
electronics

Article

Efficient Subpopulation Based Parallel TLBO
Optimization Algorithms

Alejandro García-Monzó 1, Héctor Migallón 1,* , Antonio Jimeno-Morenilla 2 ,
José-Luis Sánchez-Romero 2 , Héctor Rico 2 and Ravipudi Venkata Rao 3

1 Department of Physics and Computer Architecture, Miguel Hernández University, E-03202 Alicante, Spain;
garciamonzo.alejandro@gmail.com

2 Department of Computer Technology, University of Alicante, E-03071 Alicante, Spain;
jimeno@dtic.ua.es (A.J.-M.); sanchez@dtic.ua.es (J.-L.S.-R.); hector.rico@gmail.com (H.R.)

3 Sardar Vallabhbhai National Institute of Technology, Surat 395 007, Gujarat State, India;
ravipudirao@gmail.com

* Correspondence: hmigallon@umh.es; Tel.: +34-966658390

Received: 27 November 2018; Accepted: 21 December 2018; Published: 23 December 2018 ����������
�������

Abstract: A numerous group of optimization algorithms based on heuristic techniques have been
proposed in recent years. Most of them are based on phenomena in nature and require the
correct tuning of some parameters, which are specific to the algorithm. Heuristic algorithms allow
problems to be solved more quickly than deterministic methods. The computational time required
to obtain the optimum (or near optimum) value of a cost function is a critical aspect of scientific
applications in countless fields of knowledge. Therefore, we proposed efficient algorithms parallel to
Teaching-learning-based optimization algorithms. TLBO is efficient and free from specific parameters
to be tuned. The parallel proposals were designed with two levels of parallelization, one for
shared memory platforms and the other for distributed memory platforms, obtaining good parallel
performance in both types of parallel architectures and on heterogeneous memory parallel platforms.

Keywords: TLBO; optimization problems; parallel; heuristic; subpopulations; OpenMP; MPI;
hybrid MPI/OpenMP

1. Introduction

The purpose of optimization algorithms is to find the optimal value for a particular cost function.
Cost functions, depending on the application in which they are used, can be highly complex, it may
be necessary to repeatedly obtain a new optimum value, and they may present different numbers of
parameters (or design variables). Moreover, if cost functions have local minimums, the search for the
optimum value becomes more complicated.

When deterministic methods have been applied to obtain the optimal value of a function,
a sequence of points tending to the global optimum value is generated considering the analytical
properties of the problem under consideration. In other words, the search for the optimum is treated
as a problem of linear algebra, often based on the gradient of the function. The optimal value,
or a value very close to it, of a cost function can be obtained using deterministic methods (see [1]).
In some cases, however, the efforts involved can be considerable, for example in non-convex or
large-scale optimization problems. When deterministic methods can be applied, the results obtained
are unequivocable and replicable, but the computational cost can make it useless. Several heuristic
methods have been proposed to address these drawbacks, many of them based on phenomena
found in nature, leading to acceptable solutions while reducing the required efforts. Two main

Electronics 2019, 8, 19; doi:10.3390/electronics8010019 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-4937-0905
https://orcid.org/0000-0002-3789-6475
https://orcid.org/0000-0001-8766-2813
https://orcid.org/0000-0002-9957-1086
http://www.mdpi.com/2079-9292/8/1/19?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8010019
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 19 2 of 21

groups of this type of algorithm, evolutionary algorithms and swarm intelligence, include the major
heuristic algorithms.

On the one hand, metaheuristic methods are able to accelerate convergence even when local
minima exist, and on the other, they can be used in functions whose characteristics prevent the use
of deterministic methods, for example non-differentiable functions. In most cases, metaheuristic
methods employ guided search techniques, in which some random processes are involved to solve the
problem, although it cannot be formally proven that the optimal value obtained is the solution to the
problem. In particular, the Teaching-learning-based optimization (TLBO) algorithm, presented in [2],
has proven its effectiveness in a wide range of applications. For example in [3], it is used for the optimal
coordination of directional overcurrent relays in a looped power system; in [4], a multi-objective TLBO
is used to solve the optimal location of automatic voltage regulators in distribution systems in the
presence of distributed generators; in [5], an improved multi-objective TLBO is applied to optimize
an assembly line to produce large-sized high-volume products such as cars, trucks and engineering
machinery; in [6], a load shedding algorithm for alleviating line overloads employs a TLBO algorithm;
in [7], a TLBO algorithm is used to optimize feedback gains and the switching vector of an output
feedback sliding mode controller for a multi area multi-source interconnected power system; in [8],
the TLBO method is used to train and accelerate the learning rate of a model designed to forecast
both wind power generation in Ireland and that of a single wind farm, in order to demonstrate the
effectiveness of the proposed method; in [9] Cetane number estimation of biodiesel with a fatty acid
methyl esters composition was performed using a hybrid optimization method including a TLBO
algorithm; in [10], a residential demand side management scheme based on electricity cost and peak
to average ratio alleviation with maximum user satisfaction is proposed using a hybrid technique
based on TLBO and enhanced differential evolution (EDE) algorithms; in [11] a TLBO algorithm is
used in Transmission Expansion Planning (TEP) that involves determining if and how transmission
lines should be added to the power grid, considering power generation costs, power loss, and line
construction costs among others.

Among the well-known metaheuristic optimization algorithms based on natural phenomena,
it is worth mentioning: Particle Swarm Optimization (PSO) and its variants, Artificial Bee Colony
(ABC), Shuffled Frog Leaping (SFL), Ant Colony Optimization (ACO), Evolutionary Strategy
(ES), Evolutionary Programming (EP), Genetic Programming (GP), the Fire Fly (FF) algorithm,
the Gravitational Search Algorithm (GSA), Biogeography-Based Optimization (BBO), the Grenade
Explosion Method (GEM), Genetic Algorithms (GA) and its variants, Differential Evolution (DE) and
its variants, Simulated Annealing (SA) algorithm and the Tabu Search (TS) algorithm can be mentioned.

In most of these algorithms, it is necessary to adjust one or more parameters first, for example,
GA needs crossover probability, mutation probability, selection operator, etc. to be set correctly; the SA
algorithm needs the initial annealing temperature and cooling schedule to be tuned; PSO’s specific
parameters are inertia weight and social and cognitive parameters; HSA needs the harmony memory
consideration rate, the number of improvisations, etc. to be set correctly; and the immigration rate,
emigration rate, etc., need to be tuned for BBO. The population-based heuristic algorithm used in
this work, the Teacher-Learner Based Optimization (TLBO) [12] overcomes the problem of tuning
algorithm-specific parameters. Specifically, the TLBO algorithm only needs general parameters to be
set, such as the number of iterations, population size and stopping criterion.

Some recent works applied TLBO algorithm parallelization techniques. For example, authors
in [13] implemented a TLBO algorithm on a multicore processor within an OpenMP environment.
The OpenMP strategy emulated the sequential TLBO algorithm exactly, so the calculation of fitness,
calculation of mean, calculation of best, and comparison of fitness functions remained the same, while
small changes were introduced to achieve better results. A set of 10 test functions were evaluated
when running the algorithm on a single core architecture, and were then compared on architectures
ranging from 2 to 32 cores. Average speed-up values of 4.9x and 6.4x with 16 and 32 processors were
obtained respectively, corresponding to efficiencies of 30% and 20% respectively. In [14], the authors

Electronics 2019, 8, 19 3 of 21

propose a parallel TLBO procedure for automatic heliostat aiming, obtaining good speed-up values for
this extremely expensive problem using up to 32 processes; parallel performance, however, worsened
when using functions that were not so computationally expensive.

Other parallel proposals for different heuristic optimization algorithms have been proposed.
For example, authors in [15] implemented the Dual Population Genetic Algorithm (DPGA) on a parallel
architecture obtaining average speed-up values of 1.64x using both 16 and 32 processors. The authors
in [16] propose a parallel version of the ACO metaheuristic algorithm obtaining a maximum speed-up
of 5.94x using 8 processors, going down to 5.45x when using 16 processors. In addition, other proposals
use hardware accelerators. For example, in [17], the PSO algorithm is accelerated using FPGAs and
in [18], the Jaya algorithm is accelerated through the use of GPUs.

In Section 2, we present the TLBO optimization algorithm and describe the parallel algorithms
in Section 3. In Section 4, we analyse the latter in terms of parallel performance and optimization
behaviour, and some conclusions are drawn in Section 5.

2. The TLBO Algorithm

The Teaching-Learning-Based Optimization (TLBO) algorithm, like all evolutionary and swarm
intelligence-based algorithms, requires common controlling parameters, but does not require
algorithm-specific control parameters. Both these algorithms and TLBO are population-based and
probabilistic algorithms, therefore TLBO needs to set only the size of the populations and number
of generations.

The TLBO algorithm is based on common teaching and learning processes of a group of students,
whose learning process is influenced both by the teacher and by interactions within the group of
students. Each source of advancement of knowledge (that allows to approach the solution to the
problem) is associated with a different phase of the TLBO algorithm, the first phase is the teacher phase
and the second is the learner phase.

As mentioned previously, the TLBO is a population-based heuristic algorithm, therefore the
first step is the creation of the initial population (line 1 of Algorithm 1). A population is a set of m
individuals; each individual is composed of k variables (design variables) and the value of k depends
on the cost function (Fcost) to be optimized. Each individual in the initial population is created as shown
in Equation (1), where ri,j are uniformely distributed random numbers, and minVarj and maxVarj
specify the domain size of each variable.

Xi,j = minVarj + (maxVarj −minVarj) ∗ ri,j (1)

Once the population is created, the teacher phase begins by identifying the individual that will
act as teacher (line 6 of Algorithm 1). The teacher will be the individual possessing the greatest
amount of knowledge, i.e., the individual whose solution is the best among all individuals in the
population. In the learner phase, the teacher tries to improve students’ knowledge. To model this
interaction, the mean of each design variable (Mj) is calculated considering all individuals in the
population, and the interaction is performed considering the mean values computed: the teacher
(Xteacher), the teaching factor (TF), as well as a random factor (rj). The teaching factor is an integer
random value in the range of [1, 2], while the random factor is a random real value in the range of [0, 1].
In other words, the teaching factor is an integer value equal to 1 or equal to 2 that is randomly chosen
for each teacher phase, i.e., teaching factor is not a parameter to be tuned. While rj are k floating-point
random numbers uniformely distributed between 0 and 1.

Each individual is influenced by the teacher (line 12 of Algorithm 1). If the influence is positive, i.e.,
if it improves the student, the new student replaces the previous student in the population. Whorthy of
note, in line 14 of Algorithm 1 a minimization problem is considered. The resulting population at the
end of the teacher phase will be the initial population used in the learner phase (Yi,j in Algorithm 2).

Electronics 2019, 8, 19 4 of 21

Algorithm 1 Teacher phase of TLBO algorithm.
1: Create Initial Population: Xi,j
2: i identifies the individual i = 1 . . . m
3: j identifies the design variable j = 1 . . . k
4: Teacher phase:
5: {
6: Identify the best individual or teacher (Xteacher)
7: Compute the mean of all design variables Mj
8: Compute the teaching factor (TF)
9: Compute the random factors (rj)

10: for i = 1 to m do

11: for j = 1 to k do

12: X′i,j = Xi,j + rj(Xteacher,j − TF×Mj)
13: end for
14: if Fcost(X′i) < Fcost(Xi) then

15: Replace Xi by X′i
16: end if
17: end for
18: }

Algorithm 2 Learner phase of TLBO algorithm.
1: Initial population in the learner phase: Yi,j
2: i identifies the individual i = 1 . . . m
3: j identifies the design variable j = 1 . . . k
4: Learner phase:
5: {
6: for i = 1 to m do

7: Randomly identify another student with whom to interact (p)
8: if Fcost(Yi) < Fcost(Yp) then

9: for j = 1 to k do

10: Y′i,j = Yi,j + ri,j(Yi,j −Yp,j)
11: end for
12: else

13: for j = 1 to k do

14: Y′i,j = Yi,j + ri,j(Yp,j −Yi,j)
15: end for
16: end if
17: if Fcost(Y′i) < Fcost(Yi) then

18: Zi = Y′i
19: else

20: Zi = Yi
21: end if
22: end for
23: Output population in learner phase: Zi,j
24: i identifies the individual i = 1 . . . m
25: j identifies the design variable j = 1 . . . k
26: }

In the second stage, the learner phase, the students’ knowledge can improve due to the influence
of the students themselves, i.e., by the interaction between them. In the learner phase, shown in
Algorithm 2, each student (or individual) interacts with another student, who is randomly chosen.
Worthy of note, the initial population (Yi,j) is the resulting population at the end of the teacher phase.

Electronics 2019, 8, 19 5 of 21

Once both students are identified the interaction between them depends on the most learned student,
i.e., it depends on the evaluation of the cost function for the two interacting students (lines 8–16 of
Algorithm 2). The result of this interaction is an individual who is evaluated and compared with the
initial individual, so the best among them is transferred to the population resulting from the learner
phase (Zi,j). Worthy of note, in the teacher phase algorithm, a minimization problem is considered in
line 17 of Algorithm 2.

The teacher and learner phases are repeated until the stop criterion is met. The number of
repetitions (determined by the “Iterations” parameter) specifies the number of generations to be
created. Significantly, the resulting population of the learner phase (Zi,j) is the initial population for
the teacher phase in the next iteration. All random numbers used in Algorithms 1 and 2 (rj and ri,j) are
uniformely distributed random numbers in the range of [0, 1].

3. Parallel Approaches

We propose hybrid OpenMP/MPI parallel algorithms to exploit heterogeneous memory platforms.
The whole sequential TLBO algorithm is shown in Algorithm 3. The “Runs” parameter corresponds to
the number of independent executions performed. Therefore, in line 21 of Algorithm 3, “Runs” different
solutions should be evaluated. In each independent execution both teacher and learner phases are
repeated “Iterations” times. The parallel approach to exploit distributed memory platforms is applied
to independent executions (line 5 of Algorithm 3), while the parallel approaches to exploit shared
memory platforms are applied using subpopulations in teacher and learner phases as well as in the
duplicate removal phase. The elimination of duplicates is necessary to avoid premature convergence.

Algorithm 3 Skeleton of the sequential TLBO algorithm.
1: Define function to minimize (Fcost)
2: Set Runs parameter
3: Set Iterations parameter
4: Set m parameter (used in Algorithms 1 and 2
5: for l = 1 to Runs do

6: Create New Population (Z1):
7: for q = 1 to Iterations do

8: Teacher phase:
9: (Input: Population Zq)

10: (Output: Population Yq)
11: Learner phase:
12: (Input: Population Yq)
13: (Output: Population Z′q+1)
14: Duplicate removal phase:
15: (Input: Population Z′q+1)
16: (Output: Population Zq+1)
17: end for
18: Store Solution
19: Delete Population
20: end for
21: Obtain Best Solution and Statistical Data

We developed two parallel proposals in order to exploit shared memory platforms. Both proposals
distribute the work load associated with teacher and learner phases by considering subpopulations.
The size of the whole population is equal to m; if the number of parallel threads (or processes)
is nt, we consider nt subpopulations of sizes mnt, where ∑ mnt = m. In the first proposal,
called SPG_ParTLBO, the whole population is partitioned into subpopulations (SP) that are stored in
global (G) memory. While in the second proposal, called SPP_ParTLBO, the whole population is also
partitioned into subpopulations (SP), but they are stored in private (P) memory.

Electronics 2019, 8, 19 6 of 21

Algorithm 4 shows the parallel teacher phase for the SPG_ParTLBO algorithm. In line 5 all threads
compute the initial subpopulation and store it in global memory; in line 12, the best individual of
each subpopulation is identified, and the teacher (the global best individual) is sequentially identified
in line 14. Following a similar strategy, the means of the design variables of each subpopulation are
calculated in line 16, and in line 18 the global value of these mean values are obtained sequentially.
Finally, the influence of the teacher is applied to each individual in parallel, introducing those who
have improved their knowledge into the population (line 27). The parallel teacher phase shown
in Algorithm 4 does not modify the optimization procedure of the sequential algorithm shown in
Algorithm 1.

Algorithm 4 Teacher phase of SPG_TLBO algorithm.
1: Set population size parameter (m)
2: Obtain the number of parallel threads (nt)
3: Compute the size of subpopulations (mnt)
4: In parallel s = 1 to nt do

5: Create Initial Subpopulation: Xis
6: end for
7: {Whole Population is: Xi,j }
8: Teacher phase:
9: {

10: Compute the teaching factor (TF)
11: In parallel s = 1 to nt do

12: Identify the best individual of subpopulation (Xbests)
13: end for
14: Compute the global teacher: Xteacher = Besto f (Xbests)
15: In parallel s = 1 to nt do

16: Compute the partial mean of all design variables Mjs
17: end for
18: Compute the global mean of all design variables Mj
19: In parallel s = 1 to nt do

20: Compute the random factors (rjs)
21: end for
22: In parallel s = 1 to nt do

23: for i = 1 to mnt do

24: for j = 1 to k do

25: X′is ,j = Xis ,j + rjs(Xteacher,j − TF×Mj)
26: end for
27: if Fcost(X′is) < Fcost(Xis) then

28: Replace Xis by X′is
29: end if
30: end for
31: end for
32: }

Algorithm 5 shows the parallel learner phase for the SPG_ParTLBO algorithm. Each process,
for each student in its subpopulation, randomly chooses another student with whom to interact,
who can be located in any subpopulation since the whole population is stored in global memory
(line 5). The rest of the code (lines 6–20) remains unchanged with respect to the sequential algorithm
shown in Algorithm 2.

Electronics 2019, 8, 19 7 of 21

Algorithm 5 Learner phase of SPG_TLBO algorithm.
1: Learner phase:
2: {
3: In parallel s = 1 to nt do

4: for i = 1 to mnt do

5: Randomly identify another student with whom to interact (p ∈ [1, m])
6: if Fcost(Yi) < Fcost(Yp) then

7: for j = 1 to k do

8: Y′i,j = Yi,j + ri,j(Yi,j −Yp,j)
9: end for

10: else

11: for j = 1 to k do

12: Y′i,j = Yi,j + ri,j(Yp,j −Yi,j)
13: end for
14: end if
15: if Fcost(Y′i) < Fcost(Yi) then

16: Z′i = Y′i
17: else

18: Z′i = Yi
19: end if
20: end for
21: end for
22: }

The duplicate removal phase for the SPG_ParTLBO algorithm, shown in Algorithm 6, performs the
same procedure as the sequential procedure in parallel. Worthy of note, when a duplicate is found,
a random design variable is chosen to be modified.

Algorithm 6 Duplicate removal phase of SPG_TLBO algorithm.
1: Duplicate removal phase:
2: {
3: In parallel s = 1 to nt do

4: for i ∈ mnt do

5: for j = i + 1 to m do

6: if Z′i = Zj then

7: Select randomly one design variable (s ∈ [1, k])
8: Randomly change Z′is
9: end if

10: end for
11: end for
12: end for
13: Z = Z′
14: }

To increase parallel efficiency, we developed the second proposal called SPP_ParTLBO, in which
subpopulations are stored in private memory at each thread. However, the subpopulations are not
isolated structures. Algorithm 7 shows the parallel learner phase for the SPP_ParTLBO algorithm.
As can be seen, after identifying the best individual (i.e., the teacher) the thread that stored it in its
subpopulation copies it into the global memory, so all the threads use the same teacher (lines 11–17).

Electronics 2019, 8, 19 8 of 21

In contrast, the means of the design variables used in each subpopulation are obtained only with the
individuals of the subpopulation (line 20). The rest of the teacher phase remains unchanged.

Algorithm 7 Teacher phase of SPP_TLBO algorithm.
1: Set population size parameter (m)
2: Obtain the number of parallel threads (nt)
3: Compute the size of subpopulations (mnt)
4: In parallel s = 1 to nt do

5: Create Initial Subpopulation: Xis
6: end for
7: {Whole Population is: Xi,j }
8: Teacher phase:
9: {

10: Compute the teaching factor (TF)
11: In parallel s = 1 to nt do

12: Identify the best individual of subpopulation (Xbests)
13: end for
14: Calculate the best global individual (teacher) and its owner thread
15: if Is the owner of the teacher then

16: Copy teacher to global memory Bestglobal
17: end if
18: Sync BARRIER
19: In parallel s = 1 to nt do

20: Compute the mean of design variables in subpopulation Mjs
21: end for
22: In parallel s = 1 to nt do

23: Compute the random factors (rjs)
24: end for
25: In parallel s = 1 to nt do

26: for i = 1 to mnt do

27: for j = 1 to k do

28: X′is ,j = Xis ,j + rjs(Bestglobal,j − TF×Mjs)
29: end for
30: if Fcost(X′is) < Fcost(Xis) then

31: Replace Xis by X′is
32: end if
33: end for
34: end for
35: }

Parallel learner phase for the SPP_ParTLBO algorithm is shown in Algorithm 8. In this algorithm,
the student’s search range with which each student interacts is restricted to the subpopulation, not to
the entire population (line 5), while the rest of the teacher’ phase remains unchanged.

Electronics 2019, 8, 19 9 of 21

Algorithm 8 Learner phase of SPP_TLBO algorithm.
1: Learner phase:
2: {
3: In parallel s = 1 to nt do

4: for i = 1 to mnt do

5: Randomly identify another student with whom to interact (p ∈ [1, mnt])
6: if Fcost(Yi) < Fcost(Yp) then

7: for j = 1 to k do

8: Y′i,j = Yi,j + ri,j(Yi,j −Yp,j)
9: end for

10: else

11: for j = 1 to k do

12: Y′i,j = Yi,j + ri,j(Yp,j −Yi,j)
13: end for
14: end if
15: if Fcost(Y′i) < Fcost(Yi) then

16: Zi = Y′i
17: else

18: Zi = Yi
19: end if
20: end for
21: end for
22: }

In the SPP_ParTLBO algorithm, the duplicate removal phase shown in Algorithm 9, changes with
respect to the sequential procedure, by restricting the search to the subpopulation, which is stored in
private memory.

Algorithm 9 Duplicate removal phase of SPP_TLBO algorithm.
1: Duplicate removal phase:
2: {
3: In parallel s = 1 to nt do

4: for i = 1 to mnt do

5: for j = i + 1 to mnt do

6: if Z′i = Zj then

7: Select randomly one design variable (s ∈ [1, k])
8: Randomly change Z′is
9: end if

10: end for
11: end for
12: end for
13: Z = Z′
14: }

To use heterogeneous memory platforms (clusters) we need to develop a hybrid memory model
algorithm. As explained in Section 2, and as can be seen in Algorithm 3, the TLBO algorithm performs
several fully independent executions (“Runs”). Therefore, we developed a parallel algorithm, at a
higher level, for distributed memory platforms, load balance being a key aspect. The high level parallel
algorithm needed to include load balance mechanisms and be able to include parallel algorithms
previously described, developed for shared memory platforms.

Electronics 2019, 8, 19 10 of 21

The high level parallel TLBO algorithm focuses on the fact that all iterations in line 5 in Algorithm 3
are actually independent executions. Therefore, the total number of executions (“Runs”) to be
performed is divided among np available processes, taking into account that it cannot be distributed
statically. The high level parallel algorithm must be designed for distributed memory platforms using
MPI. On the one hand, we must develop a load balance procedure, and on the other, a final data
gathering process (data collection from all processes) must be performed.

The developed hybrid MPI/OpenMP algorithm is shown in Algorithm 10. In this algorithm,
if the number of desired worker processes is equal to np, the total number of distributed memory
processes will be np + 1. This is because a critical process (distributed memory process) will be in
charge of distributing the computing work among the np available working processes. We call this
process the work dispatcher. Although the work dispatcher process is critical, it will be running in
one of the nodes with worker processes, because no significant overhead is introduced in the overall
parallel algorithm performance. The work dispatcher will be waiting to receive a work request signal
from an idle worker process. When a particular worker process requests new work (independent
execution), the dispatcher will assign a new independent execution or send an end of work signal.

Algorithm 10 Heterogeneous memory parallel TLBO algorithm.
1: np: number of distributed memory worker processes
2: Dispatcher process:
3: {
4: for l = 1 to Runs do

5: Receive idle signal
6: Send work signal
7: end for
8: for l = 1 to np do

9: Receive idle signal
10: Send end of work signal
11: end for
12: }
13: Worker processes:
14: {
15: while true do

16: Send idle signal
17: if end of work signal then

18: Break while
19: else

20: nt: number threads
21: Compute 1 run of SPG_TLBO or SPP_TLBO algorithm
22: Store Solution
23: end if
24: end while
25: }
26: Collect all the solutions and obtain Best Solution

The computational load of the dispatcher process is negligible, as can be observed in lines 4
to 11 of Algorithm 10. In line 21 one of the two parallel proposals of the TLBO algorithm is used,
i.e., SPG_TLBO or SPP_TLBO. The total number of processes is equal to tp = np ∗ nt, where np is
the number of distributed memory worker processes (MPI processes) and nt is the number of shared
memory processes (OpenMP processes or threads).

Electronics 2019, 8, 19 11 of 21

4. Numerical Results

In this section, we analyse the parallel TLBO algorithms, presented in Section 3. To perform the
tests, we developed the reference algorithm, presented in [2], in C language to implement the parallel
algorithms, and used the GCC v.4.8.5 compiler [19]. We chose MPI v2.2 [20] for the high level parallel
approach and OpenMP API v3.1 [21] for the shared memory parallel algorithms. The parallel platform
used was composed of HP Proliant SL390 G7 nodes, where each node was equipped with two Intel
Xeon X5660 processors. Each X5660 included six processing cores at 2.8 GHz, and QDR Infiniband
was used as the communication network. The performance was analysed using 30 unconstrained
functions, listed and described in Tables 1 and 2.

Table 1. Benchmark functions.

Id. Name Dim. (V) Domain (Min, Max)

F1 Sphere 30 −100, 100
F2 SumSquares 30 −10, 10
F3 Beale 2 −4.5, 4.5
F4 Easom 2 −100, 100
F5 Matyas 2 −10, 10
F6 Colville 4 −10, 10
F7 Trid 6 6 −V2, V2

F8 Trid 10 10 −V2, V2

F9 Zakharov 10 −5, 10
F10 Schwefel problem 1.2 30 −100, 100
F11 Rosenbrock 30 −30, 30
F12 Dixon-Price 5 −10, 10
F13 Foxholes 2 −216, 216

F14 Branin 2 x1 : −5, 10; x2 : 0, 15
F15 Bohachevsky_1 2 −100, 100
F16 Booth 2 −10, 10
F17 Michalewicz_2 2 0, π
F18 Michalewicz_5 5 0, π
F19 Bohachevsky_2 2 −100, 100
F20 Bohachevsky_3 2 −100, 100
F21 GoldStein-Price 2 −2, 2
F22 Perm 4 −V, V
F23 Hartman_3 3 0, 1
F24 Ackley 30 −32, 32
F25 Penalized_2 30 −50, 50
F26 Langermann_2 2 0, 10
F27 Langermann_5 5 0, 10
F28 Langermann_10 10 0, 10
F29 Fletcher-Powell_5 5 xi, αi : −π, π; aij, bij : −100, 100
F30 Fletcher-Powell_10 10 xi, αi : −π, π; aij, bij : −100, 100

Electronics 2019, 8, 19 12 of 21

Table 2. Benchmark functions.

Id. Function

F1 f =
V

∑
i=1

x2
i

F2 f =
V

∑
i=1

ix2
i

F3 f = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x2

2)
2

+(2.625− x1 + x1x3
2)

2

F4 f = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2)

F5 f = 0.26(x2
1 + x2

2)− 0.48x1x2
F6 f = 100(x2

1 − x2)
2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2

3 − x4)
2

+10.1
(
(x2 − 1)2 + (x4 − 1)2)+ 19.8(x2 − 1)(x4 − 1)

F7
F8 f =

V

∑
i=1

(xi − 1)2 −
V

∑
i=2

xixi−1

F9 f =
V

∑
i=1

x2
i +

(
V

∑
i=1

0.5ixi

)2

+

(
V

∑
i=1

0.5ixi

)4

F10 f =
V

∑
i=1

(
i

∑
j=1

xj

)2

F11 f =
V−1

∑
i=1

(
100(xi+1 − x2

i)
2 + (xi − 1)2

)
F12 f = (x1 − 1)2 +

V

∑
i=2

i
(

2x2
i − xi−1

)2

F13 f =

 1
500 +

25

∑
j=1

1

j +
2

∑
i=1

(xi − aij)
6

−1

F14 f =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10

F15 f = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7
F16 f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

F17
F18 f = −

V

∑
i=1

sin xi

(
sin

(
ix2

i
π

))20

F19 f = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3
F20 f = x2

1 + 2x2
2 − 0.3 cos(3πx1 + 4πx2) + 0.3

F21 f =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
][

30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]

F22 f =
V

∑
j=1

[
i

∑
i=1

(ij + β)

((xi
i

)j
− 1
)]2

F23 f = −
4

∑
i=1

ci exp

[
−

3

∑
j=1

aij(xj − pij)
2

]

F24 f = −20 exp

(
−0.2

√
1
V

V

∑
i=1

x2
i

)
− exp

(
1
V

V

∑
i=1

cos(2πxi)

)
+ 20 + e

Electronics 2019, 8, 19 13 of 21

Table 2. Cont.

Id. Function

F25 f = 0.1{sin2(3πx1) +
V−1

∑
i=1

(xi − 1)2
[
1 + sin2(3πxi+1)

]
+(xV − 1)2 [1 + sin2(2πxV)

]
}+

V

∑
i=1

u(xi, 5, 100, 4),

u(xi, a, k, m) =
k(xi − a)m, xi > a; 0,−a ≤ xi ≤ a; k(−xi − a)m, xi < −a.

F26
F27
F28

f = −
5

∑
i=1

ci

[
exp

(
− 1

π

V

∑
j=1

(xj − aij)
2

)
cos

(
π

V

∑
j=1

(xj − aij)
2

)]

F29 f =
V

∑
i=1

(Ci − Di)
2 ;

Ci =
V

∑
j=1

(
aij sin αj + bij cos αj

)
,

Di =
V

∑
j=1

(
aij sin xj + bij cos xj

)
,

ai,j, bi,j =

−79 56 −62 −9 92
91 −9 −18 −59 99
−38 8 −12 −73 40
−78 −18 −49 65 66
−1 −43 93 −18 −76

,

αj =
[
−2.791 2.5623 −1.0429 0.5097 −2.8096

]
.

F30 f =
V

∑
i=1

(Ci − Di)
2 ;

Ci =
V

∑
j=1

(
aij sin αj + bij cos αj

)
,

Di =
V

∑
j=1

(
aij sin xj + bij cos xj

)
,

ai,j, bi,j =

−79 56 −62 −9 92 48 −22 −34 −39 −40
91 −9 −18 −59 99 −45 88 −14 −29 26
−38 8 −12 −73 40 26 −64 29 −82 −32
−78 −18 −49 65 66 −40 88 −95 −57 10
−1 −43 93 −18 −76 −68 −42 22 46 −14
34 −96 26 −56 −36 −85 −62 13 93 78
52 −46 −69 99 −47 −72 −11 55 −55 91
81 47 35 55 67 −13 33 14 83 −42
5 −43 −45 46 56 −94 −62 52 66 55
−50 66 −47 −75 89 −16 82 6 −85 −62

,

αj =

[
−2.791 2.5623 −1.0429 0.5097 −2.8096 . . .

. . . 1.1883 2.0771 −2.9926 0.0715 0.4142

]
.

We will now analyse parallel behaviour of the parallel algorithm SPG_TLBO, described in
Algorithms 4–6, i.e., the shared memory parallel algorithm that stores the whole population in shared
(or global) memory. Table 3 shows the parallel efficiencies for all functions of the benchmark test,
using a number of threads (NoT) between 2 to 10. In this table, we can see that good efficiencies are
obtained for almost all functions using up to 6 threads. However, in very low computational cost
functions, efficiency decreases rather considerably when increasing the number of threads. In such

Electronics 2019, 8, 19 14 of 21

cases, to be able to increase the number of processes efficiently, the heterogeneous memory parallel
TLBO algorithm should be used.

Table 3. Efficiencies for SPG_TLBO, Runs = 30, Population size = 240, Iterations = 1000.

Function NoT Efficiency Function NoT Efficiency Function NoT Efficiency

F1

2 80%

F11

2 81%

F21

2 71%
4 64% 4 66% 4 50%
6 58% 6 59% 6 36%
8 52% 8 54% 8 26%

10 47% 10 49% 10 22%

F2

2 82%

F12

2 63%

F22

2 93%
4 69% 4 37% 4 85%
6 60% 6 26% 6 73%
8 55% 8 19% 8 65%

10 50% 10 15% 10 59%

F3

2 71%

F13

2 82%

F23

2 70%
4 45% 4 79% 4 57%
6 31% 6 74% 6 46%
8 22% 8 70% 8 42%

10 17% 10 67% 10 37%

F4

2 70%

F14

2 66%

F24

2 66%
4 56% 4 45% 4 57%
6 46% 6 30% 6 54%
8 37% 8 21% 8 50%

10 32% 10 16% 10 50%

F5

2 76%

F15

2 65%

F25

2 67%
4 64% 4 52% 4 62%
6 54% 6 41% 6 59%
8 42% 8 33% 8 49%

10 38% 10 27% 10 49%

F6

2 63%

F16

2 65%

F26

2 77%
4 36% 4 34% 4 59%
6 21% 6 21% 6 45%
8 16% 8 14% 8 36%

10 12% 10 11% 10 31%

F7

2 68%

F17

2 77%

F27

2 76%
4 58% 4 59% 4 67%
6 52% 6 44% 6 62%
8 49% 8 33% 8 55%

10 46% 10 27% 10 53%

F8

2 64%

F18

2 74%

F28

2 65%
4 55% 4 64% 4 50%
6 48% 6 58% 6 56%
8 45% 8 55% 8 60%

10 42% 10 53% 10 46%

F9

2 73%

F19

2 63%

F29

2 96%
4 59% 4 50% 4 77%
6 42% 6 39% 6 64%
8 36% 8 31% 8 62%

10 31% 10 27% 10 49%

F10

2 90%

F20

2 67%

F30

2 93%
4 81% 4 51% 4 88%
6 73% 6 41% 6 82%
8 70% 8 33% 8 81%

10 65% 10 28% 10 81%

Electronics 2019, 8, 19 15 of 21

Tables 4 and 5 show the parallel efficiencies for the heterogeneous memory parallel TLBO
algorithm using SPG_TLBO, setting the number of total processes (NoTP) to 4 and 10, when the
number of (MPI) processes (NoP) is equal to 1 the SPG_TLBO algorithm is used. We compare the
SPG_TLBO parallel algorithm with respect the hybrid MPI/OpenMP algorithm using the same number
of total processes (NoTP). Since the MPI algorithm is independent of the OpenMP algorithm, the same
behaviour is obtained when the SPP_TLBO algorithm is used instead of the SPG_TLBO.

Table 4. Efficiencies for hybrid MPI/OpenMP parallel algorithm, Runs = 30, Population size = 240,
Iterations = 1000.

Func. NoP NoT NoTP Eff. NoP NoT NoTP Eff.

F1
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F2
1 4

4
69% 1 10

10
50%

2 2 77% 5 2 74%

F3
1 4

4
45% 1 10

10
17%

2 2 64% 5 2 64%

F4
1 4

4
56% 1 10

10
32%

2 2 64% 5 2 61%

F5
1 4

4
53% 1 10

10
38%

2 2 64% 5 2 58%

F6
1 4

4
36% 1 10

10
12%

2 2 66% 5 2 62%

F7
1 4

4
58% 1 10

10
46%

2 2 66% 5 2 61%

F8
1 4

4
55% 1 10

10
42%

2 2 60% 5 2 59%

F9
1 4

4
59% 1 10

10
31%

2 2 62% 5 2 64%

F10
1 4

4
51% 1 10

10
65%

2 2 86% 5 2 80%

F11
1 4

4
66% 1 10

10
49%

2 2 77% 5 2 73%

F12
1 4

4
37% 1 10

10
15%

2 2 55% 5 2 59%

F13
1 4

4
79% 1 10

10
67%

2 2 85% 5 2 91%

F14
1 4

4
45% 1 10

10
16%

2 2 60% 5 2 63%

F15
1 4

4
52% 1 10

10
27%

2 2 62% 5 2 62%

As can be seen, using the hybrid MPI/OpenMP algorithm can significantly increase scalability
of the parallel algorithm. Table 6 shows the efficiencies for highest computational cost functions,
increasing the total number of processes (NoTP) to 30 and the number of iterations to 10, 000, and in
which the good behaviour of the efficiency can be verified.

Electronics 2019, 8, 19 16 of 21

Table 5. Efficiencies for hybrid MPI/OpenMP parallel algorithm, Runs = 30, Population size = 240,
Iterations = 1000.

Func. NoP NoT NoTP Eff. NoP NoT NoTP Eff.

F16
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F17
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F18
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F19
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F20
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F21
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F22
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F23
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F24
1 4

4
64% 1 10

10
47%

2 2 63% 5 2 73%

F25
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F26
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F27
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F28
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F29
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

F30
1 4

4
64% 1 10

10
47%

2 2 73% 5 2 73%

Table 6. Efficiencies for hybrid MPI/OpenMP parallel algorithm, Runs = 30, Population size = 240,
Iterations = 10,000, NoP = 15, NoT = 2, NoTP = 30.

Function Efficiency Function Efficiency Function Efficiency

F4 64% F15 64% F25 90%

F5 71% F18 71% F26 95%

F7 65% F19 66% F27 69%

F8 66% F22 93% F28 70%

F10 85% F23 68% F29 86%

F13 92% F24 63% F30 93%

Table 7 shows the parallel efficiencies for the SPP_TLBO algorithm using the same sequential
reference algorithm as the one used in Table 7, i.e., the sequential TLBO algorithm. Worthy of note,
the parallel algorithm SPP_TLBO does not emulate the sequential algorithm TLBO literally. The use
of subpopulations in the SPP_TLBO algorithm causes modifications in some procedures, such as the
calculation of the mean of the variables; it also reduces the working population in some procedures,
such as the detection of duplicates. This means that on the one hand, efficiency results generally
improve with respect to the SPG_TLBO algorithm, and on the other, in some cases, the efficiency
exceeds the theoretical upper limit when comparing exactly the same algorithms. In particular the

Electronics 2019, 8, 19 17 of 21

duplicate removal procedure for very low cost computational cost functions becomes a very important
aspect in the overall cost of the algorithm.

Table 7. Efficiencies for SPP_TLBO, Runs = 30, Population size = 120, Iterations = 1000.

Function NoT Efficiency Function NoT Efficiency Function NoT Efficiency

F1

2 97%

F11

2 96%

F21

2 137%
4 87% 4 87% 4 122%
6 80% 6 81% 6 107%
8 73% 8 76% 8 83%

10 69% 10 70% 10 65%

F2

2 96%

F12

2 107%

F22

2 97%
4 86% 4 82% 4 91%
6 81% 6 69% 6 86%
8 75% 8 56% 8 84%

10 71% 10 44% 10 82%

F3

2 105%

F13

2 91%

F23

2 121%
4 89% 4 86% 4 121%
6 78% 6 85% 6 111%
8 65% 8 84% 8 110%

10 52% 10 84% 10 94%

F4

2 135%

F14

2 122%

F24

2 46%
4 143% 4 106% 4 50%
6 139% 6 96% 6 73%
8 118% 8 76% 8 80%

10 102% 10 61% 10 79%

F5

2 113%

F15

2 158%

F25

2 94%
4 80% 4 175% 4 88%
6 63% 6 166% 6 83%
8 46% 8 135% 8 80%

10 34% 10 110% 10 77%

F6

2 109%

F16

2 112%

F26

2 106%
4 81% 4 78% 4 102%
6 67% 6 64% 6 100%
8 54% 8 47% 8 94%

10 41% 10 35% 10 88%

F7

2 136%

F17

2 115%

F27

2 121%
4 130% 4 114% 4 117%
6 132% 6 107% 6 111%
8 107% 8 100% 8 107%

10 94% 10 90% 10 98%

F8

2 105%

F18

2 115%

F28

2 107%
4 86% 4 111% 4 105%
6 78% 6 113% 6 102%
8 66% 8 109% 8 98%

10 56% 10 106% 10 94%

F9

2 100%

F19

2 114%

F29

2 81%
4 81% 4 113% 4 80%
6 72% 6 109% 6 74%
8 67% 8 103% 8 66%

10 60% 10 95% 10 70%

F10

2 96%

F20

2 121%

F30

2 97%
4 88% 4 115% 4 92%
6 84% 6 108% 6 84%
8 81% 8 104% 8 90%

10 78% 10 98% 10 86%

As shown in Tables 3–5 and 7, the parallel methods proposed obtain good efficiencies. However
in [14], the authors’ parallel proposal for the particular problem under study, also achieves very
good efficiencies, the cost function having a high computational cost. In Table 8, we compare the
method proposed in [14] to both proposed methods, SPG_TLBO and SPP_TLBO, for the first function

Electronics 2019, 8, 19 18 of 21

of the benchmark test (provided by the reference software in https://gitlab.hpca.ual.es/ncc911/
ParallelTLBO), i.e., the Sphere function, using between 2 to 10 threads (NoT), i.e., OpenMP processes.
Results presented in Table 8 were obtained by running the reference code on the same parallel platform
where the results for the SPG_TLBO and SPP_TLBO algorithms have been obtained. As shown,
the efficiencies for both proposed algorithms, SPG_TLBO and SPP_TLBO, improve those obtained
by the reference algorithm, especially by increasing the number of threads used. Worthy of note the
TLBO parallel proposal presented in [13] obtains efficiencies of only between 20% and 30% for 16 and
32 processes respectively, and other parallel proposals applied to the state-of-the-art algorithms DPGA
and ACO, obtain worse efficiency results and serious scalability problems.

Table 8. Comparison of SPG_TLBO and SPP_TLBO respect to algorithm presented in [14].

Iterations Pop. Size NoT Alg. Ref SPG_TLBO SPP_TLBO

1000

60

2 61% 77% 89%
4 33% 60% 73%
6 22% 45% 61%
8 16% 35% 47%

10 12% 28% 38%

120

2 65% 76% 97%
4 38% 64% 87%
6 26% 54% 80%
8 19% 43% 73%

10 15% 36% 64%

240

2 61% 80% 100%
4 34% 64% 91%
6 23% 58% 87%
8 18% 52% 80%

10 14% 47% 75%

5000

60

2 61% 74% 89%
4 35% 56% 68%
6 22% 42% 56%
8 17% 33% 44%

10 13% 26% 36%

120

2 64% 77% 96%
4 37% 63% 78%
6 26% 52% 68%
8 19% 42% 58%

10 15% 34% 51%

240

2 61% 79% 107%
4 35% 64% 97%
6 24% 57% 88%
8 19% 52% 80%

10 15% 47% 74%

10,000

60

2 62% 74% 89%
4 35% 56% 67%
6 22% 42% 55%
8 17% 33% 44%

10 13% 26% 36%

120

2 64% 77% 96%
4 38% 64% 82%
6 26% 52% 67%
8 19% 42% 58%

10 15% 35% 51%

240

2 61% 80% 111%
4 34% 64% 101%
6 23% 58% 88%
8 18% 52% 80%

10 14% 47% 75%

Finally, the effectiveness of the optimization, especially of the SPP_TLBO algorithm, should be
checked, as it modifies the procedure carried out in the sequential TLBO algorithm, while the

https://gitlab.hpca.ual.es/ncc911/ParallelTLBO
https://gitlab.hpca.ual.es/ncc911/ParallelTLBO

Electronics 2019, 8, 19 19 of 21

SPG_TLBO algorithm performs a processing that is analogous to the sequential processing. Table 9
show the number of iterations (N. It.) needed to achieve an optimal value with an error of less than
1e− 3. This table shows the data of the original sequentially executed TLBO algorithm and the data
of the parallel SPP_TLBO algorithms. Please note that the number of iterations shown in Table 9 is
the average of the functions iterations needed to achieve an optimal value with an error of less than
1e− 3, this average has been computed over the 30 values obtained from the 30 independent runs
performed, both for the sequential and parallel algorithms. On the other hand, both the subpopulation
size and the population size for the sequential algorithm are equal to 120. Whorty of note, the number
of iterations when using the SPG_TLBO parallel algorithm is similar to the sequential reference
algorithm, due to the sequential procedure has not been modified. While the number of iterations,
shown in Table 9, when using the SPP_TLBO parallel algorithm shows that our parallel proposal
outperforms the sequential TLBO algorithm, i.e., convergence is accelerated. Therefore, the strategy
of using subpopulations connected by the best global individual, used in the SPP_TLBO algorithm,
offers improvements both at the computational level and regarding convergence speed. Table 9 does
not include those functions of faster convergence.

Table 9. Average number of function iterations for SPP_TLBO, Runs = 30, Subpopulation size = 120.

Function NoT N. It. Function NoT N. It. Function NoT N. It.

F1

Seq. 432

F10

Seq. 2001

F22

Seq. 947
2 474 2 2333 2 538
4 426 4 1992 4 368
6 398 6 2289 6 219
8 388 8 1770 8 219

10 387 10 2096 10 427

F2

Seq. 507

F11

Seq. 14,059

F24

Seq. 300
2 443 2 10,943 2 269
4 443 4 12,685 4 281
6 474 6 11,232 6 262
8 455 8 13,834 8 247

10 447 10 14,259 10 255

F4

Seq. 32

F12

Seq. 54

F25

Seq. 427
2 25 2 47 2 333
4 39 4 42 4 347
6 33 6 32 6 300
8 33 8 44 8 324

10 26 10 33 10 279

F6

Seq. 285

F13

Seq. 277

F26

Seq. 35
2 269 2 268 2 10
4 117 4 423 4 20
6 106 6 398 6 18
8 101 8 285 8 8

10 96 10 285 10 6

F7

Seq. 41

F15

Seq. 22

F27

Seq. 62
2 38 2 17 2 69
4 34 4 20 4 45
6 37 6 18 6 40
8 35 8 18 8 41

10 33 10 15 10 35

F8

Seq. 282

F18

Seq. 54

F29

Seq. 67
2 262 2 132 2 58
4 206 4 74 4 73
6 307 6 66 6 45
8 146 8 91 8 41

10 176 10 75 10 3

F9

Seq. 209

F19

Seq. 16

F30

Seq. 657
2 176 2 19 2 216
4 164 4 18 4 410
6 173 6 16 6 176
8 158 8 18 8 221

10 148 10 16 10 155

Electronics 2019, 8, 19 20 of 21

5. Conclusions

The TLBO heuristic optimization algorithm is an effective optimization algorithm that though
recent, has been tested and compared. In this work, we presented efficient parallel algorithms for
heterogeneous parallel platforms. We proposed a hybrid MPI/OpenMP algorithm, exploiting inherent
parallelism at different levels. Moreover we proposed two different algorithms for shared memory
architectures, using OpenMP, called SPG_TLBO and SPP_TLBO. The first is an efficient parallel
implementation of the TLBO sequential algorithm without any changes to the sequential procedure.
In the second, SPP_TLBO, we proposed a different strategy that improves both computational
performance and optimization behaviour. Significantly, the parallel proposals achieved good parallel
performance regardless of the intrinsic characteristics of the functions to be optimized, in particular
with regard to the computational cost of the function to be optimized. On the other hand, the high level
parallel proposal included an intrinsic load balancing mechanism allowing the use of non-dedicated
computing platforms.

Author Contributions: H.M., A.G.-M., J.-L.S.-R. and R.V.R. conceived the parallel algorithms; R.V.R. conceived
the sequential algorithm; A.G.-M. and H.M. designed parallel algorithms; H.M. and A.G.-M. codified the parallel
algorithms; A.G.-M. and H.R. performed numerical experiments; H.M. and A.J.-M. analyzed the data; H.M. and
J.-L.S.-R. wrote the paper.

Funding: This research was supported by the Spanish Ministry of Economy and Competitiveness under Grants
TIN2015-66972-C5-4-R and TIN2017-89266-R, co-financed by FEDER funds. (MINECO/FEDER/UE).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lin, M.H.; Tsai, J.F.; Yu, C.S. A Review of Deterministic Optimization Methods in Engineering and
Management. Math. Probl. Eng. 2012, 2012, 756023. [CrossRef]

2. Rao, R.V.; Patel, V. Comparative performance of an elitist teaching-learning-based optimization algorithm
for solving unconstrained optimization problems. Int. J. Ind. Eng. Comput. 2013, 4, 29–50. [CrossRef]

3. Singh, M.; Panigrahi, B.; Abhyankar, A. Optimal coordination of directional over-current relays using
Teaching Learning-Based Optimization (TLBO) algorithm. Int. J. Electr. Power Energy Syst. 2013, 50, 33–41.
[CrossRef]

4. Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. A new multi objective optimization approach
based on TLBO for location of automatic voltage regulators in distribution systems. Eng. Appl. Artif. Intell.
2012, 25, 1577–1588. [CrossRef]

5. Li, D.; Zhang, C.; Shao, X.; Lin, W. A multi-objective TLBO algorithm for balancing two-sided assembly line
with multiple constraints. J. Intell. Manuf. 2016, 27, 725–739. [CrossRef]

6. Arya, L.; Koshti, A. Anticipatory load shedding for line overload alleviation using Teaching learning based
optimization (TLBO). Int. J. Electr. Power Energy Syst. 2014, 63, 862–877. [CrossRef]

7. Mohanty, B. TLBO optimized sliding mode controller for multi-area multi-source nonlinear interconnected
AGC system. Int. J. Electr. Power Energy Syst. 2015, 73, 872–881. [CrossRef]

8. Yan, J.; Li, K.; Bai, E.; Yang, Z.; Foley, A. Time series wind power forecasting based on variant Gaussian
Process and TLBO. Neurocomputing 2016, 189, 135–144. [CrossRef]

9. Baghban, A.; Kardani, M.N.; Mohammadi, A.H. Improved estimation of Cetane number of fatty acid methyl
esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models. Fuel 2018, 232, 620–631. [CrossRef]

10. Javaid, N.; Ahmed, A.; Iqbal, S.; Ashraf, M. Day Ahead Real Time Pricing and Critical Peak Pricing Based
Power Scheduling for Smart Homes with Different Duty Cycles. Energies 2018, 11, 1464. [CrossRef]

11. Zakeri, A.S.; Askarian Abyaneh, H. Transmission Expansion Planning Using TLBO Algorithm in the
Presence of Demand Response Resources. Energies 2017, 10, 1376. [CrossRef]

12. Rao, R.V.; Savsani, V.; Vakharia, D. Teaching-learning-based optimization: A novel method for constrained
mechanical design optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]

13. Umbarkar, A.J.; Rothe, N.M.; Sathe, A. OpenMP Teaching-Learning Based Optimization Algorithm over
Multi-Core System. Int. J. Intell. Syst. Appl. 2015, 7, 19–34. [CrossRef]

http://dx.doi.org/10.1155/2012/756023
http://dx.doi.org/10.5267/j.ijiec.2012.09.001
http://dx.doi.org/10.1016/j.ijepes.2013.02.011
http://dx.doi.org/10.1016/j.engappai.2012.07.004
http://dx.doi.org/10.1007/s10845-014-0919-2
http://dx.doi.org/10.1016/j.ijepes.2014.06.066
http://dx.doi.org/10.1016/j.ijepes.2015.06.013
http://dx.doi.org/10.1016/j.neucom.2015.12.081
http://dx.doi.org/10.1016/j.fuel.2018.05.166
http://dx.doi.org/10.3390/en11061464
http://dx.doi.org/10.3390/en10091376
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.5815/ijisa.2015.07.08

Electronics 2019, 8, 19 21 of 21

14. Cruz, N.C.; Redondo, J.L.; Álvarez, J.D.; Berenguel, M.; Ortigosa, P.M. A parallel Teaching–Learning-Based
Optimization procedure for automatic heliostat aiming. J. Supercomput. 2017, 73, 591–606.

15. Umbarkar, A.J.; Joshi, M.S.; Sheth, P.D. OpenMP Dual Population Genetic Algorithm for Solving Constrained
Optimization Problems. Int. J. Inf. Eng. Electron. Bus. 2015, 1, 59–65. [CrossRef]

16. Delisle, P.; Krajecki, M.; Gravel, M.; Gagné, C. Parallel implementation of an ant colony optimization
metaheuristic with OpenMP. In Proceedings of the 3rd European Workshop on OpenMP, Barcelona, Spain,
8–9 September 2001; Springer: Berlin/Heidelberg, Germany, 2001.

17. Lee, H.; Kim, K.; Kwon, Y.; Hong, E. Real-Time Particle Swarm Optimization on FPGA for the Optimal
Message-Chain Structure. Electronics 2018, 7, 274. [CrossRef]

18. Jimeno-Morenilla, A.; Sánchez-Romero, J.L.; Migallón, H.; Mora-Mora, H. Jaya optimization algorithm with
GPU acceleration. J. Supercomput. 2018. [CrossRef]

19. Free Software Foundation, Inc. GCC, the GNU Compiler Collection. Available online: https://www.gnu.
org/software/gcc/index.html (accessed on 2 November 2016).

20. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2. 2009. Available online: http:
//www.mpi-forum.org (accessed on 15 December 2016).

21. OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.1. 2011. Available
online: http://www.openmp.org (accessed on 2 November 2016).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5815/ijieeb.2015.01.08
http://dx.doi.org/10.3390/electronics7110274
http://dx.doi.org/10.1007/s11227-018-2316-7
https://www.gnu.org/software/gcc/index.html
https://www.gnu.org/software/gcc/index.html
http://www.mpi-forum.org
http://www.mpi-forum.org
http://www.openmp.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The TLBO Algorithm
	Parallel Approaches
	Numerical Results
	Conclusions
	References

