
New neighborhood based classification rules for

metric spaces and their use in ensemble

classification

Jose-Norberto Mazón, Luisa Micó, and Francisco Moreno-Seco
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Abstract. The k-nearest-neighbor rule is a well known pattern recogni-
tion technique with very good results in a great variety of real classifica-
tion tasks. Based on the neighborhood concept, several classification rules
have been proposed to reduce the error rate of the k-nearest-neighbor rule
(or its time requirements). In this work, two new geometrical neighbor-
hoods are defined and the classification rules derived from them are used
in several real data classification tasks. Also, some voting ensembles of
classifiers based on these new rules have been tested and compared.

1 Introduction

Several scientific fields like pattern recognition, information retrieval, or data
mining frequently use the same techniques for different purposes. For example,
the k-Nearest Neighbor rule (k-NN) is often used in pattern recognition [1] for
classification tasks. Also, the k-NN is used to obtain high performance data
mining [2] [3], or efficient similarity retrieval of information [4].

Given a set T of n points that are labelled with J different labels (ω1, . . . , ωJ),
and given an unlabelled sample x, the k-NN rule R assigns to the sample x the
most frequent label among the k points closest to x, i.e., if Ki(x) is the number
of points that are labelled with ωi among the k nearest points to x, this rule can
be defined as:

R(x) = ωi if Ki(x) = max
c=1...J

{Kc(x)}

From a theoretical point of view, the k-NN rule error rate is low (and bounded
by as much as twice the Bayes error), and usually the classification time of a
k-NN based classifier is small (by using a fast k-NN search algorithm). However,
in real data tasks the behavior of the k-NN rule is not usually as good. In the last
years, a number of alternative neighborhood definitions have been proposed in
the literature in order to reduce the error rate of the k-NN rule, or to speed up the
classification [5, 6]. Some of the new alternative rules to reduce the error rate are
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based on the use of the Gabriel and the Relative Neighborhood graphs [7]. There
are also some surrounding rules, as the k Nearest Centroid Neighborhood rule,
k-NCN, that classifies the sample using the neighbors whose centroid (mean) is
closest to the sample. This rule looks for points that are not only close enough
but also symmetrically distributed around a sample [5].

The k-NCN rule has been shown to give significantly better results than the
classical k-NN approach in many real data tasks. However, this rule cannot be
used in the general case, where objects are represented by data structures such
as strings. For example, in the k-means clustering algorithm, the median1 can
be used instead of the mean when strings are used and the number of strings
belonging to a cluster is high enough 2. However, in the k-NCN rule the mean
is computed for a relatively small number of points (between 1 and k, with
k << n). In this case, the use of the median instead of the mean is a wrong
option.

In this paper some alternatives to the k-NN and k-NCN rules have been de-
fined, compared and tested experimentally with a database where the objects
are represented as strings. The edit distance between strings [8] has been used
to compare the objects. The proposed classification rules (based on new neigh-
borhood definitions) are suitable for any classification task where a dissimilarity
measure is defined. As a complement to this work, some classifier ensembles
(some of them based on the rules proposed) have been tested.

In the following section, two different alternatives to the k-NN rule based
on the concept of surrounding neighborhood are presented. Section 3 describes
the different ensemble schemes for combining classifiers. Next, the results for
the proposed classifiers and ensembles are presented and compared in real data
tasks. Finally, the conclusions drawn from the results are discussed, pointing the
research to further work lines.

2 New geometrical neighborhood definitions for metric

spaces

The k-NN rule uses the neighborhood defined by the k closest points to an un-
labelled sample to classify it. The k-NCN rule defines the neighborhood using
the k neighbors whose mean is closest to the sample. Thus, a neighborhood def-
inition has a corresponding classification rule that classifies the sample using
the points belonging to the neighborhood. In this section, we propose two alter-
native neighborhood definitions based on the same type of information used in
k-NCN rule: the distances and the geometrical distribution of points. The neigh-
borhood definitions are proposed to overcome the problem of the representation
of data in non vectorial spaces (i.e., metric spaces in general), that is, to select
the surrounding points without computing the mean.

1 Given a set of n points and a distance function, the median is defined as the point
in the set that minimizes the sum of distances to the remaining points in the set.

2 As the number of points increases, the diference between the median and the mean
decreases.
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1. The first neighbor of x is also its nearest neighbor, q1.
2. To obtain the i <= k point:

(a) among the unselected points, the k′ nearest neighbors to x are obtained;
(b) among these k′ points, the one whose sum of distances to the previously se-

lected i − 1 points is maximum is selected as a new neighbor, qi

3. return to step 2 (increasing i) until k points are selected

Fig. 1. k-MMS neighborhood.

Given a set T of points, two different approaches have been defined. Both
are incremental methods that use a new parameter (k′, with k′ : 1 . . . k); each
new ki surrounding point to a test sample x is selected in two steps:

1. a set B ⊂ T with the k′ nearest points to x is obtained;

2. ki is selected among the points belonging to B.

2.1 k-Min Max Sum (k-MMS) neighborhood

In a neighborhood based classifier, the unlabelled sample x is classified using k

neighbors that should be very close to x. However, in a surrounding neighborhood
definition, each of the k neighbors should be far away from the previously selected
neighbors, while at the same time they should be close to the sample.

The first surrounding neighborhood definition (see figure 1) is based on the
incremental selection of the k nearest surrounding points using the ideas men-
tioned above. This rule is called k-MinMaxSum because the points whose sum of
distances is maximum among the k′ nearest points (minimum distance) to the
sample are selected as new candidates to belong to the neighborhood.

2.2 k-Min Ranking Sum (k-MRS) neighborhood

In the second neighborhood definition, two vectors are used to store the k′ < k

nearest points to the sample x (see figure 2):

1. Kmin stores the k′ points in increasing value of the distances to the sample
x

2. Kmax stores the points in decreasing value of the sum of distances to the
previously selected points.

Then, the prototype whose sum of indexes in both vectors is minimum is se-
lected to be included in the neighborhood. For example, if Kmin = {k1, k2, k3, k4}
and Kmax = {k3, k1, k4, k2}, the first selected point would be k1, the second k3,
etc.
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1. The first neighbor of x is also its nearest neighbor, q1.
2. To obtain the i <= k point:

(a) the k′ nearest neighbors to x are selected and ordered by their distances from
the test sample (the nearest the first), Kmin ;

(b) the same selected k′ points are ordered by the sum of distances to the previ-
ously selected i − 1 points (the largest the first), Kmax ;

(c) the point whose sum of its indexes in both vectors is the lower, is selected as
new neighbor, qi.

3. return to step 2 (increasing i) until k points are selected

Fig. 2. k-MRS neighborhood.

3 Combining schemes

In order to increase the performance of single classifiers, a combination may
be used instead [9]. In this paper, some known alternatives have been explored
based on confidence methods and ranked voting methods using the proposed
rules.

Confidence voting approaches. Confidence methods are based on the use of
the confidence of classifiers about their preference for a candidate. In this case,
a confidence value 1 means the higher preference in the decision. This preference
is put into practice by assigning a confidence value to every possible class for
each point. A wide range of different confidence methods can be used, based on
distances or probabilities.

The confidence methods associated to each class ci used in k selected points
are defined to obtain a value in the range [0, 1]. If mi is the number of neighbors
among the selected k that belong to the class ci (mi ≤ k):

conf(ci)PROP = mi

k

conf(ci)SD = 1

1+
Pmi

j=1
dj/mi

where
∑mi

j=1
dj is the sum of distances of the mi neighbors belonging to the

class ci among the k selected neighbors.
Based on these definitions of confidence, three well known ensembles have

been used in this work:

1. Pandemonium. Each single classifier gives a confidence value for each class.
Then, the class whith the highest confidence value among the single classifiers
is returned [10, 11].

2. Sum rule. As in the previous method, each classifier assigns a confidence value
to each class. All confidence values associated to each class are added, and the
class whose sum of confidences is the highest is assigned to the sample [13].
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3. Product rule. Unlike the sum rule, in this case confidence values associated
to each class are multiplied [13].

Ranked voting methods. In these approaches, single classifiers have to give
a preference ranking of the class assigned to each point.

4. Borda count. This method was originally developed by Jean-Charles de Borda [12].
It has been adapted to classification problems in [11]. The only prerequisite is
that each single classifier must return a complete preference ranking list of the
possible classes. Then, the class with minor mean rank among all single classifiers
is returned.

4 Experiments

Some experiments have been developed in order to study the performance of the
new rules and the performance of the voting schemes presented in the previous
section.

4.1 Neighborhood based rules

The experiments consist on a human chromosome classification task, where the
objects (chromosomes) are represented as strings.

The Chromosome database [14–16] used for experiments contains 4400 sam-
ples (22 classes with 200 samples per class) coded as strings. The Levenshtein
distance [8] has been used to measure the distance between chromosomes. The
whole set has been divided into two sets of 2200 samples each, and the exper-
iments have been performed using one of them for training and the other one
for test. In a first experiment, the training set has been used to build training
sets of different sizes. Table 1 shows the error rates for the proposed rules and
the k-NN rule when different training set sizes have been used. This experiment
was performed using different values of k, from 1 to 15. Due to the lack of space,
only results for k = 11 are presented. After some tests, the value of k′ used in
k-MMS and k-MRS methods was set to 3 for all the experiments.

These experiments show that the k-MMS and k-MRS rules obtain results
very similar to those of the k-NN rule. In particular, the k-MMS rule and the
k-MRS rules outperform slightly the k-NN rule when the training set is not very
small. Though the improvements are not very important, it can be observed that
for increasing sizes of the training set, even if the error rate decreases quickly
with the size of the training set, the proposed rules reduce the error rate.

In the following experiment, a fixed training set size was used (2200 chromo-
somes) for different k-values in the classifiers that use the rules (see table 2). As
the previous experiment, the proposed rules reduce (slightly) the error rate.
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Training k-NN k-MMS k-MRS

set size

220 37.81 39.18 37.50

660 20.40 20.40 20.13

1100 11.90 13.09 11.54

1540 8.27 8.31 8.18

1980 6.77 6.40 6.72

2200 6.59 6.18 6.27

Table 1. Error rates (in %) of the different classification rules with the Chromosome
data sets using different training set sizes.

k k-NN k-MMS k-MRS

1 10.09 10.09 10.09

3 8.23 9.59 8.13

5 6.90 7.40 6.72

7 6.68 7.40 6.54

9 6.77 7.00 6.54

11 6.59 6.18 6.27

13 6.45 6.09 6.00

15 6.68 6.27 6.36

Table 2. Error rates (in %) of the different classification rules with the Chromosome
data sets using different values of k for a fixed training set size of 2200 chromosomes.

4.2 Ensemble classification

The combinations tested were:

– two combinations of 2 classifiers: k-NN and k-MMS rules (C1), and k-NN
and k-MRS rules (C2)

– two combinations of 6 classifiers: 3 k-NN and 3 k-MMS rules (C3), and 3
k-NN and 3 k-MRS rules (C4) (varying the value of k).

Table 3 shows the results of these experiments using the confidence voting
approaches conf(ci)PROP and conf(ci)SD. As the best results were obtained by
the C1 and C3 combinations, the experiments with the confidence conf(ci)SD

were only developed for these two combinations.

Finally, an experiment using C1 and C3 (with the sum rule) has been per-
formed using different sizes of the training set and the confidence method conf(ci)SD.
The comparison with k-NN is presented in figure 3. This figure shows that better
results can be obtained in general for different training set sizes, but the best
results are achieved when the training set is small.
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C1PROP C2PROP C3PROP C4PROP C1SD C3SD

Pandemonium 6.18 6.31 6.09 6.18 8.13 6.18

Sum rule 5.90 6.27 5.50 5.86 6.68 5.36

Product rule 5.95 6.27 8.13 8.45 6.63 8.00

Borda count 6.81 6.45 6.27 6.50 6.82 6.27

k-NN 6.59

Table 3. Error rates (in %) of the different ensembles with the Chromosome data sets
using the confidence voting method confPROP and confSD.
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Fig. 3. Error rates (in %) of the different ensembles with the Chromosome data sets
using different sizes of the training set and the confidence method confSD.

5 Conclusions

The k-NN rule is often used in classification tasks. However, sometimes the
results may be improved if another neighborhood definition is used instead, as
for instance the k-NCN rule. The main drawback of this rule is that it requires a
vector space representation of data. In this work, two alternative neighborhood
definitions that do not require a vector space are presented and the corresponding
classification rules are tested in a real data task. The experimental results with
the Chromosome database show that the proposed rules outperform the k-NN
rule.

Moreover, the experiments with several ensembles of classifiers show that the
proposed classification rules may perform adequately in a combination scheme.
Future work includes a more exhaustive study of the rules with other real data
tasks to know better their possibilities.
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