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ABSTRACT When examining a sector of the economy, it can be sometimes difficult to identify the
relationships between the underlying variables that compose it. Therefore, we developed a causal analysis
technique, capable of converting large amounts of data into a directed graph of cause-effect relationships.
The main objective of the technique is to locate the attractors associated with the system, that is, the sets
of variables toward which the system tends dynamically. This methodology is based not only on General
System Theory, but also on the Graph Theory and a discrete version of Chaos Theory. However, when
systems have a large number of variables, applying the technique can be a tedious task.We thus implemented
the Smarta application, a causal analysis simulator that allows automating this methodology. The software
constitutes a reimplementation and continuation of the application already developed by our research group.
We conducted a causal analysis of a system extracted from a database of structural statistics of Spanish
industrial sector companies between 2008 to 2015 (the data were obtained from Spain’s National Institute
of Statistics). We focused on the yearly analysis of companies’ structural and economic properties, based
on 21 proxy variables. Based on the proposed analysis, we attempted to answer the following questions:
how were the survey variables causally related? Were there any groups of independent variables within the
system? And what trends did the system follow over the 2008-2015 period? The aim was to propose an
alternative to classical statistical methods employed until now.

INDEX TERMS Attractor, causality, industrial sector, smarta.

I. INTRODUCTION
A. BACKGROUND
A great scientific challenge throughout history has been that
of creating mathematical models able to accurately describe
different complex systems found in nature. During the second
half of the twentieth century, various experts felt the need
to elaborate a theory that would allow these systems to be
modelled, but they did so from a global perspective without
taking into account the elements or the relationships that
composed them.

Ludwig Von Bertalanffy founded General System Theory
(hereon GST) in which he defined the basic principles under-
lying these types of systems [1], [2]. The author’s concep-
tion of a system was that of a set of elements that were
not only interrelated among themselves, but also with their
environment.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianquan Lu.

Other authors, such as M. D. Mesarovic and
Y. Takahara, formulated their own version of GST based on
Set Theory, according to which a system is defined as a series
of non-empty sets [3]. Later, they published an article on
their Abstract Systems Theory [4], in which they introduced
two major concepts: the abstract system (which includes the
system definition above) and the complex system (a system
constituted by several subsystems).

However, the problem is that many systems in real life such
as economic and social systems are actually very difficult
to model using the complex system model. To address the
problem, Y. H. Ma and Y. Lin developed a new system
definition based on two components: the object set, which
collects all the objects or variables of the system; and the
relationship set, which includes all the relations between the
objects of the system [5]. This definition is visibly similar to
that currently used in Graph Theory [6].

Furthermore, the concept of causality, i.e. the ability to
predict future consequences of a given event is fundamental.
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The idea can be easily extrapolated to the field of GST,
where causality can be defined as the ability of one vari-
able to be the cause of another within a complex system.
In 1956, N. Wiener postulated that an initial variable can
be considered to have a causal relationship with another if
the prediction capacity of the second variable is improved
when introducing information relating to the first variable [7].
Moreover, it was not until 1969 that C. Granger published a
mathematical implementation of this idea applied to the field
of linear autoregressive models of stochastic processes [8].
This technique is nowadays highly applicable to a range of
fields including neuroscience. S. Bressler and A. Seth claim
to have obtained significant results based on Wiener-Granger
causality that helped them to understand the neural basis of
cognition [9]. For his part, P. M. Senge states that although
we see cause-effect relationships as linear (linear causality),
reality is in fact constituted by circular relations (circular
causality) [10].

B. RELATED WORK
During the decade of the 50s appears the theory of Systems
Dynamics (SD), whose father was Forrester [11]–[13]. The
SD arises from the problem that the General Electric com-
pany proposes to Forrester, since they needed to model and
understand the economic and labor dynamics of some of their
factories [14]. Thus, this methodology allows modeling and
simulating complex systems present in numerous areas (eco-
nomics, social sciences, biology, engineering, environment,
etc.), with the main objective of understanding its operation,
analyzing scenarios and alternatives and helping in decision
making [15].

In 2000, Lin and Liu [16], [17] proposed analyzing com-
plex systems using data and applied the technique to the
prediction of dry and warmwinds to tackle the problem posed
by winds for crop growth. Three years later, Csató et al. [18]
advanced a technique to analyze probabilistic data models
using a large number of hidden variables. These models aim
at explaining the complexity of the observed data bymeans of
hidden or unobservable causes modelled as random variables.
In 2011, Li et al. [19] published a method to describe, express
and distinguish time series through complex network graphs
based on these series’ spatial distribution properties.

In 2014, Lloret and Nescolarde [20] developed a tech-
nique to convert large amounts of data into a directed graph
of cause-effect relationships which was then applied to a
qualitative version of Chaos Theory. The technique aimed at
finding the complex system’s attractor sets or trends. A major
advantage of the technique is that it allows to predict the
behavior of the system dynamically, according to time series
updates. As in the SD, this methodology also makes use of
causal graphs; however, on this occasion the cause-effect rela-
tionships are calculated from the data, while in the SD they
should be established initially. During that year, they applied
this methodology to ecosystems and biological pest control
inMediterranean greenhouses, where they modelled different
ecological systems adopting an alternative approach, making

use of the concepts of structural function, coverage and invari-
ability [21]. They also obtained important results when apply-
ing causality to different variables underlying national tourist
flows [22]. In 2015, Alonso-Stenberg et al. [23] conducted a
causal analysis study using the 73.3 Eurobarometer database
of June 2010, based on a survey of 26,602 EU citizens on
the potential health effects of electromagnetic fields and other
environmental and health factors.

However, the applications of Chaos Theory are numerous
and not only limited to the phenomenon of causality; we also
find examples in the economy and networks.

In recent works, Akkaya et al. analyze the monetary
dynamics of Bitcoin for the period 2011-2014, through a
technique that combines delay time, embedding dimension
and maximal Lyapunov exponents. When they find that this
exponent is maximum and positive, then there could be a
chaotic behavior in the monetary dynamics of Bitcoin [24].

Rusyn and Savko have managed to control the chaotic
behavior of a particular economic model: Cournot’s duopoly
model (presented by M. Kopel). Specifically, they do this
by adding a new time function to the model called the state
feedback controller [25].

Haley states that it is possible to predict non-recurring
economic cycles if chaotic Sprott systems are applied. Even
so, such cycles could disappear if a certain short-term interest
value is established [26].

Harikrishnan et al. have been able to create a recurrent
complex network from chaotic time series. Unlike recurrent
networks that are usually obtained in this way (which are
undirected and unweighted), the authors get weighted recur-
rent networks, which facilitates the discrimination of one
chaotic time series from another that is noisy [27].

If we compare the technique used by Harikrishnan et al.
with that proposed in this paper, we can see that one of the
similarities is that in both cases we turn the time series into a
complex network. However, in the case of Harikrishnan et al.
we obtain a network that is undirected and weighted, whereas
in our methodology the graphs obtained are always directed,
with the possibility that the relationships have weights or not.
In our technique, the network is obtained through the use of
correlation and causality, while in Harikrishnan’s approach
et al. it is obtained through recurrence. Finally, the approach
we propose has as its final objective the search for the sys-
tem’s attractor sets, while that of Harikrishnan et al. pursues
the characterization of the structure of chaotic attractors.

In the disciplines of networks and economics,
A. S. García’s new approach is interesting. He uses it to
carry out an analysis of the Spanish economy for the period
2000-2005, discovering that there have been important struc-
tural changes during this period. The proposed method
makes use of the concept of structural equivalence present
in network theory, but applied to the economic field of
input-output [28].

P. Balland et al. have used novel network dynamic models
to study how the behavior of two types of networks evolves:
technical knowledge and business knowledge. By using this
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methodology in the case of a toy cluster in Spain, they
have perceived that the two types of networks have different
behavior [29].

In the Spanish industrial context, Köhler tries to restore
industrial relations from the end of the dictatorship to the
present day. He also analyses the existing dilemmas of social
and political actors in the period of the economic crisis [30].

Finally, regarding causality and cybernetics, Chen et al.
[31] propose a good graphical model of multivariable alarm
prediction applied to cyber-physical systems. This model is
based on multivariate causal analysis and network parameter
learning. The great advantage of thismodel is that it is capable
of: (a) accurately predict possible future alarm events, (b)
detect failures in the system and (c) find the origin of these
errors.

C. MOTIVATION
Determining cause-effect relationships and locating attractors
can be truly arduous when working on systems with a large
number of variables. An application capable of automating
the entire process is therefore essential: this is how Smarta
software was born. Smarta allows entering the variables of
the complex system under study; based on the data, it asks the
user for different parameters that it will use to calculate cause-
effect pairs and represent an interactive directed graph as well
as determine the system’s trends, in terms of structural func-
tions, coverage, invariability, orbits, attractors, and basins of
attraction. The application comes in two versions: (a) the
desktop version, developed in the C++ language and (b) the
web version in PHP and JavaScript [32]. Both versions are
follow-ups of the software developed by M. Lloret, P. Esteve,
and E. Almenara in 2009 [33].

In this study, we conducted a causal analysis of a system
based on a database of structural statistics of companies
part of Spain’s industrial sector (obtained from the Span-
ish National Institute of Statistics, or INE by its Spanish
acronym), using the 2008 to 2015 time series. The survey
focused on companies’ annual structural and economic prop-
erties, based on 21 proxy variables grouped into 5 cate-
gories: occupied personnel, income, stock variations, costs,
and investments. Based on this analysis, we attempted to
answer the following questions: how are the variables of the
survey causally related? Are there any groups of indepen-
dent variables within the system? And, what trends does the
system follow during the study period? We used the Smarta
causal simulator, which allowed us to obtain results automat-
ically and helped us to interpret them. We thus advance an
alternative to classical statistical methods.

II. METHODOLOGY
A. THE PROPOSED TECHNIQUE
The technique used in the present study is outlined in Fig. 1.
As illustrated, the first step consists in selecting the variables
to study and that will make up the complex system. In our
example, these variables are: A,B, . . . ,G (Fig. 1, step 1).

FIGURE 1. Outline of the proposed causal analysis.

Next, the correlation between each pair of system variables
is calculated using the Pearson coefficient. Pairs of variables
whose correlation exceeds a certain threshold are then val-
idated and the rest are discarded. As can be seen, relation-
ships between correlated pairs are marked with a dashed line
(Fig. 1, step 2). This is due to the fact that a relationship
may exist between correlated pairs, but the direction of the
relationship is unknown.

The next step is to determine whether each pair variable
behaves as a cause, as an effect or as both. For example, in the
diagram, A → F indicates that variable A is the cause of F
(unidirectional relationship), while F ↔ E indicates that F is
the cause of E , and in turn, E is the cause of F (bidirectional
relationship).

Once all cause-effect pairs are defined, we can represent
them by means of a directed graph, where graph nodes rep-
resent the variables and the edges of the graph illustrate the
relationships (Fig. 1, step 3). The objective of this graph it to
visualize the system and thus facilitate its analysis.

Finally, we analyze the graph to locate the system’s attrac-
tors as well as other properties related to discrete Chaos
Theory. In Fig. 1 (step 4), the set {E,F,G} is highlighted.
Indeed, if we take any variable in the system and follow its
chain of relationships, wewill always end up in this set, which
is why this set constitutes the system’s attractor.

B. SYSTEM ATTRACTORS AND BASINS OF ATTRACTION
An attractor is a set in a system capable of attracting the
rest of the variables that are part of its basin of attraction.
Attractors correspond to areas that delimit the variables’
apparently disorganized behavior, so they are fundamental to
predict a complex system’s behavior or trend over time. For
its part, the basin of attraction is the set formed by all the
variables from which the attractor can be reached, including
the attractor itself. Therefore, the basin of attraction is an indi-
cator of the attractor’s area of influence within a system. If we
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FIGURE 2. Concept of attractor and basin of attraction. The system
attractor

{
E, F , G

}
can be reached from any variable

{
A, B, C, D, E, F , G

}
of the basin of attraction.

consider the directed graph of the complex system in Fig. 2,
formed by the variables {A,B,C,D,E,F,G,H , I }, we can
see that most of these variables (all except H and I ) have
causal links towards the set {E,F,G}, which corresponds
precisely to the system’s attractor. As we can see, the attractor
forms at least one causal circle or loop that prevents them
leaving and going to other parts of the system.

We can also see that the basin of attraction of
this latter attractor would be formed by the variables
{A,B,C,D,E,F,G}, because if we follow the chain of
relationships of any of these variables, we can always reach
the attractor {E,F,G}. This does not apply to the H and I
variables, since they do not lead to the attractor, which is why
they do not belong to the basin of attraction. Furthermore,
we can see that the basin of attraction will always contain its
corresponding attractor, so the size of the basin will always be
greater than or equal to that of the attractor, and never below
it (attractor ⊆ basin of attraction).

Significantly, not all complex systems need to have attrac-
tors, but when attractors are present, each will have an asso-
ciated basin of attraction. A complex system usually consists
of one or more subsystems that are isolated from one another
(also called independent sets), so each independent set can
have a maximum of one attractor.

To finish, identifying attractors is particularly important
when systems contain a large number of variables and data
is periodically updated, as attractors enable deducing and
identifying changes in trends.

C. THE CASE STUDY
First, the aim was to conduct a causal analysis of a system
based on the structural statistics of Spain’s industrial sector
companies. Specifically, we worked on a time series from
2008 to 2015, that included different bind variables accord-
ing to sectors of activity. This database was obtained from
INE and can be accessed through [34]. The statistical study
consisted of an annual survey of manufacturing industries,
extractive industries, energy, gas and water companies, and
sanitation, waste management and decontamination com-
panies. The main objective of the survey was to identify

TABLE 1. Category, name and code of the variables included in
companies’ structural statistics (variables are coded by their acronyms).

companies’ structural and economic properties, based on a
set of 21 proxy analysis variables, grouped into different
categories (see Table 1). The units of measurement of the
variables were as follow:
• Variables related to occupied personnel: number of
people (occupied personnel) and thousands of hours
(worked hours).

• Variables related to income, stock variations, costs, and
investments: thousands of euros (e).

The aim of the study was to uncover the causal relation-
ships between the structural and economic variables of the
national industrial sector and determine the system’s behavior
over the 2008-2015 period based on its attractors, basins of
attraction, and independent sets.

To carry out the causal analysis, we used Smarta, a sim-
ulator allowing to automate the technique described above.
The simulator was elaborated by the Systemics, Cybernetics,
and Optimization research group. The desktop version of this
simulator was implemented using C++ language because it
is highly efficient. We also created a web version using the
PHP and JavaScript languages. Although we made use of
the desktop version in the present article, the methodology
described here can also be applied to the web version.

We thus began by introducing the 21 study variables into
Smarta, using the table located in the Variables panel (Fig. 3,
step 1). Next, we proceeded with the correlation analysis for
each pair of variables and established the relevant threshold.
Pairs with a Pearson coefficient (in absolute value) higher
than or equal to the threshold are shown in the Correlation
panel (Fig. 3, step 2). Next, we performed the calculation
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FIGURE 3. Panels and work sequence in Smarta.

of the cause-effect pairs and printed the direct influences
of each variable in the Cause-effect pairs panel (Fig. 3,
step 3). We then obtained the results of the analysis regarding
the attractor sets, basins of attraction, and independent sets,
among others. These results are shown in the Results panel,
in the form of a drop-down list (Fig. 3, step 4). Finally,
it was also possible to generate the interactive directed graph
associated with the system, visualizing it in the Directed
graph panel (Fig. 3, step 5), where each variable is repre-
sented by a circle and each relationship by a single or double
arrow, depending on whether the relationship is unidirec-
tional or bidirectional. A ratio marked in purple indicates a
positive Pearson coefficient in the cause-effect pair, while a
red color indicates a negative Pearson coefficient between the
pair.

III. RESULTS
To analyze the database we used a correlation threshold
of 0.75, thus obtaining pairs whose absolute value of Pearson
correlation coefficient,

∣∣rxy∣∣, was greater than or equal to
this value. The correlated pairs (a total of 36), as well as
their correlation coefficient were grouped in Table 2. After
conducting the causality analysis for each correlated pair,

we obtained the cause-effect pairs shown in Table 3 (a total
of 35). The correlation threshold value was selected in such a
way as to reach an optimal compromise between the number
of cause-effect pairs as strongly related as possible and the
number of attractors with the greatest number of variables.

Next, we generated the directed graph associated with the
system under study (Fig. 4). A total of 5 independent sets
appeared, from S1 to S5, whose values are shown below:

S1 = {GS, GP} (1)

S2 = {CIF, CIR} (2)

S3 = {WPO, SR} (3)

S4 = {OP, WH, OG, OOI, SC, OOC, ITA, IIA} (4)

S5 = {PS, ST, TOI, PWO, ESC, TOC} (5)

Of the 5 independent sets shown, S1 and S2 did not generate
any attractor (since they did not contain any loops), while S3,
S4, and S5 generated attractors A(S3), A(S4), and A(S5):

A(S3) = S3 (6)

A(S4) = S4 (7)

A(S5) = {PS, ST, TOI, ESC, TOC} (8)
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TABLE 2. Pairs of variables correlated with
∣∣rxy

∣∣ > 0.75.

TABLE 3. Cause-effect pairs obtained with
∣∣rxy

∣∣ > 0.75.

FIGURE 4. Directed graph associated with the system under study.

Moreover, each of these attractors’ areas of influence
would be determined by their basins of attraction, which
in this case, were represented as C(S3), C(S4), and C(S5),
corresponding respectively to their own sets S3, S4, and S5.
As we can see, these basins are characterised by the fact
that when selecting a variable in any of them and following
a sequence of causal iterations, we are led to its associated
attractor.

Regarding the results, it is possible to observe that attractor
A(S3) causally relates the variable ‘‘Service Rendering’’ (SR)
to ‘‘Work Performed by Other companies’’ (WPO), indicat-
ing that the income received by the company for services
rendered to third parties can favour the acquisition of external
services performed by other companies, and vice versa.

On the other hand, we can see that attractorA(S4) links vari-
ables related to the categories of occupied personnel, invest-
ments, costs, and income. Specifically, occupied personnel’s
only two variables would be related in a bidirectional way:
‘‘Occupied Personnel’’ (OP) and ‘‘Worked Hours’’ (WH).
The reason for this could be that an increase in number of
hours workedwould cause an increase in amount of employed
personnel, and vice versa.

We also found that the variable ‘‘Investment in Tangible
Assets’’ (ITA) directly influences the variable ‘‘Investment
in Intangible Assets’’ (IIA), but not the other way around,
so bidirectionality does not apply here. This phenomenon
reflects the fact that tangible assets (stock, furniture, machin-
ery, money, etc.) are usually more economically significant
than intangible assets (know-how, copyright, brands, etc.) in
companies.

We also found that both the variables relating to occupied
personnel and to investment causally affected the variable
‘‘Staff Costs’’ (SC). It may be deduced that bigger invest-
ments in assets causes the company to expand, so a greater
amount of personnel must be hired.

If we focus on income variables, as in the case of ‘‘Oper-
ating Grants’’ (OG) and ‘‘Other Operating Income’’ (OOI),
we can observe a bidirectional relationship, which makes
sense because they belong not only to the same category, but
also to the same domain (Operation). This cause-effect pair
is related to the rest of the attractor variables via the variable
‘‘Investment in Intangible Assets’’ (IIA).

Finally, it is necessary to note the negative influences
within the attractor, whichwould be originated by the variable
‘‘Other Operating Costs’’ (OOC) (relationships coloured in
red in Fig. 4). The negative relationships between OOC and
‘‘Occupied Personnel’’ (OP), ‘‘Worked Hours’’ (WH), ‘‘Staff
Costs’’ (SC), ‘‘Investment in Tangible Assets’’ (ITA), and
‘‘Investment in Intangible Assets’’ (IIA), would thus indi-
cate that increases in operating costs (such as equipment
repairs, salaries, travel costs, advertising, etc.) would have
a negative impact on other investments, such as the hiring
of personnel, material goods (raw materials, stock, furniture,
etc.) and intangible assets (goodwill, customer loyalty, brand
influence, etc.). Therefore, it seems logical that if a com-
pany has a certain amount of resources and allocates them
to certain sections, other economic aspects would be more
neglected.

Next, attractorA(S5) links the variables ofmain income and
costs. First of all, it is worth noting that a loop is formed by the
variables ‘‘Total Operating Costs’’ (TOC), ‘‘Total Operating
Income’’ (TOI), ‘‘External Service Costs’’ (ESC), and ‘‘Sales
Turnover’’ (ST): this loop tells us that major dependency
and feedback relationships exist between them. For example,
an increase in turnover would cause an increase in total
income based on product operations. Similarly, if a cost
increase is related to external services, it would also affect
the company’s total operating costs. In addition, the loop
would represent the feedback process, in this case, between
the company’s main inputs and outputs.
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Secondly, we can see that although the variable ‘‘Purchases
and Work performed by Other companies’’ (PWO) does
belong to the basin of attraction C(S5), it is not included in
attractorA(S5). Indeed, the PWOvariable influences the other
variables but it is not itself influenced by other variables,
because it constitutes a starting variable and is independent
from the others.

To finish, it is worth mentioning that the variable ‘‘Product
Sales’’ (PS) acts as a drain, since not only all the variables of
the basin C(S5) end in PS, but PS does not influence any vari-
able. This reveals the importance of a company’s income and
costs regarding the sale of products or services to customers.
Although the independent sets S1 and S2 do not generate
any attractor, they are relevant because of the relationships
between the variables. In S1, the variable ‘‘Goods Sales’’
(GS) would influence ‘‘Goods Purchases’’ (GP), without any
bidirectionality. This result may reveal that it is possible that
an increasemerchandise purchase does not lead to an increase
in sales.

In S2, the variable ‘‘Changes in Inventories in Finished and
current products’’ (CIF) would be causally directed towards
‘‘Changes in Inventories of Raw materials, other provisions
and merchandise’’ (CIR). We can thus interpret this by the
fact that a reduction in stocks of products created by a com-
pany (due to sales) would also lead to a reduction in stocks of
raw materials (since the products are made from them).

Finally, it is worth noting that the variable ‘‘Work
Performed by Company’’ (WPC) is isolated: although it is
considered in the initial analysis, it does not present a suf-
ficiently robust relationship with the rest of the variables
to go beyond the established correlation threshold (0.75).
Therefore, it would not be part of any cause-effect pair, so we
can deduce that the contribution of WPC to system trends is
almost negligible.

On the other hand, results of the survey provided by the
INE offer general conclusions such as the following: by 2014,
the industrial sector’s turnover grew by 1.7%; machinery and
equipment repair and installation reached its highest turnover
increase (1.5%); and 29.7% of industrial sector sales took
place in foreign markets [35].

However, none of the provided results show how the vari-
ables are causally related among themselves, which indepen-
dent sets of variables can be found, or the system’s trends over
a period of time. To address these questions, we analysed the
system using the Smarta causal simulator.

IV. LIMITATIONS AND FUTURE WORK
Before concluding our paper, we would like to mention the
limitations of this study, as well as the possible lines of future
work.

Regarding the limitations of the study, we can point out that
although Smarta is capable of working with a large number of
variables (hundreds or a few thousand variables), it would be
necessary to improve the application so that it could work on a
larger scale (hundreds of thousands or millions of variables),
in order to adapt it to the Big Data era. Likewise, this also

generates the disadvantage that the larger the system under
study and the more relationships are found, the more compli-
cated can be the interpretation of the results.

Another limitation we can find is that Smarta works with
quantitative variables, which is why the software uses Pear-
son’s correlation coefficient. Therefore, the application could
not currently work with categorical variables.

In addition, while the proposed technique helps us locate
causal relationships within a system, there may also be exter-
nal factors that are unknown but affect system variables.
A final limitation is that there could be causal phenomena
within companies that are not reflected in the results obtained
by the proposed technique, due to the nature of the data.

With regard to possible future lines of work, we could
highlight the following:
• Causal analysis of the industrial survey for the years
2016, 2017 and 2018.

• Comparison of the results when calculating cause-
effect pairs using another technique, such as Granger’s
causality.

• Application of the technique to the tourism sector,
related to the stock market.

• Enhanced application features, so that Smarta can work
with a greater number and type of variables.

V. CONCLUSIONS
GST is a highly valuable tool that can be applied to the general
modelling of systems in different areas of study, including
economic sectors. Thanks to the technique presented in the
present article, which combines GST, Graph Theory, and
Discrete Chaos Theory, it is possible to discover a complex
system’s trends as long as attractor sets associated with the
system can be determined. Attractors are groups of variables
that attract the rest of the variables in their basin of attraction.

A major advantage of the proposed technique is that it
allows to predict a system’s behavior in an alternative and
dynamic way. One setback, however, is that the technique’s
calculation procedure can prove to be a truly tedious, espe-
cially when large numbers of variables are present in the
system. We therefore implemented the Smarta application,
which helped us simplify and automate the process.

By way of synthesis, we can deduce that the trends of the
system at a general level during the period 2008-2015 have
been given by the set of attractors found: A(S3), A(S4) and
A(S5). In this sense, we have discovered that the trends
are divided into three groups that link different categories,
namely:

1) Income and acquisition of services.
2) Occupied personnel, investments, costs and income.
3) Main income and principal costs.
Based on these results, it could be interesting for a

company to analyze its trend network, in order to find
out which variables should increase or decrease in order
to optimize other variables of interest. For example, for
attractor A(S5), a company could study which variable per-
taining to main costs would be less expensive to promote
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the sale of products and services (pertaining to main
income).

If we observe the period of study, we must highlight that
the year 2008 coincides with the beginning of the world
economic crisis (Lehman Brothers bank’s collapse), while the
year 2015 marks the end of this crisis in Spain. Although at
present the Spanish economy has not recovered the levels
prior to the crisis, we can affirm that the companies, as a
whole, have contributed positively to neutralize the negative
effects caused during this period.

Finally, we can emphasize that this study offers a comple-
mentary analysis to the statistical techniques used in the INE
survey; and in turn, the use of Smarta allows opening new
lines of work in the field of GST and the business sector.
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