Educational videos: Introduction and Taxonomy

Sergio Luján Mora
sergio.lujan@ua.es
@sergiolujanmora
QUESTION

• Do people watch videos in Internet?
<table>
<thead>
<tr>
<th>Site</th>
<th>Daily Time on Site</th>
<th>Daily Pageviews per Visitor</th>
<th>% of Traffic From Search</th>
<th>Total Sites Linking In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google.com</td>
<td>7:58</td>
<td>8.99</td>
<td>4.60%</td>
<td>4,147,418</td>
</tr>
<tr>
<td>Youtube.com</td>
<td>8:18</td>
<td>4.82</td>
<td>15.90%</td>
<td>3,132,448</td>
</tr>
<tr>
<td>Facebook.com</td>
<td>9:60</td>
<td>4.09</td>
<td>8.70%</td>
<td>8,373,782</td>
</tr>
<tr>
<td>Baidu.com</td>
<td>7:45</td>
<td>6.11</td>
<td>8.30%</td>
<td>191,317</td>
</tr>
<tr>
<td>Wikipedia.org</td>
<td>4:12</td>
<td>3.25</td>
<td>67.70%</td>
<td>2,187,187</td>
</tr>
</tbody>
</table>

December 2017
<table>
<thead>
<tr>
<th>Site</th>
<th>Daily Time on Site</th>
<th>Daily Pageviews per Visitor</th>
<th>% of Traffic From Search</th>
<th>Total Sites Linking In</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Google.com</td>
<td>8.01</td>
<td>10.19</td>
<td>2,530,450</td>
</tr>
<tr>
<td></td>
<td>Enables users to search the world’s information, including webpages, images, and videos. Offers...More</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Youtube.com</td>
<td>8.52</td>
<td>5.07</td>
<td>1,977,413</td>
</tr>
<tr>
<td></td>
<td>YouTube is a way to get your videos to the people who matter to you. Upload, tag and share your...More</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Facebook.com</td>
<td>9.35</td>
<td>3.97</td>
<td>5,176,201</td>
</tr>
<tr>
<td></td>
<td>A social utility that connects people, to keep up with friends, upload photos, share links and...More</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Baidu.com</td>
<td>7.16</td>
<td>5.58</td>
<td>148,859</td>
</tr>
<tr>
<td>Site</td>
<td>Daily Time on Site</td>
<td>Daily Pageviews per Visitor</td>
<td>% of Traffic From Search</td>
<td>Total Sites Linking In</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1. Google.com</td>
<td>7:58</td>
<td>8.99</td>
<td>4.60%</td>
<td>4,147,418</td>
</tr>
<tr>
<td>2. Youtube.com</td>
<td>8:18</td>
<td>4.82</td>
<td>15.90%</td>
<td>3,132,448</td>
</tr>
<tr>
<td>3. Akipress.org</td>
<td>8:40</td>
<td>3.54</td>
<td>11.10%</td>
<td>2,141</td>
</tr>
<tr>
<td>4. Vk.com</td>
<td>10:39</td>
<td>4.86</td>
<td>7.10%</td>
<td>515,841</td>
</tr>
<tr>
<td>5. Ok.ru</td>
<td>4:50</td>
<td>2.10</td>
<td>5.90%</td>
<td>61,045</td>
</tr>
</tbody>
</table>

December 2017
<table>
<thead>
<tr>
<th>Site</th>
<th>Daily Time on Site</th>
<th>Daily Pageviews per Visitor</th>
<th>% of Traffic From Search</th>
<th>Total Sites Linking In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google.com</td>
<td>8.01</td>
<td>10.10</td>
<td>1.30%</td>
<td>2,530,450</td>
</tr>
<tr>
<td>Youtube.com</td>
<td>8.52</td>
<td>5.07</td>
<td>11.70%</td>
<td>1,977,413</td>
</tr>
<tr>
<td>Akipress.org</td>
<td>9.45</td>
<td>5.42</td>
<td>17.60%</td>
<td>1,970</td>
</tr>
<tr>
<td>Yandex.ru</td>
<td>6.29</td>
<td>3.30</td>
<td>0.60%</td>
<td>241,961</td>
</tr>
</tbody>
</table>
February 7, 2017

The Cisco® Visual Networking Index (VNI) Global Mobile Data Traffic Forecast Update is part of the comprehensive Cisco VNI Forecast, an ongoing initiative to track and forecast the impact of visual networking applications on global networks. This report presents some of the major global mobile data traffic projections and growth trends.

Executive Summary
Mobile video traffic accounted for 60 percent of total mobile data traffic in 2016. Mobile video traffic now accounts for more than half of all mobile data traffic.

The top 1 percent of mobile data subscribers generated 6 percent of mobile data traffic, down from 8 percent in 2015 and 52 percent in 2010. According to a mobile data usage study conducted by Cisco, the top 20 percent of mobile users generated 56 percent of mobile data traffic, and the top 1 percent generated 6 percent.

Average smartphone usage grew 38 percent in 2016. The average amount of traffic per smartphone in 2016 was 1,614 MB per month, up from 1,169 MB per month in 2015.

Smartphones (including phablets) represented only 45 percent of total mobile devices and connections in 2016, but represented 81 percent of total mobile traffic. In 2016, the typical smartphone generated 48 times more mobile data traffic (1,614 MB per month) than the typical basic-feature cell phone (which generated only 33 MB per month of mobile data traffic).

Globally, there were 325 million wearable devices (a sub-segment of the machine-to-machine [M2M] category) in 2016. Of these, 11 million wearables had embedded cellular connections.

Per-user iOS mobile devices (smartphones and tablets) data usage surpassed that of Android mobile devices data usage. By the end of 2016, average iOS consumption exceeded average Android consumption in North America and Western Europe, where iOS usage was 4.8 GB per month and Android was 3.2 GB per month.
More than three-fourths of the world’s mobile data traffic will be video by 2021. Mobile video will increase 9-fold between 2016 and 2021, accounting for 78 percent of total mobile data traffic by the end of the forecast period.

Updated: November 26, 2018 Document ID: 1543280537836565

Contents

Executive summary
Forecast overview
Trends
 Trend 1: Continued shifts in mix of devices and connections
 Trend 2: IPv6 adoption enables Internet of Things (IoT) connectivity
 Trend 3: M2M applications across many industries accelerate IoT growth
 Trend 4: Applications traffic growth
 Trend 5: “Cord-Cutting” analysis
 Trend 6: Security analysis
 Trend 7: Effects of accelerating speeds on traffic growth
of 46 percent between 2017 and 2022, reaching 77.5 exabytes per month by 2022.

Global mobile data traffic will grow nearly twice as fast as fixed IP traffic from 2017 to 2022. Fixed IP traffic will grow at a CAGR of 24 percent between 2017 and 2022, while mobile traffic grows at a CAGR of 46 percent. Global mobile data traffic was 9 percent of total IP traffic in 2017 and will be 20 percent of total IP traffic by 2022.

Globally, IP video traffic will be 82 percent of all IP traffic (both business and consumer) by 2022, up from 75 percent in 2017. Global IP video traffic will grow four-fold from 2017 to 2022, a CAGR of 29 percent. Internet video traffic will grow fourfold from 2017 to 2022, a CAGR of 33 percent.

Live Internet video will account for 17 percent of Internet video traffic by 2022. Live video will grow 15-fold from 2017 to 2022.

Internet video surveillance traffic will increase sevenfold between 2017 to 2022. Globally, 3 percent of all Internet video traffic will be due to video surveillance by 2022, up from 2 percent in 2017.

Virtual Reality (VR) and Augmented Reality (AR) traffic will increase 12-fold between 2017 and 2022 globally, a CAGR of 65 percent.

Internet video to TV will increase threefold between 2017 to 2022. Internet video to TV will be 27 percent of fixed consumer Internet video traffic by 2022.

Consumer Video-on-Demand (VoD) traffic will nearly double by 2022. The amount of VoD traffic by 2022 will be equivalent to 10 billion DVDs per month.

Internet gaming traffic will grow ninefold from 2017 to 2022, a CAGR of 55 percent. Globally, Internet gaming traffic will be 4 percent of global IP traffic by 2022, up from 1 percent in 2017.

Global network performance

Broadband speeds will nearly double by 2022. By 2022, global fixed broadband speeds will reach 75.4 Mbps, up from 39 Mbps in 2017.

Global traffic topology

Content Delivery Networks (CDNs) will carry 72 percent of Internet traffic by 2022 up from 56 percent in 2017. Thirty-three percent of service provider network capacity will be within a metro network by 2022, up from 27 percent in 2017.
26% CAGR
2017–2022

Exabytes per Month

- **Internet Video** (55%, 71%)
- **IP VOD/ Managed IP Video** (20%, 11%)
- **Web/Data** (17%, 12%)
- **File Sharing** (7%, 2%)
- **Gaming** (1%, 4%)

* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017–2022
THE STATE OF ONLINE VIDEO 2018

The State of Online Video is Limelight Networks’ latest in a series of surveys that explore consumer perceptions and behaviors around digital content.
Figure 1: How many total hours of video content do you watch online each week? 2016-2018
<table>
<thead>
<tr>
<th>Ages</th>
<th>1-2 hours per week</th>
<th>2-4 hours per week</th>
<th>4-7 hours per week</th>
<th>7-10 hours per week</th>
<th>10-20 hours per week</th>
<th>More than 20 hours per week</th>
<th>Average hours per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-25</td>
<td>15.5%</td>
<td>19.8%</td>
<td>20.3%</td>
<td>13.5%</td>
<td>16.3%</td>
<td>14.7%</td>
<td>9.21</td>
</tr>
<tr>
<td>26-35</td>
<td>19.5%</td>
<td>20.4%</td>
<td>16.3%</td>
<td>15.7%</td>
<td>14.8%</td>
<td>13.3%</td>
<td>8.68</td>
</tr>
<tr>
<td>36-45</td>
<td>26.3%</td>
<td>21.9%</td>
<td>18.8%</td>
<td>14.4%</td>
<td>10.3%</td>
<td>8.3%</td>
<td>6.94</td>
</tr>
<tr>
<td>46-60</td>
<td>41.5%</td>
<td>20.5%</td>
<td>14.7%</td>
<td>9.6%</td>
<td>8.0%</td>
<td>5.8%</td>
<td>5.50</td>
</tr>
<tr>
<td>Over 60</td>
<td>51.0%</td>
<td>20.6%</td>
<td>12.2%</td>
<td>6.8%</td>
<td>5.3%</td>
<td>4.2%</td>
<td>4.46</td>
</tr>
<tr>
<td>All Ages</td>
<td>32.1%</td>
<td>20.7%</td>
<td>16.2%</td>
<td>11.8%</td>
<td>10.5%</td>
<td>8.7%</td>
<td>6.75</td>
</tr>
</tbody>
</table>

Figure 4: How many total hours of video content do you watch online each week?
Figure 7: How many total hours of video do you watch each week?
CONCLUSIONS AND RECOMMENDATIONS

Content distributors should consider the following recommendations to provide consumers with a viewing experience that maximizes engagement regardless of device or location.

MAKE CONTENT AVAILABLE ON ANY DEVICE

Viewers use many different devices to watch online video throughout the day. While computers are the most common viewing device globally, smartphones, smart TVs, and dedicated streaming devices are also widely used. The challenge for content distributors is these devices often require different streaming media formats such as HLS, MPEG-DASH, and MSS. To simplify the process of delivering video in multiple formats, content distributors can use a Content Delivery Network (CDN) that allows content to be packaged in the correct delivery format as it’s requested by viewers rather than needing to pre-encode and store multiple versions. On-demand cloud-based transcoding and transmuxing helps minimize storage costs and allows OTT and live video content to be easily and efficiently delivered to as many viewers as possible.

ENSURE HIGH-QUALITY MOBILE VIEWING EXPERIENCES

Smartphones are the primary viewing device for viewers age 18-45. They’re also the preferred viewing device for consumers in many countries, including most emerging regions where there isn’t a robust broadband infrastructure in place. However, mobile connections are often subject to changes in bandwidth and latency that can cause video to rebuffer when network conditions change during playback. To provide all viewers with the best possible viewing experience, content providers can use a CDN that continually monitors and optimizes video delivery based on realtime conditions. This ensures each viewer receives the highest picture quality while minimizing rebuffering that causes viewers to stop watching.
Video is more important than ever!
Khan Academy

You can learn anything.

For free. For everyone. Forever.

<table>
<thead>
<tr>
<th>Math by subject</th>
<th>Math by grade</th>
<th>Science & engineering</th>
<th>Computing</th>
<th>Arts & humanities</th>
<th>Economics & finance</th>
<th>Test prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early math</td>
<td>Kindergarten</td>
<td>Physics</td>
<td>Computer programming</td>
<td>World history</td>
<td>Pre-algebra</td>
<td>Teachers, start here</td>
</tr>
<tr>
<td>Algebra 1</td>
<td>1st</td>
<td>Cosmology & astronomy</td>
<td>Computer science</td>
<td>US history</td>
<td>Algebra 2</td>
<td></td>
</tr>
<tr>
<td>Trigonometry</td>
<td>4th</td>
<td>Organic chemistry</td>
<td>Hour of Code</td>
<td>Grammar</td>
<td>Statistics & probability</td>
<td></td>
</tr>
<tr>
<td>AP Calculus AB</td>
<td>7th</td>
<td>Health & medicine</td>
<td></td>
<td></td>
<td>Multivariable calculus</td>
<td></td>
</tr>
<tr>
<td>Differential equations</td>
<td>High school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math by subject</th>
<th>Math by grade</th>
<th>Science & engineering</th>
<th>Computing</th>
<th>Arts & humanities</th>
<th>Economics & finance</th>
<th>Test prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early math</td>
<td>Kindergarten</td>
<td>Physics</td>
<td>Computer programming</td>
<td>World history</td>
<td>Pre-algebra</td>
<td>Teachers, start here</td>
</tr>
<tr>
<td>Algebra 1</td>
<td>1st</td>
<td>Cosmology & astronomy</td>
<td>Computer science</td>
<td>US history</td>
<td>Algebra 2</td>
<td></td>
</tr>
<tr>
<td>Trigonometry</td>
<td>4th</td>
<td>Organic chemistry</td>
<td>Hour of Code</td>
<td>Grammar</td>
<td>Statistics & probability</td>
<td></td>
</tr>
<tr>
<td>AP Calculus AB</td>
<td>7th</td>
<td>Health & medicine</td>
<td></td>
<td></td>
<td>Multivariable calculus</td>
<td></td>
</tr>
<tr>
<td>Differential equations</td>
<td>High school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math by subject</th>
<th>Math by grade</th>
<th>Science & engineering</th>
<th>Computing</th>
<th>Arts & humanities</th>
<th>Economics & finance</th>
<th>Test prep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early math</td>
<td>Kindergarten</td>
<td>Physics</td>
<td>Computer programming</td>
<td>World history</td>
<td>Pre-algebra</td>
<td>Teachers, start here</td>
</tr>
<tr>
<td>Algebra 1</td>
<td>1st</td>
<td>Cosmology & astronomy</td>
<td>Computer science</td>
<td>US history</td>
<td>Algebra 2</td>
<td></td>
</tr>
<tr>
<td>Trigonometry</td>
<td>4th</td>
<td>Organic chemistry</td>
<td>Hour of Code</td>
<td>Grammar</td>
<td>Statistics & probability</td>
<td></td>
</tr>
<tr>
<td>AP Calculus AB</td>
<td>7th</td>
<td>Health & medicine</td>
<td></td>
<td></td>
<td>Multivariable calculus</td>
<td></td>
</tr>
<tr>
<td>Differential equations</td>
<td>High school</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Физика. Центробежная сила и Гравитация

<table>
<thead>
<tr>
<th>Гончные машины, двигающиеся по кривой с постоянной скоростью</th>
<th>Оптимальные повороты на гоночном треке в Индианаполисе</th>
</tr>
</thead>
<tbody>
<tr>
<td>Визуальное представление формул центробежного ускорения</td>
<td>Мертвая пати – вопрос</td>
</tr>
<tr>
<td>Мертвая пати – ответ, часть 1</td>
<td>Математическое доказательство формул центробежного ускорения</td>
</tr>
</tbody>
</table>

Физика. Перемещение, скорость и время

<table>
<thead>
<tr>
<th>Введение в векторы и скалпера</th>
<th>Средняя скорость Усайна Болта</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вычисление средней скорости или значения скорости</td>
<td>Пример расчета перемещения, если известны время и векторная скорость</td>
</tr>
<tr>
<td>Расчёт времени</td>
<td>Мгновенная скорость</td>
</tr>
</tbody>
</table>

Khan Academy в классе

<table>
<thead>
<tr>
<th>Беседы и интервью</th>
</tr>
</thead>
<tbody>
<tr>
<td>Речь Солмана Хена на TED 2011 (с сайта ted.com)</td>
</tr>
<tr>
<td>60 минут: будущее образования</td>
</tr>
<tr>
<td>Солман Хен у Чарли Руэла, 2013 г.</td>
</tr>
<tr>
<td>Билл Гейтс говорит об “Академии Хена” на «Фестивале идей — 2010» в Астене</td>
</tr>
<tr>
<td>Шоу “’Toby”: Технические компании меняют облик образования</td>
</tr>
<tr>
<td>Разговор с Илоном Маском</td>
</tr>
<tr>
<td>Беседа с Джоэс Литгертом</td>
</tr>
<tr>
<td>Беседа с Томасом Фридманом</td>
</tr>
<tr>
<td>TEDxSoJosiveCA – Солман Хен (продолжение)</td>
</tr>
</tbody>
</table>

Если вы хотите принять участие в популяризации материалов и оказать помощь Khan Academy, пожалуйста, посетите страницу www.khanacademy.org/contribute.
The organization started in 2004 when Salman Khan tutored one of his cousins on the Internet using a service called Yahoo! Doodle Images.

After a while, Khan's other cousins began to use his tutoring service. Because of the demand, Khan decided to make his videos watchable on the Internet, so he published his content on YouTube. Later, he used a drawing application called SmoothDraw, and now uses a Wacom tablet to draw using ArtRage. Tutorials are recorded on the computer.
Salman Khan talks about how and why he created the remarkable Khan Academy, a carefully structured series of educational videos offering complete curricula in math and, now, other subjects. He shows the power of interactive exercises, and calls for teachers to consider flipping the traditional classroom script -- give students video lectures to watch at home, and do "homework" in the classroom with the teacher available to help.

This talk was presented at an official TED conference, and was featured by our editors on the home page.
QUESTION

• Which benefits can we extract from the video?
• Which are the reasons of these benefits?
• March 2011:
 – 2,200 videos
 – 1 million students a month
 – Watching 100,000 to 200,000 videos a day
WhatBadgeNext?

Total Topic Times

Shows all the topics at Khan Academy and how they are organised.

Numbers in parentheses show how many videos in a topic and its total length of time. The total time is an overestimate as some videos are included in more than one playlist.

All topics (4580 videos, 26 days 23 hr 26 min)

Math (2171 videos, 11 days 20 hr 38 min)

- Arithmetic and pre-algebra (256 videos, 23 hr 33 min 32 sec)
 - Addition and subtraction (14 videos, 1 hr 59 min 17 sec)
 - Intro to addition and subtraction (2 videos, 16 min 14 sec)
 - Two digit addition and subtraction (5 videos, 39 min 12 sec)
 - Addition with carrying (2 videos, 17 min 46 sec)
 - Subtraction with borrowing (regrouping) (4 videos, 40 min 56 sec)
 - Addition and subtraction word problems (1 videos, 5 min 9 sec)

- Multiplication and division (34 videos, 4 hr 5 min 47 sec)
 - Multiplication fun (5 videos, 46 min 40 sec)
 - Delightful division (3 videos, 31 min 9 sec)
 - The distributive property (3 videos, 12 min 46 sec)
 - Order of operations (5 videos, 38 min 26 sec)
 - Place value (3 videos, 11 min 54 sec)
 - Multi-digit multiplication (5 videos, 45 min 16 sec)
QUESTION

• Have you ever created an educational video?
• Have you ever created a video?
TAXONOMY
• Screencast
• Talking head
• Lecture recording
• Presentation
• Classroom recording
• Interview
• Remote interview
• Simulation
• Animation
• Demo
• Webinar
• Documentary
Screencast

• A screencast is a video recording of the computer screen, and usually includes audio

• Common examples of screencasts are onscreen tutorials, video lessons, or slideshare presentations
Breve (muy breve) historia de los MOOCs

Sergio Luján Mora

Hi, I'm Sergio Lujan Mora, professor at the University of Alicante, and in this video
Talking head

• The main action involves someone just talking to the camera, either right into it or slightly to the side, interview style

• Video of one person talking—captured with one camera from a single perspective—without supporting footage isn’t dynamic enough to engage a web audience
Muchas gracias a CIESPAL por la amable invitación para realizar esta charla y también quiero.
Persona sordociega o con sordoceguera:
persona con un deterioro combinado de la vista y el oído que dificulta su acceso a la información, a la comunicación y a la movilidad. Una persona con esta discapacidad requiere métodos especiales de comunicación.
Lecture recording

• It usually contains Powerpoint slides and narration and may also contain a video of the speaker either in full frame or presented as a picture in picture
Primera clase en directo. Resolución de dudas. (I)

Introducción a XML (XML)

1,462 visualizaciones

Publicado el 3 feb. 2014
Curso "Introducción a XML"
Presentation

• Almost like lecture recording, but more elaborated
Accesibilidad web (conferencia completa)

Sergio Luján Mora
sergio.lujan@ua.es
sergiolujanmora

Publicado el 23 de febrero de 2017
Conferencia impartida en la Universidad Técnica de Ambato (Ecuador) el 20 de mayo de 2016.
Classroom recording

• Almost like lecture recording, but it also includes interaction of teacher-students and students-students
Classroom management - Week 1, Day 1

You can find a book with ideas for soon-to-be teachers about how to prepare for the school year at www.7steps.org. For more classroom management videos, resources, and tips, head to www.agapeclassroom.org.
Interview

• It contains real people talking about a subject or answering questions relevant to the discipline and the content

• It is an ideal way to include professional and/or expert and/or authoritative and/or differing points of view of other people in the material delivered to students
La Web y las personas sordociegas (1): Entrevista a Sonnia Margarita Villacrés

Accesibilidad web

718 visualizaciones

Publicado el 15 jul. 2015
Entrevista a Sonnia Margarita Villacrés, vicepresidenta de The World Federation of the Deafblind (Federación Mundial de Sordociegos).
Accesibilidad web en Ecuador 2014: entrevista a César Prado

Sergio Lujuán Mora

Publicado el 28 may, 2014
Entrevista a César Prado, intérprete de lengua de señas del Consejo Nacional de Discapacidades (Ecuador), que participará como intérprete en el evento 'Accesibilidad web en Ecuador 2014'.
Remote interview

• Like an interview, but by a video call
Accesibilidad
Usabilidad
Nuevas tecnologías
Simulation

• It simulates and shows practice in a real world situation
Demo

• Almost like a simulation, but regarding the use of software
Google Drawings 03: Crear un dibujo simple

Sergio Luís Mora

Publicado el 26 dic. 2010

Google Drawings: Conocer el Interface (barra de menú y de herramientas) y las operaciones básicas (copiar, cortar, pegar, borrar y duplicar)

231 visualizaciones
Animation

• The animated sequence or motion graphic sequence is comprised solely of computer generated imagery
• It can often capture and communicate phenomena and processes not otherwise showable
• Creating animations of complex processes or diagrams, visualising phenomena through the use of stylised or 3D animation and even stepping through the steps of a flow chart or graph can greatly increase the focus on and understanding of the subject matter
Webinar

- Web seminar or web conferencing
- A meeting online of several people
Accesibilidad web: claves y consejos

Emitted on 25 Jun 2015

Una web accesible es una web abierta a todo el mundo sin excepción. Y es que si no se aplican los principios de la accesibilidad web a la hora de crear, desarrollar y diseñar un sitio web, se cierran las puertas a que muchas personas puedan navegar e interactuar por las múltiples barreras que enfrenta y se cierra así la puerta a múltiples visitas, ventas y posicionamiento web por estos usuarios que tienen dificultades de...
Documentary

• A real movie, it can combine different formats