
Uniform Saturation in Linear Inequality Systems

Miguel A. Goberna, Valentín Jornet and Mariola Molina

Departamento de Estadística e Investigación Operativa.

Facultad de Ciencias, Universidad de Alicante.

03690 San Vicente del Raspeig, Alicante.

e-mail: mgoberna@ua.es vjornet@ua.es mariola.molina@ua.es

Abstract

Redundant constraints in linear inequality systems can be characterized as those

inequalities that can be removed from an arbitrary linear optimization problem posed on

its solution set without modifying its value and its optimal set. A constraint is saturated

in a given linear optimization problem when it is binding at the optimal set. Saturation

is a property related with the preservation of the value and the optimal set under the

elimination of the given constraint, phenomena which can be seen as weaker forms of

excess information in linear optimization problems. We say that an inequality of a given

linear inequality system is uniformly saturated when it is saturated for any solvable linear

optimization problem posed on its solution set. This paper characterizes the uniform

saturated inequalities and other related classes of inequalities.
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1 Introduction

We consider given a consistent linear inequality system σ = {a′

t
x ≥ bt, t ∈ T}, where

T is an arbitrary (possibly infinite) set, at ∈ R
n, and bt ∈ R, for all t ∈ T . We assume

that σ is nontrivial in the sense that |T | ≥ 2 and {at, t ∈ T} �= {0n}. The assumptions
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entail that the solution set of σ, denoted by F , satisfies ∅ �= F �= R
n. Throughout the

paper we consider given a fixed index s ∈ T such that as �= 0n. The inequality a′

s
x ≥ bs

(or its corresponding index s) is called redundant in σ if the elimination of this inequality

in σ does not modify the solution set, i.e., if

Fs := {x ∈ R
n | a′

t
x ≥ bt, t ∈ T\ {s}} = F.

There exists a wide literature on redundancy (see Greenberg (1996) and Goberna et al.

(1998b), and references therein, for the cases |T | < ∞ and for arbitrary T , respectively).

Redundant constraints and other types of superfluous constraints are the cause of troubles

in the numerical treatment of linear optimization problems, at least in the case |T | < ∞

(see Karwan et al. (1983)). In order to define the relevant concepts in this paper we

associate with each c ∈ R
n the linear programs

P (c) : Inf c′x s.t. x ∈ F and Ps (c) : Inf c′x s.t. x ∈ Fs,

with values v (c) and vs (c), and optimal sets F ∗ (c) and F ∗

s
(c), respectively. These

linear optimization problems are ordinary if |T | < ∞ and semi-infinite otherwise.

Obviously, a nonredundant inequality a′

s
x ≥ bs can be considered superfluous in P (c)

when F ∗

s
(c) = F ∗ (c) or at least vs (c) = v (c). Next we show that these properties hold

uniformly when s is redundant.

Proposition 1.1. The following statements are equivalent to each other:

(i) s is redundant in σ.

(ii) vs (c) = v (c) for all c ∈ R
n\ {0n}.

(iii) F ∗

s
(c) = F ∗ (c) for all c ∈ R

n\ {0n}.

Proof. (i)=⇒(ii), (i)=⇒(iii) and (iii)=⇒(ii) are trivial.

(ii)=⇒(i) Assume that (i) fails. Then there exists x1 ∈ Fs\F , i.e., a′

t
x1 ≥ bt, for

all t ∈ T\ {s} and a′

s
x1 < bs. Then, vs (as) < bs ≤ v (as), with as �= 0n (otherwise

0 = a′

s
x1 < bs contradicts F �= ∅). �

Remark 1.1. Observe that c ∈ R
n\ {0n} can be replaced by just c ∈ R

n in (ii) and

(iii).
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The given index s, or its corresponding constraint a′

s
x ≥ bs, is called carrier (binding)

in σ if F ⊂ Hs (F
s := F ∩Hs �= ∅, respectively), where Hs:= {x ∈ R

n | a′

s
x = bs} is

the boundary of the corresponding halfspace (a hyperplane).

We say that s is saturated in P (c), where c �= 0n, if there exists x∗ ∈ F ∗ (c) such

that a′

s
x ≥ bs is binding at x∗, i.e., if F ∗ (c) ∩ Hs �= ∅. We distinguish two kinds of

saturated constraints: s is strongly saturated in P (c) if a′

s
x∗ = bs for all x

∗ ∈ F ∗ (c), i.e.,

if F ∗ (c) ⊂ Hs, and it is said to be weakly saturated otherwise (observe that, if c = 0n,

F ∗ (c) = F ⊂ Hs is impossible unless the dimension of F is dimF < n). The concept of

saturation was introduced by Boot (1962), for problems with a unique solution, whereas

weak and strong saturation were defined and analyzed by Mauri (1975) and by Karwan et

al. (1983), assuming that |T | < ∞ and s is nonredundant, and by Goberna et al. (2003a)

in the general case. In the last paper, it has been proved (in Proposition 4.1) that, if s is

nonsaturated (weakly saturated), then it is superfluous in the sense that F ∗

s
(c) = F ∗ (c)

(vs (c) = v (c), respectively).

Inspired in the statements (ii) and (iii) in Proposition 1.1, we introduce now the

following definitions: s (or its corresponding constraint a′

s
x ≥ bs) is uniformly saturated

(US, in brief) in σ if F ∗(c) ∩ Hs �= ∅ for all c ∈ R
n\{0n} such that F ∗(c) �= ∅; s is

uniformly strongly saturated (USS) in σ when F ∗(c) ⊂ Hs for every c ∈ R
n\{0n} such

that F ∗(c) �= ∅. Finally, s is weakly uniformly saturated (WUS) in σ if it is US but not

USS.We could also define s to be uniformly nonsaturated in σ when s is nonsaturated in

P (c) for all c ∈ R
n\{0n}, that is F

s = F ∩Hs = ∅, but this is nothing else than nonweak

redundancy of s in σ (which has been already studied in detail in Goberna et al. (1998b)).

The purpose of this paper is to analyze the new concepts and to characterize those

inequalities in σ belonging to each of the three classes. Such characterizations will be

formulated in terms of the geometrical properties of F (usually difficult to be checked) or

by means of the coefficients of σ. In Goberna et al. (2003a), a related concept has been

studied: s is stably saturated in a given linear optimization problem (called nominal) when

it is saturated for any problem obtained from it through a perturbation of the objective,

provided that the perturbation is sufficiently small. Obviously, stable saturation is a

transition concept between saturation (for the nominal problem) and uniform saturation
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(for its constraints system).

Remark 1.2. (a) c ∈ R
n\{0n} can be replaced by just c ∈ R

n in the definition of

uniform saturation. In fact, since ∅ �= F �= R
n, there exists a supporting hyperplane to F

at x, a′ (x− x) = 0, such that a′ (x− x) ≥ 0 for all x ∈ F . Then, x ∈ F ∗(a), a �= 0n,

and so

∅ �= F ∗(a) ∩Hs ⊂ F ∩Hs = F ∗(0n) ∩Hs.

Observe also that, if F is bounded, then s is US if and only if F ∗(c) ∩ Hs �= ∅ for all

c ∈ R
n.

(b) c ∈ R
n\{0n} can be replaced by just c ∈ R

n in the definition of uniform strong

saturation provided that F is not a halfspace inRn. The argument is similar to the previous

one: now we have x ∈ F ∗(a) ⊂ Hs, so thatHs contains the boundary of F , whose convex

hull is F (see, e.g., Lemma 2 in Goberna et al. (2003b)). Otherwise, if F is a halfspace,

we can write F = {x ∈ R
n | a′

s
x ≥ b}, with b ≥ bs, and s turns out to be USS in σ if and

only if bs = b. Finally, observe that, if F is bounded, then s is USS in σ if and only if

F ∗(c) ⊂ Hs for all c ∈ R
n.

(c) s is WUS in σ if and only if s is US in σ and there exists c ∈ R
n\{0n} such that s

is weakly saturated in P (c).

The following result collects some connections between the new concepts and the

excess of information in linear optimization.

Proposition 1.2. (i) If s is USS in σ and there exists c ∈ R
n such that dimF ∗(c) =

n− 1 < dimF and vs (c) = v (c), then s is redundant in σ.

(ii) If s is WUS in σ, then there exists c ∈ R
n\{0n} such that vs (c) = v (c).

(iii) If s is not US in σ, then there exists c ∈ R
n\{0n} such that F

∗

s
(c) = F ∗ (c).

Proof. (i) The assumption on the dimensions entails that F ∗(c) �= ∅ and c �= 0n, so

that F ∗ (c) ⊂ Hs and s is strongly saturated in P (c). The conclusion follows from part

(ii) in Proposition 4.1 in Goberna et al. (2003a).

(ii) Under the assumption, there exists c ∈ R
n\{0n} such that s is weakly saturated

in P (c). By Proposition 4.1 (i) in Goberna et al. (2003a), vs (c) = v (c).

(iii) The assumptions entails the existence of c ∈ R
n\{0n} such that s is nonsaturated
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in P (c), so that, again by the same result, F ∗

s
(c) = F ∗ (c). �

2 Preliminaries

First, let us introduce the necessary notation and recall some results that will be used

in the paper. Given a set ∅ �= X ⊂ R
n, we denote by coneX, spanX, convX and

X⊥ the convex cone spanned by X , the linear span of X , the convex hull of X and the

orthogonal subspace to spanX. From the topological side, clX and bdX denote the

closure and the boundary of X, respectively. If X is a convex cone its positive polar is

X0 = {y ∈ R
n | x′y ≥ 0, for all x ∈ X} .

The next concepts and results will be used throughout the paper and can be found in

Rockafellar (1970).

A face of a convex set C is a convex subset X ⊂ C such that for every pair of points

v1 �= v2 of C such that X ∩ ]v1, v2[ �= ∅, we have that [v1, v2] ⊂ X . Extreme points

are zero-dimensional faces. We shall denote by extrC the set of extreme points of C. A

face X is exposed if X is the set of points where a certain affine function achieves its

minimum over C. For instance, the set F s is actually F ∗ (as) and so it is an exposed face

of F .

If C is a nonempty convex set, O+C denotes the recession cone of C, that is,

O+C := {v ∈ R
n | x+ µv ∈ C, for all x ∈ C and for all µ ≥ 0} .

A nonzero vector w ∈ O+C represents an extreme direction of C if for every pair of

vectors w1,w2 ∈ O+C such that w = µ1w
1+µ2w

2, with µ1 and µ2 positive real numbers,

we have span {w1} = span {w2} .

If X ′ is a face of X and X is a face of C, then X ′ is a face of C. In particular,

an extreme point of a face of C is an extreme point of C itself (and this is also true for

extreme directions). IfC is a closed convex set, then the set of its exposed points is a dense

subset of extrC. Moreover, if C contains no lines, then C = conv (extrC) + coneV ,

where V denotes the set of extreme directions of C. The set linC = O+C ∩ (−O+C) is

called the lineality space of C; extrC �= ∅ if and only if C does not contain lines if and
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only if linC = {0n}. A convex cone C is pointed when it does not contain lines, i.e.,

extrC = {0n} .

We shall consider along the paper the recession cone of intersections and sums of

closed convex sets. If {Ci | i ∈ I} is an arbitrary collection of closed convex sets in R
n

with nonempty intersection, then O+

(
∩
i∈I

Ci

)
=∩

i∈I

O+Ci. If C1 and C2 are nonempty

closed convex sets in R
n such that (O+C1) ∩ (−O+C2) = {0n}, then C1 + C2 is closed

and O+ (C1 + C2) = (O+C1) + (O+C2).

We shall also use some concepts and results related with linear inequality systems and

linear optimization problems. All of them can be found in Goberna and López (1998a).

Concerning σ = {a′
t
x ≥ bt, t ∈ T}, the recession cone of its solution set,O+F , is the

solution set of its corresponding homogenous system, so that linF = {at, t ∈ T}⊥. Most

of the information on σ is captured by two associated convex cones: the characteristic

cone

Kσ := cone

{(
at
bt

)
, t ∈ T ;

(
0n
−1

)}
and its projection on the space of the first n components, the so-called first moment cone

Mσ := cone {at, t ∈ T} ,

which verifies

O+F = (clMσ)
0 . (1)

A linear inequality a′x ≥ b is consequence of σ if it is satisfied by every solution of

the system. By the extended Farkas’ Lemma, this is true if and only if(
a
b

)
∈ clKσ.

In linear semi-infinite optimization, v(c) �= −∞ does not entail the solvability of

P (c). If P (c) is solvable (i.e., F ∗(c) �= ∅) and F does not contain lines, then the optimal

value v(c) will be attained at an extreme point of F , i.e., F ∗(c) ∩ extrF �= ∅.

3 Uniform saturation

Proposition 3.1. If s is US in σ, then F s �= ∅ (i.e., s is binding), linF s = linF , and
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extrF s = extrF . Conversely, if extrF s = extrF �= ∅, then s is US in σ.

Proof. Taking an arbitrary x ∈ bdF , there exists c �= 0n such that c
′x ≥ c′x for every

x ∈ F . Thus x ∈ F ∗(c) �= ∅ and, since s is US, there exists

x∗ ∈ F ∗(c) ∩Hs ⊂ F ∩Hs = F s,

so that F s is a nonempty exposed face of F.

Now we show that linF s = linF . In fact, since F s is the solution set of

{a′

t
x ≥ bt, t ∈ T ; a′

s
x = bs}, we have

linF s = {x ∈ R
n | a′

t
x = 0, t ∈ T ; a′

s
x = 0} = linF.

Hence, extrF s �= ∅ if and only if extrF �= ∅. We have to prove that, in such case,

extrF s = extrF .

Since F s is a face of F , we have extrF s ⊂ extrF . In order to prove the reverse

inclusion, take an arbitrary x̂ ∈ extrF . Let {xr}∞
r=1

be a sequence of exposed points of

F such that lim
r→∞

xr = x̂. For every r ∈ N there exists a vector cr ∈ R
n\ {0n} such that

F ∗(cr) = {xr} and, since s is US in σ, xr ∈ Hs, i.e., x
r ∈ F s. Then, x̂ ∈ F s because this

set is closed and so x̂ ∈ extrF s. Thus extrF s = extrF .

Now we assume that extrF s = extrF �= ∅ and we shall prove that s is US in σ.

Let c ∈ R
n\ {0n} such that F

∗ (c) �= ∅. Since linF = {0n}, we have

∅ �= F ∗ (c) ∩ extrF = F ∗ (c) ∩ extrF s ⊂ F ∗ (c) ∩Hs.

�

Remark 3.1. Observe that linF s = linF �= {0n} (in which case extrF s =

extrF = ∅) does not guarantee that s is US in σ (consider the cylinder described by

{(cos t)x2 + (sin t)x3 ≤ 1, t ∈ [0, 2π]}, with linF = span
{
(1, 0, 0)′

}
, and an arbitrary

index s ∈ [0, 2π]).

Corollary 3.1. If s is US, F does not contain lines, and F ∗(c) �= ∅ for c �= 0n, then

F ∗(c) contains at least an extreme point of F inHs.
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Proof. Under the assumptions,

∅ �= F ∗ (c) ∩ extrF = F ∗ (c) ∩ extrF s,

where extrF s is actually the set of the extreme points of F laying in Hs. �

Example 3.1. Let s be the index corresponding to the first inequality in

σ = {x3 ≥ 1;− (cos t) x1 − (sin t)x2 + x3 ≥ 0, t ∈ [0, 2π]} .

It can be realized that F = {x ∈ R
3 | x2

1
+ x2

2
≤ x2

3
, x3 ≥ 1} (see Figure 1), so that

extrF s = extrF =
{
(x1, x2, 1)

′ | x2
1
+ x2

2
= 1

}
,

and s turns out to be US.

F 

H
s 

F
s 

03 

Figure 1: F and F s in Example 3.1

4 Uniform strong saturation

Proposition 4.1. The following statements are equivalent to each other:

(i) s is USS in σ.

(ii) Either s is carrier in σ or F = {x ∈ Rn | a′

s
x ≥ bs}.

(iii) Either

(
as
bs

)
∈ lin clKσ or clKσ = cone

{(
as
bs

)
,

(
0n
−1

)}
.

(iv) Either F s = F or a′

s
x ≥ bs is a binding constraint in σ such that Mσ =
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cone {as}.

Proof. First, we shall prove that (i)⇐⇒(ii).

Assume that s is USS and noncarrier in σ. Let us prove that bdF ⊂ Hs. In fact, if

x1 ∈ (bdF ) \Hs, there exists c ∈ Rn\ {0n} such that c′x ≥ c′x1 for every x ∈ F . So

x1 ∈ F ∗(c)\ Hs and s cannot be USS in σ.

We shall use the inclusion bdF ⊂ Hs in order to prove the nontrivial inclusion in

{x ∈ Rn | a′

s
x > bs} ⊂ F ⊂ {x ∈ Rn | a′

s
x ≥ bs}. (2)

Assume the existence of x2 /∈ F such that a′

s
x2 > bs. Since s is noncarrier, we can

take x3 ∈ F\Hs. Then there exists

x4 ∈ (bdF ) ∩
[
x2, x3

]
⊂ Hs ∩

[
x2, x3

]
satisfying a′

s
x4 = bs and a′

s
x4 > bs. This is a contradiction, so that (2) holds and we get

F = {x ∈ Rn | a′

s
x ≥ bs} (just taking topological closures).

If s is carrier, then F ∗(c) ⊂ F = F s ⊂ Hs for all c ∈ Rn, so that s is trivially USS in

σ.

Now we assume that F = {x ∈ Rn | a′

s
x ≥ bs}. Then

F ∗(c) =




F,
Hs,
∅,

if c = 0n,
if c ∈ (cone {as}) \ {0n} ,
if c /∈ cone {as} ,

so that F ∗(c) ⊂ Hs for every c �= 0n and s turns out to be USS in σ.

We shall complete the proof by reformulating both conditions in statement (ii) in

terms of the conesMσ and Kσ.

Concerning the first condition, s is carrier ⇔ F s = F ∩ Hs = F ⇔ a′

s
x ≤ bs is a

consequence of σ ⇔−

(
as
bs

)
∈ clKσ ⇔

(
as
bs

)
∈ lin clKσ.

On the other hand, according to Farkas’ Lemma, F = {x ∈ Rn | a′

s
x ≥ bs} if and

only if

clKσ = cone

{(
as
bs

)
,

(
0n
−1

)}
. (3)

Obviously, (3) entails as ∈ Mσ ⊂ cone{as}, so that Mσ = cone{as}. Moreover,

since bdF = Hs, s is binding in σ.
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Conversely, assume that Mσ = cone{as} and s is binding in σ. Then we can write

at = γ
t
as, γt ≥ 0, for all t ∈ T\ {s}. If at = 0n, then bt ≤ 0 (recall that F �= ∅), so that(

at
bt

)
∈ cone

{(
0n
−1

)}
. Defining γ

s
= 1, we have

Kσ = cone

{(
γ
t
as
bt

)
, γ

t
> 0, t ∈ T ;

(
0n
−1

)}
= cone

{(
as

γ−1

t
bt

)
, γ

t
> 0, t ∈ T ;

(
0n
−1

)}
.

Let b := sup
{
γ−1

t
bt | γt > 0, t ∈ T

}
. If b = +∞, since

(
as

γ−1

t
bt

)
∈ Kσ, we have(

0n
1

)
∈ 0+Kσ ⊂ clKσ, so that 0′

n
x ≥ 1 should be a consequence of σ, and this is

impossible. Thus b ∈ R satisfies b ≥ γ−1
s
bs = bs and (3) holds. Consequently, (iii) and

(iv) are mere reformulations of (ii). �

Remark 4.1. (a) If s is USS in σ, then v (as) = bs, by Proposition 4.1. If, additionally,

s is noncarrier in σ, then s is redundant in σ if and only if vs (as) = bs (compare with

statement (i) in Proposition 1.2), but this statement is not true for carrier indices (consider

the first inequality in {x2 ≥ 0; x1 − tx2 ≥ 0, t = 2, 3...}).

(b) Notice that F s = Hs does not guarantee that s is USS in σ (consider the system,

in R2, {x1 ≥ 0,−x1 ≥ −1}; both inequalities are nonsaturated but F s = Hs, s = 1, 2).

5 Weak uniform saturation

We shall distinguish two cases, depending on the existence or not of extreme points

in F (i.e., the full dimension or not of span {at, t ∈ T}).

Proposition 5.1. Assume that F does not contain lines and let V be the set of extreme

directions of F . Then the following statements are equivalent to each other:

(i) s is WUS in σ.

(ii) ∅ �= F s �= F , V � {as}
⊥ and

F = F s + cone{v ∈ V | a′
s
v �= 0}.
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(iii) F = C +K, where C is a closed convex set such that ∅ �= C ⊂ Hs and K is a

closed convex cone such that K � {as}
⊥.

Proof. (i)⇒ (ii) From Propositions 3.1 and 4.1, ∅ �= F s � F , linF s = linF = {0n}

and extrF s = extrF �= ∅. Since F and F s are closed convex sets not containing lines,

we have

F = conv(extrF ) + coneV

= conv(extrF s) + cone{v ∈ V | a′
s
v = 0}+ cone{v ∈ V | a′

s
v �= 0}

= F s + cone{v ∈ V | a′
s
v �= 0}.

Moreover, since F �= F s, we have cone{v ∈ V | a′
s
v �= 0} �= {0n}, and so there exists at

least one v ∈ V such that a′
s
v �= 0.

(ii)⇒ (iii) C := F s satisfies the required conditions. We consider

K := cl cone{v ∈ V | a′
s
v �= 0},

that is a convex closed cone.

Let us show that F = C+K . In fact, F ⊂ C+K by assumption, whereas V ⊂ O+F

entails C +K ⊂ F +O+F = F .

On the other hand, since V ⊂ O+F and this is a closed convex cone which does not

contain lines,K satisfies the same properties. Moreover, from the definition ofK and the

assumption that V � {as}
⊥
, we getK � {as}

⊥
.

(iii) ⇒ (i) First, we prove that s is US. Let x∗ ∈ F ∗ (c) for some c ∈ Rn\ {0n}.

Then, we can write, x∗ = u + v, with u ∈ C ⊂ F ∩Hs and v ∈ K ⊂ O+F . We have

c′x∗ = c′u + c′v and let us show that c′v = 0. If c′v > 0, then c′x∗ = c′u + c′v > c′u

in contradiction with x∗ ∈ F ∗ (c). If c′v < 0, u + λv ∈ F for all λ ≥ 0, and we have

lim
λ→+∞

c′ (u+ λv) = −∞, so that F ∗ (c) = ∅, contradicting again the assumption. Hence,

c′v = 0 and c′x∗ = c′u, i.e., u ∈ F ∗ (c) ∩C ⊂ F ∗ (c) ∩Hs.

Finally, we show that s is not USS by means of Proposition 4.1. Since F does not

contain lines, F cannot be a halfspace. If s is carrier, i.e., F ⊂ Hs, then K ⊂ O+F ⊂

O+Hs = {as}
⊥
, in contradiction with (iii). �

In Example 3.1, (iii) holds with C =
{
(x1, x2, 1)

′ | x21 + x22 = 1
}
and K = coneC,

so that s is actually WUS in σ.
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Remark 5.1. Notice that, under (iii) and K ∩ (−O+C) = {0n}, F contains lines

if and only if K and C satisfy the same property. In order to prove the nontrivial

part, assume that ±y ∈ O+F = O+C + K . Then we can write y = u1 + v1, with

u1 ∈ O+C and v1 ∈ K, as well as −y = u2 + v2, with u2 ∈ O+C and v2 ∈ K. Then,

v1 + v2 = −(u1 + u2) ∈ K ∩ (−O+C) = {0n}, i.e., v
2 = −v1and u2 = −u1. As

±v1 ∈ K, ±u1 ∈ O+C, and since we are assuming that neitherK nor C contain lines, it

must be y = 0n.

The next example shows that Proposition 5.1 is not true if F contains lines.

Example 5.1. Let σ =
{
x3 ≥ 0;x3 ≥ −1

t
, t = 2, 3

}
and s = 1 (index corresponding

to the first constraint). Obviously, F =

{
x ∈ R3 |x3 ≥ 0

}
and F s = Hs = {as}

⊥ =

{x ∈ R3 | x3 = 0}.

Since F = {x ∈ R3 | a′
s
x ≥ bs}, s is USS in σ, so that (i) fails, and the same happens

with (ii) because V = ∅. In order to show that (iii) holds, observe that F = C+K, where

C = cone




 1

−1
0


 ,


 −1

−1
0






and

K = cone




 sin t

1
1 + cos t


 , t ∈ [0, 2π]




are closed convex pointed cones (see Figure 2) satisfying ∅ �= C ⊂ Hs and K � {as}
⊥.

Observe that, as expected (since linF = Hs �= {0n}),K∩(−O+C) = cone
{
(0, 1, 0)′

}
�=

{0n}.
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Figure 2: F = C +K in Example 5.1

The following lemma is formula (8.4) in Holmes (1975).

Lemma 5.1. F = lin F +
[
(linF )⊥ ∩ F

]
and (linF )⊥ ∩ F does not contain lines.

Proposition 5.2. Assume that F contains lines and let V̂ be the set of extreme

directions of F̂ := (linF )⊥ ∩ F . Then the following statements are equivalent to each

other:

(i) s is WUS in σ.

(ii) F = F s + cone{v ∈ V̂ | a′
s
v �= 0}, with ∅ �= F s �= Hs and V̂ � {as}

⊥.

(iii) F = C +K, where C is a closed convex set and K is a closed convex cone such

that ∅ �= C ⊂ Hs, K ∩ (−O+C) = {0n} and K � {as}
⊥ � K +O+C.

Proof. (i) ⇒ (ii) From Propositions 3.1 and 4.1, we know that ∅ �= F s �= Hs

(because F � Hs) and linF s = linF �= {0n} and it is orthogonal to as (because

linF s ⊂ linHs = {as}
⊥
). Moreover, according to Lemma 5.1, F̂ = (linF )⊥ ∩ F

does not contain lines and verifies

F = linF + F̂ . (4)

First, we prove that extr F̂ ⊂ Hs. To do this, it will be enough to prove that all

exposed points of F̂ belong to Hs.

Let x̂ be an arbitrary exposed point of F̂ and let d ∈ Rn such that d′x̂ < d′x for

all x ∈ F̂\ {x̂} . This vector d can be decomposed in a unique form as d = a + c ∈

linF + (linF )⊥. Since F̂ ⊂ (linF )⊥, then a′x = 0 whichever x ∈ F̂ . So, c′x̂ < c′x

for all x ∈ F̂\ {x̂} and this entails c �= 0n. For such a vector c ∈ (linF )⊥ we have
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F ∗(c) = x̂+ linF. In fact, if we write x ∈ F as

x = x1 + x2 ∈ linF + F̂ ,

according to (4), we have

c′x = c′x1 + c′x2 = c′x2 ≥ c′x̂,

with c′x > c′x̂, if x2 �= x̂. Thus x ∈ F ∗(c) if and only if x2 = x̂ if and only if x ∈

x̂+ linF . Since F ∗(c) = x̂+ linF and s is US, there exists y ∈ linF = linF s ⊂ {as}
⊥

such that x̂+ y ∈ Hs. Then a
′
s
(x̂+ y) = a′

s
x̂ = bs, so that x̂ ∈ Hs and extr F̂ ⊂ Hs.

Now we shall prove that

F s = linF + conv extr F̂ + cone
{
v ∈ V̂ | a′

s
v = 0

}
. (5)

Since extr F̂ ⊂ Hs ∩ F = F s, linF ⊂ (O+F ) ∩ {as}
⊥
,

cone
{
v ∈ V̂ | a′

s
v = 0

}
⊂

(
O+F

)
∩ {as}

⊥ ,

and (O+F )∩{as}
⊥ = O+F s, F s includes the right hand side set in (5). In order to prove

the reverse inclusion, let us observe that, applying Lemma 5.1 to F s, we get

F s = linF s +
[
(linF s)⊥ ∩ F s

]

= linF +
[
(linF )⊥ ∩ F ∩Hs

]
= linF +

(
F̂ ∩Hs

)
(6)

According to (6), any x ∈ F s can be decomposed in a unique way as

x = y + z ∈ linF +
(
F̂ ∩Hs

)
. (7)

Since F̂ has no lines and a′
s
v ≥ 0 for all v ∈ V̂ ⊂ 0+F , we can write

z =
∑
i∈I

αix
i+

∑
j∈J

βjv
j+

∑
k∈K

γkv
k, (8)

where I �= ∅, J and K are finite index sets, αi > 0 and xi ∈ extr F̂ , for all i ∈ I ,∑
i∈I

αi = 1, βj > 0 and vj ∈ V̂ , with a′sv
j = 0, for all j ∈ J and γk > 0 and vk ∈ V̂ , with



Uniform Saturation in Linear Inequality Systems 15

a′

s
vk > 0, for all k ∈ K. The sets J andK may be empty.

Multiplying both members in (8) by as, we have

bs = bs+
∑
k∈K

γ
k
a′
s
vk,

i.e.,
∑
k∈K

γ
k
a′
s
vk = 0, or, equivalently, K = ∅.

Then, from (7) and (8), we get

x = y + z ∈ linF + conv
(
extr F̂

)
+ cone

{
v ∈ V̂ | a′

s
v = 0

}
,

so that the equation (5) holds.

Now we can obtain the decomposition in (ii) just combining (4) and (5):

F = F̂ + linF = conv
(
extr F̂

)
+ cone V̂ + linF

= linF + conv
(
extr F̂

)
+ cone

{
v ∈ V̂ | a′

s
v = 0

}
+ cone

{
v ∈ V̂ | a′

s
v �= 0

}
= F s + cone

{
v ∈ V̂ | a′

s
v �= 0

}
.

Finally, if V̂ ⊂ {as}
⊥, we have

cone
{
v ∈ V̂ | a′

s
v �= 0

}
= {0n} ,

F = F s ⊂ Hs and this is impossible (if s is a carrier index then it is USS). So, there

exists v ∈ V̂ , v �= 0n, such that a
′
s
v �= 0, i.e., V̂ � {as}

⊥.

(ii) ⇒ (iii) Now, we suppose F = F s + cone
{
v ∈ V̂ | a′

s
v �= 0

}
, with ∅ �=

F s �= Hs and V̂ � {as}
⊥. We shall prove that the sets C := F s and K :=

cl cone
{
v ∈ V̂ | a′

s
v �= 0

}
satisfy all the requirements. Obviously, C is a closed convex

set with lines and satisfying ∅ �= C ⊂ Hs and K is a closed convex cone.

The inclusion F ⊂ C +K holds trivially, whereas

C +K ⊂ F s + cl cone V̂ ⊂ F + 0+F = F,

so that F = C +K .

We complete this part of the proof by showing that C and K satisfy the three last

statements in (iii):
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(a) K ∩ (−O+C) = {0n} . Given y ∈ K ∩ (−O+C), we have y ∈ K ⊂ (linF )⊥,

y ∈ K ⊂ O+F , and −y ∈ O+C ⊂ O+F . So, y ∈ (linF )⊥ ∩ linF = {0n} .

(b) K � {as}
⊥. Since V̂ � {as}

⊥, there exists v ∈ V̂ such that a′
s
v �= 0. Then

v ∈ K\{as}
⊥.

(c) {as}
⊥ � K + O+C. Otherwise {as}

⊥ ⊂ K + O+C ⊂ O+F and this

closed convex cone should be either the whole space Rn (in which case F = Rn) or

{as}
⊥ (contradicting V̂ � {as}

⊥) or the halfspace {y ∈ Rn | a′
s
y ≥ 0}. In the last case

F = {x ∈ Rn | a′
s
x ≥ β

s
}, with β

s
≥ bs and either F s = Hs (if βs = bs) or F

s = ∅ (if

β
s
> bs). So we obtain a contradiction in all possible cases.

(iii)⇒ (i) The proof of s being US in σ is exactly the same as in Proposition 5.1.

On the other hand, s is noncarrier (because K � {as}
⊥) and F �=

{x ∈ Rn | a′
s
x ≥ bs} (otherwise we have {as}

⊥ ⊂ O+F = O+C+K). Hence, according

to Proposition 4.1, s is not USS. �

The last result in this paper classifies s by comparing both sides of the inclusion

cone{as} ⊂ Mσ.

Corollary 5.1. (i) Let s be such that cone{as} = Mσ. Then, s is USS (or US) in σ if

and only if s is binding in σ.

(ii) Alternatively, let s be such that cone{as} � Mσ. Then s is USS in σ if and only if

s is US in σ and −as ∈ clMσ.

Proof. (i) It is a straightforward consequence of Propositions 3.1 and 4.1.

(ii) Assume that s is USS in σ. The hypothesis cone{as} � Mσ entails clKσ �=

cone

{(
as
bs

)
,

(
0n
−1

)}
and Proposition 4.1 yields −

(
as
bs

)
∈ lin clKσ. Thus

−

(
as
bs

)
∈ clKσ and so −as ∈ clMσ.

Conversely, assume that s is US in σ and −as ∈ clMσ. From (1), we have

O+F ⊂ {as}
⊥ and two cases can arise. If F does not contain lines, then the set of

extreme directions of F , V , satisfies V ⊂ O+F ⊂ {as}
⊥ and, by Proposition 5.1(ii), s is

not WUS in σ. Otherwise, Proposition 5.2(ii) yields the same conclusion. Since s is US

but not WUS in σ in both cases, s turns out to be USS in σ. �
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