number of items to be
scaled. However, if the number of dimensions increases,
stressmust either decrease or remain constant. Therefore,
true data dimensionality or the minimum number of
dimensions to perfectly describe an attribute is based on
the minimum stress value. For this reason, the relation-
ship betweenMDS-Dimensions and the stress parameter
was evaluated by Screeplot (MDS-Dimension vs. Stress).
Screeplot shows that two dimensions are needed to define
the graininess attribute (Figure 7). The stress value is
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Figure 5. Data dispersion in statistical dimensions for the graininess attribute evaluated by a visual experiment.

constant over dimension 2. Even though the results do
not reach a zero value, stress values under 0.1 are con-
sidered excellent, which means that there are no random
measurement errors.

3.3. Relationship betweenmathematical
dimensions and physical attributes

The next step was to identify the relationship between the
statistical dimensions found in the previous section and

some measuring parameters. First, the graininess value
provided by the BYK-mac-i instrument was considered.

Before studying this correlation, the best alignment
with the graininess value was obtained by rotating the
D1/D2 space. It is noteworthy that the major axes
obtained from an MDS are linked to an arbitrary ori-
entation (distances remain constant by rotations). The
method used to optimize the D1/D2 space was the Pro-
crustes rotation method. The procrustes function in
Matlab R© was used. This function determines a linear
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Figure 6. Comparisonbetween the visual differences (dissimilarities) anddisparities calculatedwith theMDSanalysis. Left: light samples
(L* = 60); right: dark samples (L* = 15).

Figure 7. MDS-Dimension vs. Stress according to the lightness
value.

transformation (translation, reflection, orthogonal rota-
tion, and scaling) of the points in matrix Y (D1/D2) to
best fit them to the points in matrix X (G). The criterion

used to optimize the alignment was the sum of squared
errors.

In Figure 8, both dimensions, 1 and 2 are compared
with the graininess value obtained with the BYK-mac-
i instrument. From Figure 8(a), we can observe that
dimension 1 adjusts quite well to the instrumental value
of the graininess attribute measured by the BYK-mac-i
instrument. The correlation coefficient was calculated for
each lightness profile and a mean value of r2 = 0.9566
was obtained. The graininess attribute was also found to
depend on the lightness value: i.e. more graininess for
darker samples of the same pigment size. However, no
relationship was found with dimension 2 (Figure 8(b)).

Therefore, other attempts were made to figure out the
meaning of the second dimension. In a first attempt,
the lightness value was considered to be associated with
the 45°as45° measurement geometry to establish a rela-
tionship with the second dimension. Figure 9 shows
the relationship between both parameters. As seen, it
was not possible to find any relationship between these

Figure 8. Relationship between the statistical dimensions and the graininess parameter calculated by the BYK-mac-i multi-angle
spectrophotometer. (a) Dimension 1 vs. GBYK−mac. (b) Dimension 2 vs. GBYK−mac.
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Figure 9. Relationship between statistical dimension 2 and light-
ness value L* for the 45°as45° measurement geometry.

parameters. A similar behaviour was found for other
measuring parameters, such as sparkle grade, sparkle
intensity or sparkle area for the 45°as45° measurement
geometry.

In Figure 10, the slope computed for G vs. Dim. 1
is plotted against the lightness value for the 45°as45°
measurement geometry, and the calculated correlation
coefficient is r2 = 0.9521. The samples with the same
graininess grade (high), but with different lightness, have
a different dark–light pattern, which means a greater
graininess perception for dark samples. Therefore, it is
clear that the dark–light pattern (graininess perception)
was strongly influenced by the lightness value of the
samples. However, this dependency was not obtained by
the dimension 2 deduced by the visual experiment con-
ducted herein. Therefore, these results are useful for con-
tinuing to working in this field in an attempt to propose
a standardized protocol to measure graininess percep-
tion by considering the influential structural or physi-
cal variables on graininess perception (pigment size and
lightness value).

Finally, the measuring parameters calculated with the
gonio-hyperspectral system were compared with the two
dimensions obtained in MDS. In particular, the sys-
tem provided first- and second-order statistics, such
as entropy, energy and asymmetry for the first order
(21–24), and contrast, correlation, energy and homo-
geneity for the second order (21–25). Before studying any
correlation, the Procrustes rotation method was applied
to the D1/D2 space to optimize the alignment between
parameters. The parameter that showed a better correla-
tion with the first dimension was the correlation param-
eter (Figure 11). The correlation parameter describes
the digital-level linear dependencies in the image, and

Figure 10. Relationship between statistical lightness value L* for
the 45° as 45° measurement geometry and the slope computed
for G vs. Dim. 1.

Figure 11. The relationship between the first dimension and
the correlation parameter calculated by the gonio-hyperspectral
system.

reaches values from −1 to 1, which are perfectly posi-
tively or negatively correlated at 1 or −1, respectively. A
constant image results in an undefined correlation that
equals 0. This comparison gave amean correlation coeffi-
cient of r2 = 0.8958. As the graininess effect was defined
as a light–dark pattern, it proved reasonable to find a
good correlation with the correlation parameter.

From these results, the correlation between dimension
1 and the graininess parameter was provided by the BYK-
mac-i is better (r2 = 0.95 vs. r2 = 0.89). This result was
expected because the graininess value was optimized by a
visual experiment. On the contrary, the parameters pro-
posed by the gonio-hyperspectral imaging system were
defined by only processing the image. For this reason, the
found correlation seemed to guarantee the validity of this
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system for characterizing such coatings, although it was
necessary to combine the correlation parameter with the
visual perception to improve the graininess characteriza-
tion.

Furthermore, the other parameters proposed by the
gonio-hyperspectral system were considered to find a
relationship with Dimension 2. In this way, the first-
order (entropy, energy and asymmetry) and the second-
order statistics (contrast, correlation, energy and homo-
geneity) were compared with Dimension 2. However,
it was not possible to define any relationship with this
dimension.

For this reason, other attempts were made to find a
metrological variable for Dimension 2 based on image
processing. Hence the autocorrelation functionwas com-
puted as it is a good texture descriptor (23). From the
autocorrelation function, it is possible to define a texture
like a particular signature by calculating the periodicity
of the texture, and by computing some parameters asso-
ciated with this function. In addition, the Fourier trans-
form of images was computed to calculate the distinctive-
ness, which can be understood as a contrast parameter
because it is defined after taking into account the max-
imum peak value and the minimum surrounding val-
ues (23). Nevertheless, no relationship was found with
Dimension 2. As the previous results showed a relation-
ship between the graininess effect and the lightness value,
it seemed coherent to think that this second dimension
was related with the lightness value or with the image
contrast. So it was necessary to apply other imaging
processes to obtain other parameters related with this
attribute to figure out the physicalmeaning of this dimen-
sion. However, the imaging process is a complex topic
and goes beyond the scope of this paper. It might can
be interesting to establish the visual differences in the
graininess of samples with distinct lightness values. That
is, the current visual experiment was designed by fixing
the lightness value in the samples to be compared. The
new experiment should be done by comparing samples
with different lightness values. This would allow more
information to be found with the interaction between
the graininess and the lightness values, while MDS could
provide new mathematical dimensions that better corre-
late with physical or perceptual dimensions.

4. Conclusions

In this work, graininess characterization was conducted
by MDS and visual perception. The input data for
this algorithm were based on a dissimilarity matrix
obtained by a visual experiment. A psychophysical exper-
iment, based on the interval method (point-rating scal-
ing), was designed to establish graininess differences

among samples. The samples used belong to the Effect
Navigator R© chart, composed of 25 samples divided into
5 different groups according to the lightness value. The
results from this experiment were used to apply MDS.
From this analysis, we conclude that two dimensions are
involved in graininess perception.

The multidimensional analysis provides statistical
results about the dissimilarities or differences between
samples, and a good correlation between the visual dif-
ferences provided by the designed visual experiment and
those obtained by themultidimensional analysis was ver-
ified.

Finally, a relationship between the visual and the
instrumental graininess was evaluated by taking into
account two different instruments. On the one hand,
the graininess value (G) provided by the BYK-mac-i
instrument was considered. The first dimension perfectly
matched the instrumental graininess, while no correla-
tion was found between any variable and the second
dimension. On the other hand, the parameters proposed
by the gonio-hyperspectral system were considered, and
focused on the first- and second-order statistics. A
good relationship was found between the first dimension
and the correlation parameter, defined as the digital-level
linear dependencies in the image. The other parame-
ters were also considered to confer meaning to the sec-
ond dimension. However, there was no correlation with
any feature associated with the co-occurrence matrix.
Therefore, the autocorrelation function and the Fourier
transform were obtained to find a parameter that was
related to the second dimension, but not successfully.
Since no correlation of this second dimension with any
measurable quantity was found, future research is needed
to look for new information related to it. A possible
attempt would be to apply new imaging processes to
establish a relationship between the second mathemat-
ical dimension and a metrological one. Furthermore,
other visual experiments can be designed to better estab-
lish or define the mathematical dimensions. Thus, a new
visual experiment could be conducted by obtaining visual
differences based on graininess, although samples with
different lightness should be analysed as well. In this
way, the input data for the MDS algorithm would be
built after taking into account the interaction or relation-
ship between graininess and lightness, and more useful
information could be obtained with the MDS algorithm
to better correlate the mathematical and metrological
dimensions.
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