Uniform Saturation in Linear Inequality Systems

Miguel A. Goberna, Valentín Jornet and Mariola Molina

Departamento de Estadistica e Investigación Operativa. Facultad de Ciencias, Universidad de Alicante.

03690 San Vicente del Raspeig, Alicante.
e-mail: mgoberna@ua.es vjornet@ua.es mariola.molina@ua.es

Abstract

Redundant constraints in linear inequality systems can be characterized as those inequalities that can be removed from an arbitrary linear optimization problem posed on its solution set without modifying its value and its optimal set. A constraint is saturated in a given linear optimization problem when it is binding at the optimal set. Saturation is a property related with the preservation of the value and the optimal set under the elimination of the given constraint, phenomena which can be seen as weaker forms of excess information in linear optimization problems. We say that an inequality of a given linear inequality system is uniformly saturated when it is saturated for any solvable linear optimization problem posed on its solution set. This paper characterizes the uniform saturated inequalities and other related classes of inequalities.

Key Words: linear systems, saturation, redundancy, linear optimization.
AMS subject classification: 15A39, 90C05, 90C34.

1 Introduction

We consider given a consistent linear inequality system $\sigma=\left\{a_{t}^{\prime} x \geq b_{t}, t \in T\right\}$, where T is an arbitrary (possibly infinite) set, $a_{t} \in \mathbb{R}^{n}$, and $b_{t} \in \mathbb{R}$, for all $t \in T$. We assume that σ is nontrivial in the sense that $|T| \geq 2$ and $\left\{a_{t}, t \in T\right\} \neq\left\{0_{n}\right\}$. The assumptions

[^0]entail that the solution set of σ, denoted by F, satisfies $\emptyset \neq F \neq \mathbb{R}^{n}$. Throughout the paper we consider given a fixed index $s \in T$ such that $a_{s} \neq 0_{n}$. The inequality $a_{s}^{\prime} x \geq b_{s}$ (or its corresponding index s) is called redundant in σ if the elimination of this inequality in σ does not modify the solution set, i.e., if
$$
F_{s}:=\left\{x \in \mathbb{R}^{n} \mid a_{t}^{\prime} x \geq b_{t}, t \in T \backslash\{s\}\right\}=F .
$$

There exists a wide literature on redundancy (see Greenberg (1996) and Goberna et al. (1998b), and references therein, for the cases $|T|<\infty$ and for arbitrary T, respectively). Redundant constraints and other types of superfluous constraints are the cause of troubles in the numerical treatment of linear optimization problems, at least in the case $|T|<\infty$ (see Karwan et al. (1983)). In order to define the relevant concepts in this paper we associate with each $c \in \mathbb{R}^{n}$ the linear programs

$$
P(c): \operatorname{Inf} c^{\prime} x \text { s.t. } x \in F \text { and } P_{s}(c): \operatorname{Inf} c^{\prime} x \text { s.t. } x \in F_{s},
$$

with values $v(c)$ and $v_{s}(c)$, and optimal sets $F^{*}(c)$ and $F_{s}^{*}(c)$, respectively. These linear optimization problems are ordinary if $|T|<\infty$ and semi-infinite otherwise. Obviously, a nonredundant inequality $a_{s}^{\prime} x \geq b_{s}$ can be considered superfluous in $P(c)$ when $F_{s}^{*}(c)=F^{*}(c)$ or at least $v_{s}(c)=v(c)$. Next we show that these properties hold uniformly when s is redundant.

Proposition 1.1. The following statements are equivalent to each other:
(i) s is redundant in σ.
(ii) $v_{s}(c)=v(c)$ for all $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$.
(iii) $F_{s}^{*}(c)=F^{*}(c)$ for all $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$.

Proof. (i) \Longrightarrow (ii), (i) \Longrightarrow (iii) and (iii) \Longrightarrow (ii) are trivial.
(ii) \Longrightarrow (i) Assume that (i) fails. Then there exists $x^{1} \in F_{s} \backslash F$, i.e., $a_{t}^{\prime} x^{1} \geq b_{t}$, for all $t \in T \backslash\{s\}$ and $a_{s}^{\prime} x^{1}<b_{s}$. Then, $v_{s}\left(a_{s}\right)<b_{s} \leq v\left(a_{s}\right)$, with $a_{s} \neq 0_{n}$ (otherwise $0=a_{s}^{\prime} x^{1}<b_{s}$ contradicts $F \neq \emptyset$).

Remark 1.1. Observe that $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ can be replaced by just $c \in \mathbb{R}^{n}$ in (ii) and (iii).

The given index s, or its corresponding constraint $a_{s}^{\prime} x \geq b_{s}$, is called carrier (binding) in σ if $F \subset H_{s}\left(F^{s}:=F \cap H_{s} \neq \emptyset\right.$, respectively), where $H_{s}:=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x=b_{s}\right\}$ is the boundary of the corresponding halfspace (a hyperplane).

We say that s is saturated in $P(c)$, where $c \neq 0_{n}$, if there exists $x^{*} \in F^{*}(c)$ such that $a_{s}^{\prime} x \geq b_{s}$ is binding at x^{*}, i.e., if $F^{*}(c) \cap H_{s} \neq \emptyset$. We distinguish two kinds of saturated constraints: s is strongly saturated in $P(c)$ if $a_{s}^{\prime} x^{*}=b_{s}$ for all $x^{*} \in F^{*}(c)$, i.e., if $F^{*}(c) \subset H_{s}$, and it is said to be weakly saturated otherwise (observe that, if $c=0_{n}$, $F^{*}(c)=F \subset H_{s}$ is impossible unless the dimension of F is $\left.\operatorname{dim} F<n\right)$. The concept of saturation was introduced by Boot (1962), for problems with a unique solution, whereas weak and strong saturation were defined and analyzed by Mauri (1975) and by Karwan et al. (1983), assuming that $|T|<\infty$ and s is nonredundant, and by Goberna et al. (2003a) in the general case. In the last paper, it has been proved (in Proposition 4.1) that, if s is nonsaturated (weakly saturated), then it is superfluous in the sense that $F_{s}^{*}(c)=F^{*}(c)$ $\left(v_{s}(c)=v(c)\right.$, respectively).

Inspired in the statements (ii) and (iii) in Proposition 1.1, we introduce now the following definitions: s (or its corresponding constraint $a_{s}^{\prime} x \geq b_{s}$) is uniformly saturated (US, in brief) in σ if $F^{*}(c) \cap H_{s} \neq \emptyset$ for all $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $F^{*}(c) \neq \emptyset ; s$ is uniformly strongly saturated (USS) in σ when $F^{*}(c) \subset H_{s}$ for every $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $F^{*}(c) \neq \emptyset$. Finally, s is weakly uniformly saturated (WUS) in σ if it is US but not USS. We could also define s to be uniformly nonsaturated in σ when s is nonsaturated in $P(c)$ for all $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$, that is $F^{s}=F \cap H_{s}=\emptyset$, but this is nothing else than nonweak redundancy of s in σ (which has been already studied in detail in Goberna et al. (1998b)).

The purpose of this paper is to analyze the new concepts and to characterize those inequalities in σ belonging to each of the three classes. Such characterizations will be formulated in terms of the geometrical properties of F (usually difficult to be checked) or by means of the coefficients of σ. In Goberna et al. (2003a), a related concept has been studied: s is stably saturated in a given linear optimization problem (called nominal) when it is saturated for any problem obtained from it through a perturbation of the objective, provided that the perturbation is sufficiently small. Obviously, stable saturation is a transition concept between saturation (for the nominal problem) and uniform saturation
(for its constraints system).

Remark 1.2. (a) $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ can be replaced by just $c \in \mathbb{R}^{n}$ in the definition of uniform saturation. In fact, since $\emptyset \neq F \neq \mathbb{R}^{n}$, there exists a supporting hyperplane to F at $\bar{x}, a^{\prime}(x-\bar{x})=0$, such that $a^{\prime}(x-\bar{x}) \geq 0$ for all $x \in F$. Then, $\bar{x} \in F^{*}(a), a \neq 0_{n}$, and so

$$
\emptyset \neq F^{*}(a) \cap H_{s} \subset F \cap H_{s}=F^{*}\left(0_{n}\right) \cap H_{s} .
$$

Observe also that, if F is bounded, then s is US if and only if $F^{*}(c) \cap H_{s} \neq \emptyset$ for all $c \in \mathbb{R}^{n}$.
(b) $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ can be replaced by just $c \in \mathbb{R}^{n}$ in the definition of uniform strong saturation provided that F is not a halfspace in \mathbb{R}^{n}. The argument is similar to the previous one: now we have $\bar{x} \in F^{*}(a) \subset H_{s}$, so that H_{s} contains the boundary of F, whose convex hull is F (see, e.g., Lemma 2 in Goberna et al. (2003b)). Otherwise, if F is a halfspace, we can write $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b\right\}$, with $b \geq b_{s}$, and s turns out to be USS in σ if and only if $b_{s}=b$. Finally, observe that, if F is bounded, then s is USS in σ if and only if $F^{*}(c) \subset H_{s}$ for all $c \in \mathbb{R}^{n}$.
(c) s is WUS in σ if and only if s is US in σ and there exists $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that s is weakly saturated in $P(c)$.

The following result collects some connections between the new concepts and the excess of information in linear optimization.

Proposition 1.2. (i) If s is USS in σ and there exists $c \in \mathbb{R}^{n}$ such that $\operatorname{dim} F^{*}(c)=$ $n-1<\operatorname{dim} F$ and $v_{s}(c)=v(c)$, then s is redundant in σ.
(ii) If s is WUS in σ, then there exists $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $v_{s}(c)=v(c)$.
(iii) If s is not US in σ, then there exists $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $F_{s}^{*}(c)=F^{*}(c)$.

Proof. (i) The assumption on the dimensions entails that $F^{*}(c) \neq \emptyset$ and $c \neq 0_{n}$, so that $F^{*}(c) \subset H_{s}$ and s is strongly saturated in $P(c)$. The conclusion follows from part (ii) in Proposition 4.1 in Goberna et al. (2003a).
(ii) Under the assumption, there exists $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that s is weakly saturated in $P(c)$. By Proposition 4.1 (i) in Goberna et al. (2003a), $v_{s}(c)=v(c)$.
(iii) The assumptions entails the existence of $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that s is nonsaturated
in $P(c)$, so that, again by the same result, $F_{s}^{*}(c)=F^{*}(c)$.

2 Preliminaries

First, let us introduce the necessary notation and recall some results that will be used in the paper. Given a set $\emptyset \neq X \subset \mathbb{R}^{n}$, we denote by cone X, span X, conv X and X^{\perp} the convex cone spanned by X, the linear span of X, the convex hull of X and the orthogonal subspace to span X. From the topological side, $\mathrm{cl} X$ and $\operatorname{bd} X$ denote the closure and the boundary of X, respectively. If X is a convex cone its positive polar is $X^{0}=\left\{y \in \mathbb{R}^{n} \mid x^{\prime} y \geq 0\right.$, for all $\left.x \in X\right\}$.

The next concepts and results will be used throughout the paper and can be found in Rockafellar (1970).

A face of a convex set C is a convex subset $X \subset C$ such that for every pair of points $v^{1} \neq v^{2}$ of C such that $\left.X \cap\right] v^{1}, v^{2}\left[\neq \emptyset\right.$, we have that $\left[v^{1}, v^{2}\right] \subset X$. Extreme points are zero-dimensional faces. We shall denote by extr C the set of extreme points of C. A face X is exposed if X is the set of points where a certain affine function achieves its minimum over C. For instance, the set F^{s} is actually $F^{*}\left(a_{s}\right)$ and so it is an exposed face of F.

If C is a nonempty convex set, $O^{+} C$ denotes the recession cone of C, that is,

$$
O^{+} C:=\left\{v \in \mathbb{R}^{n} \mid x+\mu v \in C, \text { for all } x \in C \text { and for all } \mu \geq 0\right\} .
$$

A nonzero vector $w \in O^{+} C$ represents an extreme direction of C if for every pair of vectors $w^{1}, w^{2} \in O^{+} C$ such that $w=\mu_{1} w^{1}+\mu_{2} w^{2}$, with μ_{1} and μ_{2} positive real numbers, we have $\operatorname{span}\left\{w^{1}\right\}=\operatorname{span}\left\{w^{2}\right\}$.

If X^{\prime} is a face of X and X is a face of C, then X^{\prime} is a face of C. In particular, an extreme point of a face of C is an extreme point of C itself (and this is also true for extreme directions). If C is a closed convex set, then the set of its exposed points is a dense subset of extr C. Moreover, if C contains no lines, then $C=\operatorname{conv}(\operatorname{extr} C)+\operatorname{cone} V$, where V denotes the set of extreme directions of C. The set $\operatorname{lin} C=O^{+} C \cap\left(-O^{+} C\right)$ is called the lineality space of C; extr $C \neq \emptyset$ if and only if C does not contain lines if and
only if $\operatorname{lin} C=\left\{0_{n}\right\}$. A convex cone C is pointed when it does not contain lines, i.e., $\operatorname{extr} C=\left\{0_{n}\right\}$.

We shall consider along the paper the recession cone of intersections and sums of closed convex sets. If $\left\{C_{i} \mid i \in I\right\}$ is an arbitrary collection of closed convex sets in \mathbb{R}^{n} with nonempty intersection, then $O^{+}\left(\cap_{i \in I} C_{i}\right)=\bigcap_{i \in I} O^{+} C_{i}$. If C_{1} and C_{2} are nonempty closed convex sets in \mathbb{R}^{n} such that $\left(O^{+} C_{1}\right) \cap\left(-O^{+} C_{2}\right)=\left\{0_{n}\right\}$, then $C_{1}+C_{2}$ is closed and $O^{+}\left(C_{1}+C_{2}\right)=\left(O^{+} C_{1}\right)+\left(O^{+} C_{2}\right)$.

We shall also use some concepts and results related with linear inequality systems and linear optimization problems. All of them can be found in Goberna and López (1998a).

Concerning $\sigma=\left\{a_{t}^{\prime} x \geq b_{t}, t \in T\right\}$, the recession cone of its solution set, $O^{+} F$, is the solution set of its corresponding homogenous system, so that $\operatorname{lin} F=\left\{a_{t}, t \in T\right\}^{\perp}$. Most of the information on σ is captured by two associated convex cones: the characteristic cone

$$
K_{\sigma}:=\operatorname{cone}\left\{\binom{a_{t}}{b_{t}}, t \in T ;\binom{0_{n}}{-1}\right\}
$$

and its projection on the space of the first n components, the so-called first moment cone

$$
M_{\sigma}:=\text { cone }\left\{a_{t}, t \in T\right\},
$$

which verifies

$$
\begin{equation*}
O^{+} F=\left(\operatorname{cl} M_{\sigma}\right)^{0} \tag{1}
\end{equation*}
$$

A linear inequality $a^{\prime} x \geq b$ is consequence of σ if it is satisfied by every solution of the system. By the extended Farkas' Lemma, this is true if and only if

$$
\binom{a}{b} \in \operatorname{cl} K_{\sigma} .
$$

In linear semi-infinite optimization, $v(c) \neq-\infty$ does not entail the solvability of $P(c)$. If $P(c)$ is solvable (i.e., $\left.F^{*}(c) \neq \emptyset\right)$ and F does not contain lines, then the optimal value $v(c)$ will be attained at an extreme point of F, i.e., $F^{*}(c) \cap \operatorname{extr} F \neq \emptyset$.

3 Uniform saturation

Proposition 3.1. If s is US in σ, then $F^{s} \neq \emptyset$ (i.e., s is binding), $\operatorname{lin} F^{s}=\operatorname{lin} F$, and
$\operatorname{extr} F^{s}=\operatorname{extr} F$. Conversely, if $\operatorname{extr} F^{s}=\operatorname{extr} F \neq \emptyset$, then s is US in σ.
Proof. Taking an arbitrary $\bar{x} \in \operatorname{bd} F$, there exists $c \neq 0_{n}$ such that $c^{\prime} x \geq c^{\prime} \bar{x}$ for every $x \in F$. Thus $\bar{x} \in F^{*}(c) \neq \emptyset$ and, since s is US, there exists

$$
x^{*} \in F^{*}(c) \cap H_{s} \subset F \cap H_{s}=F^{s},
$$

so that F^{s} is a nonempty exposed face of F.
Now we show that $\operatorname{lin} F^{s}=\operatorname{lin} F$. In fact, since F^{s} is the solution set of $\left\{a_{t}^{\prime} x \geq b_{t}, t \in T ; a_{s}^{\prime} x=b_{s}\right\}$, we have

$$
\operatorname{lin} F^{s}=\left\{x \in \mathbb{R}^{n} \mid a_{t}^{\prime} x=0, t \in T ; a_{s}^{\prime} x=0\right\}=\operatorname{lin} F
$$

Hence, extr $F^{s} \neq \emptyset$ if and only if $\operatorname{extr} F \neq \emptyset$. We have to prove that, in such case, $\operatorname{extr} F^{s}=\operatorname{extr} F$.

Since F^{s} is a face of F, we have $\operatorname{extr} F^{s} \subset \operatorname{extr} F$. In order to prove the reverse inclusion, take an arbitrary $\widehat{x} \in \operatorname{extr} F$. Let $\left\{x^{r}\right\}_{r=1}^{\infty}$ be a sequence of exposed points of F such that $\lim _{r \rightarrow \infty} x^{r}=\widehat{x}$. For every $r \in \mathbb{N}$ there exists a vector $c^{r} \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $F^{*}\left(c^{r}\right)=\left\{x^{r}\right\}$ and, since s is US in $\sigma, x^{r} \in H_{s}$, i.e., $x^{r} \in F^{s}$. Then, $\widehat{x} \in F^{s}$ because this set is closed and so $\widehat{x} \in \operatorname{extr} F^{s}$. Thus extr $F^{s}=\operatorname{extr} F$.

Now we assume that extr $F^{s}=\operatorname{extr} F \neq \emptyset$ and we shall prove that s is US in σ.
Let $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $F^{*}(c) \neq \emptyset$. Since lin $F=\left\{0_{n}\right\}$, we have

$$
\emptyset \neq F^{*}(c) \cap \operatorname{extr} F=F^{*}(c) \cap \operatorname{extr} F^{s} \subset F^{*}(c) \cap H_{s} .
$$

Remark 3.1. Observe that $\operatorname{lin} F^{s}=\operatorname{lin} F \neq\left\{0_{n}\right\}$ (in which case extr $F^{s}=$ $\operatorname{extr} F=\emptyset$) does not guarantee that s is US in σ (consider the cylinder described by $\left\{(\cos t) x_{2}+(\sin t) x_{3} \leq 1, t \in[0,2 \pi]\right\}$, with $\operatorname{lin} F=\operatorname{span}\left\{(1,0,0)^{\prime}\right\}$, and an arbitrary index $s \in[0,2 \pi])$.

Corollary 3.1. If s is US, F does not contain lines, and $F^{*}(c) \neq \emptyset$ for $c \neq 0_{n}$, then $F^{*}(c)$ contains at least an extreme point of F in H_{s}.

Proof. Under the assumptions,

$$
\emptyset \neq F^{*}(c) \cap \operatorname{extr} F=F^{*}(c) \cap \operatorname{extr} F^{s},
$$

where $\operatorname{extr} F^{s}$ is actually the set of the extreme points of F laying in H_{s}.

Example 3.1. Let s be the index corresponding to the first inequality in

$$
\sigma=\left\{x_{3} \geq 1 ;-(\cos t) x_{1}-(\sin t) x_{2}+x_{3} \geq 0, t \in[0,2 \pi]\right\}
$$

It can be realized that $F=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2} \leq x_{3}^{2}, x_{3} \geq 1\right\}$ (see Figure 1), so that

$$
\operatorname{extr} F^{s}=\operatorname{extr} F=\left\{\left(x_{1}, x_{2}, 1\right)^{\prime} \mid x_{1}^{2}+x_{2}^{2}=1\right\}
$$

and s turns out to be US.

Figure 1: F and F^{s} in Example 3.1

4 Uniform strong saturation

Proposition 4.1. The following statements are equivalent to each other:
(i) s is USS in σ.
(ii) Either s is carrier in σ or $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\}$.
(iii) Either $\binom{a_{s}}{b_{s}} \in \operatorname{lin} \mathrm{cl} K_{\sigma}$ or $\mathrm{cl} K_{\sigma}=\operatorname{cone}\left\{\binom{a_{s}}{b_{s}},\binom{0_{n}}{-1}\right\}$.
(iv) Either $F^{s}=F$ or $a_{s}^{\prime} x \geq b_{s}$ is a binding constraint in σ such that $M_{\sigma}=$
cone $\left\{a_{s}\right\}$.
Proof. First, we shall prove that (i) \Longleftrightarrow (ii).
Assume that s is USS and noncarrier in σ. Let us prove that bd $F \subset H_{s}$. In fact, if $x^{1} \in(\operatorname{bd} F) \backslash H_{s}$, there exists $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$ such that $c^{\prime} x \geq c^{\prime} x^{1}$ for every $x \in F$. So $x^{1} \in F^{*}(c) \backslash H_{s}$ and s cannot be USS in σ.

We shall use the inclusion bd $F \subset H_{s}$ in order to prove the nontrivial inclusion in

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x>b_{s}\right\} \subset F \subset\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\} \tag{2}
\end{equation*}
$$

Assume the existence of $x^{2} \notin F$ such that $a_{s}^{\prime} x^{2}>b_{s}$. Since s is noncarrier, we can take $x^{3} \in F \backslash H_{s}$. Then there exists

$$
x^{4} \in(\operatorname{bd} F) \cap\left[x^{2}, x^{3}\right] \subset H_{s} \cap\left[x^{2}, x^{3}\right]
$$

satisfying $a_{s}^{\prime} x^{4}=b_{s}$ and $a_{s}^{\prime} x^{4}>b_{s}$. This is a contradiction, so that (2) holds and we get $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\}$ (just taking topological closures).

If s is carrier, then $F^{*}(c) \subset F=F^{s} \subset H_{s}$ for all $c \in \mathbb{R}^{n}$, so that s is trivially USS in σ.

Now we assume that $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\}$. Then

$$
F^{*}(c)= \begin{cases}F, & \text { if } c=0_{n}, \\ H_{s}, & \text { if } c \in\left(\operatorname{cone}\left\{a_{s}\right\}\right) \backslash\left\{0_{n}\right\}, \\ \emptyset, & \text { if } c \notin \text { cone }\left\{a_{s}\right\},\end{cases}
$$

so that $F^{*}(c) \subset H_{s}$ for every $c \neq 0_{n}$ and s turns out to be USS in σ.
We shall complete the proof by reformulating both conditions in statement (ii) in terms of the cones M_{σ} and K_{σ}.

Concerning the first condition, s is carrier $\Leftrightarrow F^{s}=F \cap H_{s}=F \Leftrightarrow a_{s}^{\prime} x \leq b_{s}$ is a consequence of $\sigma \Leftrightarrow-\binom{a_{s}}{b_{s}} \in \operatorname{cl} K_{\sigma} \Leftrightarrow\binom{a_{s}}{b_{s}} \in \operatorname{lincl} K_{\sigma}$.

On the other hand, according to Farkas' Lemma, $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\}$ if and only if

$$
\begin{equation*}
\operatorname{cl} K_{\sigma}=\operatorname{cone}\left\{\binom{a_{s}}{b_{s}},\binom{0_{n}}{-1}\right\} . \tag{3}
\end{equation*}
$$

Obviously, (3) entails $a_{s} \in M_{\sigma} \subset$ cone $\left\{a_{s}\right\}$, so that $M_{\sigma}=\operatorname{cone}\left\{a_{s}\right\}$. Moreover, since $\operatorname{bd} F=H_{s}, s$ is binding in σ.

Conversely, assume that $M_{\sigma}=\operatorname{cone}\left\{a_{s}\right\}$ and s is binding in σ. Then we can write $a_{t}=\gamma_{t} a_{s}, \gamma_{t} \geq 0$, for all $t \in T \backslash\{s\}$. If $a_{t}=0_{n}$, then $b_{t} \leq 0$ (recall that $F \neq \emptyset$), so that $\binom{a_{t}}{b_{t}} \in$ cone $\left\{\binom{0_{n}}{-1}\right\}$. Defining $\gamma_{s}=1$, we have

$$
\begin{aligned}
& K_{\sigma}=\text { cone }\left\{\binom{\gamma_{t} a_{s}}{b_{t}}, \gamma_{t}>0, t \in T ;\binom{0_{n}}{-1}\right\} \\
& =\text { cone }\left\{\binom{a_{s}}{\gamma_{t}^{-1} b_{t}}, \gamma_{t}>0, t \in T ;\binom{0_{n}}{-1}\right\} .
\end{aligned}
$$

Let $b:=\sup \left\{\gamma_{t}^{-1} b_{t} \mid \gamma_{t}>0, t \in T\right\}$. If $b=+\infty, \operatorname{since}\binom{a_{s}}{\gamma_{t}^{-1} b_{t}} \in K_{\sigma}$, we have $\binom{0_{n}}{1} \in 0^{+} K_{\sigma} \subset \operatorname{cl} K_{\sigma}$, so that $0_{n}^{\prime} x \geq 1$ should be a consequence of σ, and this is impossible. Thus $b \in \mathbb{R}$ satisfies $b \geq \gamma_{s}^{-1} b_{s}=b_{s}$ and (3) holds. Consequently, (iii) and (iv) are mere reformulations of (ii).

Remark 4.1. (a) If s is USS in σ, then $v\left(a_{s}\right)=b_{s}$, by Proposition 4.1. If, additionally, s is noncarrier in σ, then s is redundant in σ if and only if $v_{s}\left(a_{s}\right)=b_{s}$ (compare with statement (i) in Proposition 1.2), but this statement is not true for carrier indices (consider the first inequality in $\left\{x_{2} \geq 0 ; x_{1}-t x_{2} \geq 0, t=2,3 \ldots\right\}$).
(b) Notice that $F^{s}=H_{s}$ does not guarantee that s is USS in σ (consider the system, in $\mathbb{R}^{2},\left\{x_{1} \geq 0,-x_{1} \geq-1\right\}$; both inequalities are nonsaturated but $\left.F^{s}=H_{s}, s=1,2\right)$.

5 Weak uniform saturation

We shall distinguish two cases, depending on the existence or not of extreme points in F (i.e., the full dimension or not of span $\left\{a_{t}, t \in T\right\}$).

Proposition 5.1. Assume that F does not contain lines and let V be the set of extreme directions of F. Then the following statements are equivalent to each other:
(i) s is WUS in σ.
(ii) $\emptyset \neq F^{s} \neq F, V \nsubseteq\left\{a_{s}\right\}^{\perp}$ and

$$
F=F^{s}+\operatorname{cone}\left\{v \in V \mid a_{s}^{\prime} v \neq 0\right\}
$$

(iii) $F=C+K$, where C is a closed convex set such that $\emptyset \neq C \subset H_{s}$ and K is a closed convex cone such that $K \nsubseteq\left\{a_{s}\right\}^{\perp}$.

Proof. (i) \Rightarrow (ii) From Propositions 3.1 and $4.1, \emptyset \neq F^{s} \nsubseteq F, \operatorname{lin} F^{s}=\operatorname{lin} F=\left\{0_{n}\right\}$ and extr $F^{s}=\operatorname{extr} F \neq \emptyset$. Since F and F^{s} are closed convex sets not containing lines, we have

$$
\begin{gathered}
F=\operatorname{conv}(\operatorname{extr} F)+\operatorname{cone} V \\
=\operatorname{conv}\left(\operatorname{extr} F^{s}\right)+\operatorname{cone}\left\{v \in V \mid a_{s}^{\prime} v=0\right\}+\operatorname{cone}\left\{v \in V \mid a_{s}^{\prime} v \neq 0\right\} \\
=F^{s}+\operatorname{cone}\left\{v \in V \mid a_{s}^{\prime} v \neq 0\right\}
\end{gathered}
$$

Moreover, since $F \neq F^{s}$, we have cone $\left\{v \in V \mid a_{s}^{\prime} v \neq 0\right\} \neq\left\{0_{n}\right\}$, and so there exists at least one $v \in V$ such that $a_{s}^{\prime} v \neq 0$.
(ii) \Rightarrow (iii) $C:=F^{s}$ satisfies the required conditions. We consider

$$
K:=\operatorname{cl} \text { cone }\left\{v \in V \mid a_{s}^{\prime} v \neq 0\right\}
$$

that is a convex closed cone.
Let us show that $F=C+K$. In fact, $F \subset C+K$ by assumption, whereas $V \subset O^{+} F$ entails $C+K \subset F+O^{+} F=F$.

On the other hand, since $V \subset O^{+} F$ and this is a closed convex cone which does not contain lines, K satisfies the same properties. Moreover, from the definition of K and the assumption that $V \nsubseteq\left\{a_{s}\right\}^{\perp}$, we get $K \nsubseteq\left\{a_{s}\right\}^{\perp}$.
(iii) \Rightarrow (i) First, we prove that s is US. Let $x^{*} \in F^{*}(c)$ for some $c \in \mathbb{R}^{n} \backslash\left\{0_{n}\right\}$. Then, we can write, $x^{*}=u+v$, with $u \in C \subset F \cap H_{s}$ and $v \in K \subset O^{+} F$. We have $c^{\prime} x^{*}=c^{\prime} u+c^{\prime} v$ and let us show that $c^{\prime} v=0$. If $c^{\prime} v>0$, then $c^{\prime} x^{*}=c^{\prime} u+c^{\prime} v>c^{\prime} u$ in contradiction with $x^{*} \in F^{*}(c)$. If $c^{\prime} v<0, u+\lambda v \in F$ for all $\lambda \geq 0$, and we have $\lim _{\lambda \rightarrow+\infty} c^{\prime}(u+\lambda v)=-\infty$, so that $F^{*}(c)=\emptyset$, contradicting again the assumption. Hence, $c^{\prime} v=0$ and $c^{\prime} x^{*}=c^{\prime} u$, i.e., $u \in F^{*}(c) \cap C \subset F^{*}(c) \cap H_{s}$.

Finally, we show that s is not USS by means of Proposition 4.1. Since F does not contain lines, F cannot be a halfspace. If s is carrier, i.e., $F \subset H_{s}$, then $K \subset O^{+} F \subset$ $O^{+} H_{s}=\left\{a_{s}\right\}^{\perp}$, in contradiction with (iii).

In Example 3.1, (iii) holds with $C=\left\{\left(x_{1}, x_{2}, 1\right)^{\prime} \mid x_{1}^{2}+x_{2}^{2}=1\right\}$ and $K=$ cone C, so that s is actually WUS in σ.

Remark 5.1. Notice that, under (iii) and $K \cap\left(-O^{+} C\right)=\left\{0_{n}\right\}, F$ contains lines if and only if K and C satisfy the same property. In order to prove the nontrivial part, assume that $\pm y \in O^{+} F=O^{+} C+K$. Then we can write $y=u^{1}+v^{1}$, with $u^{1} \in O^{+} C$ and $v^{1} \in K$, as well as $-y=u^{2}+v^{2}$, with $u^{2} \in O^{+} C$ and $v^{2} \in K$. Then, $v^{1}+v^{2}=-\left(u^{1}+u^{2}\right) \in K \cap\left(-O^{+} C\right)=\left\{0_{n}\right\}$, i.e., $v^{2}=-v^{1}$ and $u^{2}=-u^{1}$. As $\pm v^{1} \in K, \pm u^{1} \in O^{+} C$, and since we are assuming that neither K nor C contain lines, it must be $y=0_{n}$.

The next example shows that Proposition 5.1 is not true if F contains lines.

Example 5.1. Let $\sigma=\left\{x_{3} \geq 0 ; x_{3} \geq-\frac{1}{t}, t=2,3\right\}$ and $s=1$ (index corresponding to the first constraint). Obviously, $F=\left\{x \in \mathbb{R}^{3} \mid x_{3} \geq 0\right\}$ and $F^{s}=H_{s}=\left\{a_{s}\right\}^{\perp}=$ $\left\{x \in \mathbb{R}^{3} \mid x_{3}=0\right\}$.

Since $F=\left\{x \in \mathbb{R}^{3} \mid a_{s}^{\prime} x \geq b_{s}\right\}, s$ is USS in σ, so that (i) fails, and the same happens with (ii) because $V=\emptyset$. In order to show that (iii) holds, observe that $F=C+K$, where

$$
C=\text { cone }\left\{\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
0
\end{array}\right)\right\}
$$

and

$$
K=\text { cone }\left\{\left(\begin{array}{c}
\sin t \\
1 \\
1+\cos t
\end{array}\right), t \in[0,2 \pi]\right\}
$$

are closed convex pointed cones (see Figure 2) satisfying $\emptyset \neq C \subset H_{s}$ and $K \nsubseteq\left\{a_{s}\right\}^{\perp}$.

Observe that, as expected (since lin $\left.F=H_{s} \neq\left\{0_{n}\right\}\right), K \cap\left(-O^{+} C\right)=\operatorname{cone}\left\{(0,1,0)^{\prime}\right\} \neq$ $\left\{0_{n}\right\}$.

Figure 2: $F=C+K$ in Example 5.1
The following lemma is formula (8.4) in Holmes (1975).
Lemma 5.1. $F=\operatorname{lin} F+\left[(\operatorname{lin} F)^{\perp} \cap F\right]$ and $(\operatorname{lin} F)^{\perp} \cap F$ does not contain lines.
Proposition 5.2. Assume that F contains lines and let \widehat{V} be the set of extreme directions of $\widehat{F}:=(\operatorname{lin} F)^{\perp} \cap F$. Then the following statements are equivalent to each other:
(i) s is WUS in σ.
(ii) $F=F^{s}+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\}$, with $\emptyset \neq F^{s} \neq H_{s}$ and $\widehat{V} \nsubseteq\left\{a_{s}\right\}^{\perp}$.
(iii) $F=C+K$, where C is a closed convex set and K is a closed convex cone such that $\emptyset \neq C \subset H_{s}, K \cap\left(-O^{+} C\right)=\left\{0_{n}\right\}$ and $K \nsubseteq\left\{a_{s}\right\}^{\perp} \nsubseteq K+O^{+} C$.

Proof. (i) \Rightarrow (ii) From Propositions 3.1 and 4.1, we know that $\emptyset \neq F^{s} \neq H_{s}$ (because $F \nsubseteq H_{s}$) and $\operatorname{lin} F^{s}=\operatorname{lin} F \neq\left\{0_{n}\right\}$ and it is orthogonal to a_{s} (because $\operatorname{lin} F^{s} \subset \operatorname{lin} H_{s}=\left\{a_{s}\right\}^{\perp}$). Moreover, according to Lemma 5.1, $\widehat{F}=(\operatorname{lin} F)^{\perp} \cap F$ does not contain lines and verifies

$$
\begin{equation*}
F=\operatorname{lin} F+\widehat{F} \tag{4}
\end{equation*}
$$

First, we prove that extr $\widehat{F} \subset H_{s}$. To do this, it will be enough to prove that all exposed points of \widehat{F} belong to H_{s}.

Let \widehat{x} be an arbitrary exposed point of \widehat{F} and let $d \in \mathbb{R}^{n}$ such that $d^{\prime} \widehat{x}<d^{\prime} x$ for all $x \in \widehat{F} \backslash\{\widehat{x}\}$. This vector d can be decomposed in a unique form as $d=a+c \in$ $\operatorname{lin} F+(\operatorname{lin} F)^{\perp}$. Since $\widehat{F} \subset(\operatorname{lin} F)^{\perp}$, then $a^{\prime} x=0$ whichever $x \in \widehat{F}$. So, $c^{\prime} \widehat{x}<c^{\prime} x$ for all $x \in \widehat{F} \backslash\{\widehat{x}\}$ and this entails $c \neq 0_{n}$. For such a vector $c \in(\operatorname{lin} F)^{\perp}$ we have
$F^{*}(c)=\widehat{x}+\operatorname{lin} F$. In fact, if we write $x \in F$ as

$$
x=x^{1}+x^{2} \in \operatorname{lin} F+\widehat{F},
$$

according to (4), we have

$$
c^{\prime} x=c^{\prime} x^{1}+c^{\prime} x^{2}=c^{\prime} x^{2} \geq c^{\prime} \widehat{x}
$$

with $c^{\prime} x>c^{\prime} \widehat{x}$, if $x^{2} \neq \widehat{x}$. Thus $x \in F^{*}(c)$ if and only if $x^{2}=\widehat{x}$ if and only if $x \in$ $\widehat{x}+\operatorname{lin} F$. Since $F^{*}(c)=\widehat{x}+\operatorname{lin} F$ and s is US, there exists $y \in \operatorname{lin} F=\operatorname{lin} F^{s} \subset\left\{a_{s}\right\}^{\perp}$ such that $\widehat{x}+y \in H_{s}$. Then $a_{s}^{\prime}(\widehat{x}+y)=a_{s}^{\prime} \widehat{x}=b_{s}$, so that $\widehat{x} \in H_{s}$ and extr $\widehat{F} \subset H_{s}$.

Now we shall prove that

$$
\begin{equation*}
F^{s}=\operatorname{lin} F+\text { conv extr } \widehat{F}+\text { cone }\left\{v \in \widehat{V} \mid a_{s}^{\prime} v=0\right\} \tag{5}
\end{equation*}
$$

Since extr $\widehat{F} \subset H_{s} \cap F=F^{s}, \operatorname{lin} F \subset\left(O^{+} F\right) \cap\left\{a_{s}\right\}^{\perp}$,

$$
\text { cone }\left\{v \in \widehat{V} \mid a_{s}^{\prime} v=0\right\} \subset\left(O^{+} F\right) \cap\left\{a_{s}\right\}^{\perp}
$$

and $\left(O^{+} F\right) \cap\left\{a_{s}\right\}^{\perp}=O^{+} F^{s}, F^{s}$ includes the right hand side set in (5). In order to prove the reverse inclusion, let us observe that, applying Lemma 5.1 to F^{s}, we get

$$
\begin{gather*}
F^{s}=\operatorname{lin} F^{s}+\left[\left(\operatorname{lin} F^{s}\right)^{\perp} \cap F^{s}\right] \\
=\operatorname{lin} F+\left[(\operatorname{lin} F)^{\perp} \cap F \cap H_{s}\right]=\operatorname{lin} F+\left(\widehat{F} \cap H_{s}\right) \tag{6}
\end{gather*}
$$

According to (6), any $x \in F^{s}$ can be decomposed in a unique way as

$$
\begin{equation*}
x=y+z \in \operatorname{lin} F+\left(\widehat{F} \cap H_{s}\right) . \tag{7}
\end{equation*}
$$

Since \widehat{F} has no lines and $a_{s}^{\prime} v \geq 0$ for all $v \in \widehat{V} \subset 0^{+} F$, we can write

$$
\begin{equation*}
z=\sum_{i \in I} \alpha_{i} x^{i}+\sum_{j \in J} \beta_{j} v^{j}+\sum_{k \in K} \gamma_{k} v^{k}, \tag{8}
\end{equation*}
$$

where $I \neq \emptyset, J$ and K are finite index sets, $\alpha_{i}>0$ and $x^{i} \in \operatorname{extr} \widehat{F}$, for all $i \in I$, $\sum_{i \in I} \alpha_{i}=1, \beta_{j}>0$ and $v^{j} \in \widehat{V}$, with $a_{s}^{\prime} v^{j}=0$, for all $j \in J$ and $\gamma_{k}>0$ and $v^{k} \in \widehat{V}$, with
$a_{s}^{\prime} v^{k}>0$, for all $k \in K$. The sets J and K may be empty.
Multiplying both members in (8) by a_{s}, we have

$$
b_{s}=b_{s}+\sum_{k \in K} \gamma_{k} a_{s}^{\prime} v^{k},
$$

i.e., $\sum_{k \in K} \gamma_{k} a_{s}^{\prime} v^{k}=0$, or, equivalently, $K=\emptyset$.

Then, from (7) and (8), we get

$$
x=y+z \in \operatorname{lin} F+\operatorname{conv}(\operatorname{extr} \widehat{F})+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v=0\right\}
$$

so that the equation (5) holds.
Now we can obtain the decomposition in (ii) just combining (4) and (5):

$$
\begin{gathered}
F=\widehat{F}+\operatorname{lin} F=\operatorname{conv}(\operatorname{extr} \widehat{F})+\operatorname{cone} \widehat{V}+\operatorname{lin} F \\
=\operatorname{lin} F+\operatorname{conv}(\operatorname{extr} \widehat{F})+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v=0\right\}+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\} \\
=F^{s}+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\}
\end{gathered}
$$

Finally, if $\widehat{V} \subset\left\{a_{s}\right\}^{\perp}$, we have

$$
\text { cone }\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\}=\left\{0_{n}\right\}
$$

$F=F^{s} \subset H_{s}$ and this is impossible (if s is a carrier index then it is USS). So, there exists $v \in \widehat{V}, v \neq 0_{n}$, such that $a_{s}^{\prime} v \neq 0$, i.e., $\widehat{V} \nsubseteq\left\{a_{s}\right\}^{\perp}$.
(ii) \Rightarrow (iii) Now, we suppose $F=F^{s}+\operatorname{cone}\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\}$, with $\emptyset \neq$ $F^{s} \neq H_{s}$ and $\widehat{V} \nsubseteq\left\{a_{s}\right\}^{\perp}$. We shall prove that the sets $C:=F^{s}$ and $K:=$ cl cone $\left\{v \in \widehat{V} \mid a_{s}^{\prime} v \neq 0\right\}$ satisfy all the requirements. Obviously, C is a closed convex set with lines and satisfying $\emptyset \neq C \subset H_{s}$ and K is a closed convex cone.

The inclusion $F \subset C+K$ holds trivially, whereas

$$
C+K \subset F^{s}+\mathrm{cl} \text { cone } \widehat{V} \subset F+0^{+} F=F
$$

so that $F=C+K$.
We complete this part of the proof by showing that C and K satisfy the three last statements in (iii):
(a) $K \cap\left(-O^{+} C\right)=\left\{0_{n}\right\}$. Given $y \in K \cap\left(-O^{+} C\right)$, we have $y \in K \subset(\operatorname{lin} F)^{\perp}$, $y \in K \subset O^{+} F$, and $-y \in O^{+} C \subset O^{+} F$. So, $y \in(\operatorname{lin} F)^{\perp} \cap \operatorname{lin} F=\left\{0_{n}\right\}$.
(b) $K \nsubseteq\left\{a_{s}\right\}^{\perp}$. Since $\widehat{V} \nsubseteq\left\{a_{s}\right\}^{\perp}$, there exists $v \in \widehat{V}$ such that $a_{s}^{\prime} v \neq 0$. Then $v \in K \backslash\left\{a_{s}\right\}^{\perp}$.
(c) $\left\{a_{s}\right\}^{\perp} \nsubseteq K+O^{+} C$. Otherwise $\left\{a_{s}\right\}^{\perp} \subset K+O^{+} C \subset O^{+} F$ and this closed convex cone should be either the whole space \mathbb{R}^{n} (in which case $F=\mathbb{R}^{n}$) or $\left\{a_{s}\right\}^{\perp}$ (contradicting $\widehat{V} \nsubseteq\left\{a_{s}\right\}^{\perp}$) or the halfspace $\left\{y \in \mathbb{R}^{n} \mid a_{s}^{\prime} y \geq 0\right\}$. In the last case $F=\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq \beta_{s}\right\}$, with $\beta_{s} \geq b_{s}$ and either $F^{s}=H_{s}$ (if $\beta_{s}=b_{s}$) or $F^{s}=\emptyset$ (if $\beta_{s}>b_{s}$). So we obtain a contradiction in all possible cases.
(iii) \Rightarrow (i) The proof of s being US in σ is exactly the same as in Proposition 5.1.

On the other hand, s is noncarrier (because $K \nsubseteq\left\{a_{s}\right\}^{\perp}$) and $F \neq$ $\left\{x \in \mathbb{R}^{n} \mid a_{s}^{\prime} x \geq b_{s}\right\}$ (otherwise we have $\left\{a_{s}\right\}^{\perp} \subset O^{+} F=O^{+} C+K$). Hence, according to Proposition 4.1, s is not USS.

The last result in this paper classifies s by comparing both sides of the inclusion cone $\left\{a_{s}\right\} \subset M_{\sigma}$.

Corollary 5.1. (i) Let s be such that cone $\left\{a_{s}\right\}=M_{\sigma}$. Then, s is USS (or US) in σ if and only if s is binding in σ.
(ii) Alternatively, let s be such that cone $\left\{a_{s}\right\} \varsubsetneqq M_{\sigma}$. Then s is USS in σ if and only if s is $U S$ in σ and $-a_{s} \in \operatorname{cl} M_{\sigma}$.

Proof. (i) It is a straightforward consequence of Propositions 3.1 and 4.1.
(ii) Assume that s is USS in σ. The hypothesis cone $\left\{a_{s}\right\} \varsubsetneqq M_{\sigma}$ entails cl $K_{\sigma} \neq$ cone $\left\{\binom{a_{s}}{b_{s}},\binom{0_{n}}{-1}\right\}$ and Proposition 4.1 yields $-\binom{a_{s}}{b_{s}} \in \operatorname{lincl} K_{\sigma}$. Thus $-\binom{a_{s}}{b_{s}} \in \operatorname{cl} K_{\sigma}$ and so $-a_{s} \in \operatorname{cl} M_{\sigma}$.

Conversely, assume that s is US in σ and $-a_{s} \in \mathrm{cl} M_{\sigma}$. From (1), we have $O^{+} F \subset\left\{a_{s}\right\}^{\perp}$ and two cases can arise. If F does not contain lines, then the set of extreme directions of F, V, satisfies $V \subset O^{+} F \subset\left\{a_{s}\right\}^{\perp}$ and, by Proposition 5.1(ii), s is not WUS in σ. Otherwise, Proposition 5.2(ii) yields the same conclusion. Since s is US but not WUS in σ in both cases, s turns out to be USS in σ.

References

Boot, J.C.G. (1962). On trivial and binding constraints in programming problems. Management Science 8, 419-441.

Goberna, M.A., Jornet, V. and Molina, M. (2003a). Saturation in linear optimization. Journal of Optimization Theory and its Applications 117, N^{o} 2, 327-348.

Goberna, M.A., Larriqueta, M. and Vera de Serio, V. (2003b). On the stability of the feasible set in linear optimization. Set Valued Analysis 19, 203-223.

Goberna, M.A. and López, M.A. (1998a). Linear Semi-Infinite Optimization. John Wiley and Sons.

Goberna, M.A., Mira J. A. and Torregrosa, G. (1998b). Redundancy in linear semi-infinite systems. Numerical Functional Analysis and Optimization 19, 529-548.

Greenberg, H.J. (1996). Consistency, redundancy, and implied equalities in linear systems. Annals of Mathematics and Artificial Intelligence 17, 37-83.
Holmes, R.B. (1975). Geometric functional analysis and its applications. Springer-Verlag. Karwan, M. and Lofti, V. and Telgen, J. and Zionts, S. (1983). Redundancy in Mathematical Programming. Springer-Verlag.

Mauri, M. (1975). Vincoli superflui e variabili estranea in Programazioni Lineare. Ricerca Operativa 5-1, 21-42.

Rockafellar, R. T. (1970). Convex Analysis. Pricenton University Press.

[^0]: ${ }^{0}$ This work was supported by the MCYT of Spain and FEDER of UE, Grant BFM2002-04114-C02-01.

