
1. Introduction

It is well known that excess of information is an important cause of troubles in the

numerical treatment of linear programming problems, although not all consequences are

disadvantageous. In fact, there exists a wide literature on the detection and elimination

of redundant constraints (i.e., which can be removed from the model without causing a

change in the feasible set) in ordinary linear programming (LP), in linear semi-in�nite

programming (LSIP), and in in�nite dimensional LP; see e.g. Refs. 1- 4, and references

therein. As an illustration of the favorable effect of some excess of information, let

us mention that the aggregation of redundant constraints to an LP (LSIP) problem can

provide a transportation problem (an LSIP problem without duality gap, respectively)

which is easier to solve than the initial one. This paper deals with a class of constraints

which are unnecessary in another sense: they can be removed from the model without

modifying the optimal set or at least the optimal value. This phenomenon is related closely

to the classical concept of saturation.

A given constraint a0sx � bs, with s 2 T (an arbitrary index set), is said to be saturated
in the consistent linear optimization problem

(P) inf c0x;

s.t. a0tx � bt; t 2 T;

where c 2 Rnn f0ng, at 2 Rn and bt 2 R, for all t 2 T , if there exists x� 2 F � (the
optimal set of P) such that a0sx � bs is binding or active at x�, i.e., if a0sx� = bs: We

shall denote by F the feasible set of P, and its value by v(P): If jT j < 1, P is an LP
problem; otherwise, P is an LSIP problem. Observe that, in LSIP, all the constraints of P

can be nonsaturated, since each inequality a0tx � bt can be replaced by countably many

redundant inequalities

a0tx � bt �
1

r
; r = 1; 2:::

without change in F , in which case all the constraints are obviously nonsaturated. The

same happens if P is a bounded (i.e. if v(P) > �1) but unsolvable problem. It can be
easily shown through suitable examples that saturation and redundancy are independent
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of each other.

The above de�nition of saturation appeared by the �rst time in Ref. 5, paper which

deals with quadratic programming problems with strictly convex objective function.

Since such kind of problems have a unique optimal solution x�, the saturation test there

consisted of checking the equation a0sx = bs at x�: The same concept (and term) also arises

in transportation problems, where an arc is called saturated when the corresponding �ow

at optimality coincides with its capacity. The nonredundant saturated constraints were

called binding or active in Refs. 6-8. In our opinion, the requirement of nonredundancy

is super�uous and the use of the terms `binding' and `active' might be misleading since

they are commonly used in a larger sense: a0sx � bs is binding (or active) in a system

� = fa0tx � bt; t 2 Tg if it is binding at a solution point.
As in Ref. 8, we say that a0sx � bs (redundant or not) is strongly saturated in P if

a0sx
� = bs for all x� 2 F �: A saturated constraint which is not strongly saturated is called

weakly saturated. If P has a unique optimal solution all the saturated constraints are

obviously strongly saturated. In geometric terms, denoting Hs = fx 2 Rn j a0sx = bsg (a
hyperplane if as 6= 0n), a0sx � bs is saturated (strongly saturated) in P if F � \ Hs 6= ;
(; 6= F � � Hs, respectively). In Section 3 we consider the existence of both kinds of

saturated constraints and in Section 4 we analyze the role they play in the context of excess

information. In particular, Proposition 4.1 shows that the elimination of a nonsaturated

(weakly saturated) constraint does not alter the value of the problem.

On the order hand, in many LP or LSIP applications the constraints are deterministic

(e.g., physical constraints or capacity constraints), whereas the cost coef�cients,

c1; c2; :::; cn, are uncertain. In this case, once a constraint has been classi�ed as saturated

or nonsaturated, a natural question arises: how robust is the classi�cation? In other

words, do small perturbations in the cost coef�cients affect the classi�cation of the given

constraint? The precise formulation of this question requires the introduction of a linear

parameterized optimization problem,

(P(ec)) inf ec0x;
s.t. a0tx � bt; t 2 T;
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whose parameter vector ec ranges onRnn f0ng : Then P(c) is nothing else than the nominal
problem P, ec � c can be interpreted as a perturbation of the cost vector and its Euclidean
norm, kec� ck, as the size of this perturbation. We denote by F � (ec) and v(ec) the optimal
set and the optimal value of P(ec), respectively. Obviously, F � (c) = F � and v(c) = v(P):

We say that a0sx � bs is stably saturated (nonsaturated) in P if there exists " > 0 such
that a0sx � bs is saturated (nonsaturated, respectively) in P(ec) for all ec 2 Rnn f0ng such
that kec� ck < ": Obviously, if a constraint is nonbinding, then it is stably nonsaturated.
In Section 5 we show that stable saturation is essentially strong saturation together with

the boundedness of the optimal set.

Assuming that v(P) is known, then F � is the solution set of the linear inequality

system

�1 = fa0tx � bt; t 2 T ; c0x = v(P)g ;
and it can be easily realized that a0sx � bs is saturated in P if and only if it is binding

in �1 (in particular, if a0sx � bs is nonredundant in �1, then a0sx � bs is saturated in P).

Since the classi�cation of a given constraint a0sx � bs as saturated or not requires, �rstly,
computing v(P) and then testing the consistency of �1, we can conclude that it is not

worth to prevent nonsaturation in practical situations (and the same assertion is valid for

weak saturation and even for redundancy). A more reasonable strategy for eliminating

the excess of information in P consists of including in the numerical algorithms for P

subroutines being able to detect and eliminate, with low computational cost, some (but

not all) nonsaturated constraints. The natural way to do that, if the available algorithm

generates a feasible solution xk at step k, consists of testing the consistency of

�2 =
�
a0tx � bt; t 2 Tn fsg ; a0sx = bs; c0

�
xk � x

�
� 0
	
:

In fact, if �2 is inconsistent, then a0sx � bs is nonsaturated, and the converse statement

is true if xk 2 F �. Since checking the consistency of �2 and solving P requires

approximately the same computation time, this rule should be simpli�ed even though

the alternative rule identi�es less nonsaturated constraints than the previous one. So, let

us consider the linear optimization problem in Rn+1
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(P0) inf xn+1;

s.t. f 0ux+ xn+1 � gu; u 2 U;

where �3 = ff 0ux � gu; u 2 Ug is a suitable subsystem of �2: Obviously, if v(P0) > 0,
then �3 is inconsistent, �2 is inconsistent too and a0sx � bs is nonsaturated and can be

eliminated. Depending on the selection of U (it should be largely smaller than T ), this

rule could provide an acceptable trade-off between costs and bene�ts to be derived, at

least in LP problems. Other low cost rules for detecting simultaneously nonsaturation

and redundancy in LP problems were described by D. Klein and S.J. Holm, and by

H.P. Williams (see Chapters 8 and 9 in Ref. 8, respectively). The impact of these two

procedures in the speed up of LP algorithms is discussed in Chapter 18 of Ref. 8. If P(c)

is being solved by means of these kind of algorithms, and small perturbations of c are

conceivable, only those constraints which have been recognized as stably nonsaturated

should be ignored in the re-optimization process.

Concerning LSIP problems, we can not expect that the elimination of nonsaturated

(redundant) constraints will increase the ef�ciency of the known numerical methods as far

as this will not affect the cardinality of the index set T , whereas it can provoke the loose

of some desirable property (e.g., the compactness or connectivity of T ). Nevertheless, as

asserted in Ref. 8, the theoretical analysis of redundancy and related phenomena gives an

insight into the optimization problem.

2. Preliminaries

Let us introduce the necessary notation. Given a set ; 6= X � Rn, we denote by

coneX , spanX , convX and X0 the convex cone spanned by X , the linear span of X ,

the convex hull of X and the positive polar of a convex cone X , i.e.,

X0 = fy 2 Rn j x0y � 0; for all x 2 Xg
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IfX is convex, O+X denotes the recession cone ofX and dimX the dimension of a�X:

From the topological side, intX , clX , bdX and rintX denote the interior, the closure,

the boundary and the relative interior of X , respectively.

Given a convex set X and x 2 X , D(X; x) denotes the convex cone of the feasible
directions at x with respect to X:Moreover, 0n 2 D(X; x) by de�nition. Concerning our
problem P, it can be easily seen that x� 2 F � if and only if c 2 D(F; x�)0: Given x 2 F ,
we shall denote by

A(x) = cone fat j a0tx = bt; t 2 Tg
the so-called cone of active constraints.

Let us recall some results that will be used in the sequel (the proofs can be found

in Ref. 9). If the Karush-Kuhn-Tucker condition c 2 A(x�) holds at a certain point

x� 2 F , then x� 2 F �, but the converse statement can fail unless the constraint

system satis�es a constraint quali�cation (c.q.). The weakest c.q. is the locally Farkas-

Minkowski (LFM) property introduced in Ref. 10: the constraint system � is LFM if every

consequence relation of � = fa0tx � bt; t 2 Tg determining a supporting hyperplane to
F is also the consequence of a �nite subsystem of �. This property holds, in particular,

if D(F; x) = A(x)0 for all x 2 F: In such case � is called locally polyhedral (LOP

in brief) and F is quasipolyhedral, i.e., the nonempty intersections of F with polytopes

are polytopes or, equivalently, D(F; x) is polyhedral for all x 2 F (see Ref. 11). The
quasipolyhedral sets enjoy nice properties both in the context of separation theory (Ref.

12) and optimization. The LFM property guarantees that A(x) 6= f0n g for all x 2 bdF ,
so that there exists a binding constraint at every boundary point of the feasible set: If � is

LOP, then x 2 F is an extreme point of F if and only if dimA(x) = n (extended Weyl's
property). Any �nite system is LOP and so LFM.

x 2 Rn is called a strong slater point (SS-point) for � if there exists " > 0 such

that a0tx � bt + " for all t 2 T . The existence of SS-points characterizes the stability of
the feasible set in different senses (see Chapter 6 in Ref. 9). If jT j < 1, the SS-points
coincide with the Slater points (i.e., the strict solutions of �).
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3. Existence

Let us consider the existence of strongly and weakly saturated constraints.

Proposition 3.1. If P is a solvable problem with LFM constraint system, then there

exists a strongly saturated constraint a0sx � bs: In particular, if the constraint system is

LOP and F does not contain lines, then there exists a set ft1; t2; :::; tn�1g � T such that
a0tix � bti is saturated (weakly saturated if dimF � = n � 1), i = 1; 2; :::; n � 1, and�
as; at1 ; :::; atn�1

	
is a basis of Rn:

Proof. Taking x 2 rintF �, sinceA(x) 6= f0ng, there exists s 2 T such that a0sx = bs,
with as 6= 0n: Then, a0sx = bs for all x 2 F �, according to Theorem 18.1 in Ref. 13.

Now we assume that the constraint system is LOP and F does not contain lines.

Let x� be an extreme point of F �: Then x� is also an extreme point of F (since F � is

an exposed face of F ), so that dimA(x�) = n: Since as 2 A(x�)n f0ng, there exists
ft1; t2; :::; tn�1g � T such that

a0tix
� = bti ; i = 1; 2; :::; n� 1;

and
�
as; at1 ; :::; atn�1

	
is a basis of Rn:

Finally, assume that dimF � = n � 1: If a0tix � bti is strongly saturated in P for a

certain i 2 f1; 2; :::; n� 1g, then F � � Hti and, at the same time, F � � Hs: According
to the assumption, we have

span fatig = span fasg ;

so that fas; atig is linearly dependent. This is a contradiction. �
The next two illustrative examples show that the LOP condition and the existence of

extreme points in F are necessary in order to guarantee the existence of more than one

saturated constraint (even in the case of uniqueness of the optimal solution).

Example 3.1. Consider the parametric LSIP problem

(P(c)) inf c0x;

s.t. tx1 + (1� t)x2 � t� t2; t 2 [0; 1] :
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The constraint system in P(c) is an LFM (but not LOP) representation of the convex

hull of the set (see Fig. 1)

��
x1
0

�
; x1 � 1

�
[
�
x 2 intR2+ j

p
x1 +

p
x2 = 1

	
[
��

0
x2

�
; x2 � 1

�
:

Figure 1 about here

It can be realized that, for c 6= 02,

F �(c) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

f0g � [1;+1[ ; if c 2 cone
��

1
0

��

( �
c2

c1 + c2

�2
;

�
c1

c1 + c2

�2!0)
; if c 2 intR2+

[1;+1[� f0g ; if c 2 cone
��

0
1

��

;; otherwise,

and

v(c) =

8>>>>>>>>><>>>>>>>>>:

0; if c 2 bdR2+

c1c2
c1 + c2

; if c 2 intR2+

�1; otherwise.

Given c 2 R2n f02g such that F �(c) 6= ; (i.e., c 2 R2+n f02g), there exists a unique
saturated constraint, a0s(c)x � bs(c), where
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s(c) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1; if c 2 cone
��

1
0

��

c1
c1 + c2

; if c 2 intR2+

0; if c 2 cone
��

0
1

��
:

Actually, a0s(c)x � bs(c) is strongly saturated in P(c), but it is not stably saturated. In fact,
taking ec 2 intR2+, ec 6= c, such that ec1 + ec2 = c1 + c2, we get

s(ec) = ec1ec1 + ec2 6= c1
c1 + c2

= s(c);

so that a0s(c)x � bs(c) cannot be saturated in P(ec), and this for ec arbitrarily closed to c.
Moreover, a0tx � bt is stably nonsaturated for any t 2 T such that t 6= s (c).

Example 3.2. Consider the LP problem in R2

(P) inf �x2;

s.t 0 � x2 � 1:

Obviously, F � = R�f1g, so that x2 � 1 is strongly (but not stably) saturated in P,

whereas x2 � 0 is stably nonsaturated. Hence, Proposition 3.1 can fail if F � contains one
line (although the constraint system is �nite and so LOP).

4. Excess Information

We shall analyze the effect, on the optimal set and the optimal value of P, of the

elimination of a given constraint, which can be nonsaturated, weakly saturated, and

strongly saturated: To do this, we associate with every index s 2 T the relaxed problem
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(Ps) inf c0x;

s.t. a0tx � bt; t 2 Tn fsg ;

whose feasible set, optimal set and value will be denoted by Fs, F �s and v(Ps),

respectively.

Obviously, if v(P) = �1, then v(Ps) = �1 and F �s = F � = ; (trivial case): Hence,
the elimination of an arbitrary set of constraints does not change the optimal value. So,

we have just to consider two nontrivial cases: P solvable and P bounded but unsolvable

(this case cannot occur in LP).

Proposition 4.1. Let P be solvable and s 2 T . The following statements hold:
(i) If a0sx � bs is weakly saturated in P (nonsaturated in P), then

F � = fx 2 F �s j a0sx � bsg

(F �s = F �, respectively), and so v(Ps) = v(P):

(ii) If a0sx � bs is strongly saturated in P and nonredundant, and

dimF � = n� 1 < dimF;

then v(Ps) < v(P):

Proof. (i) Assuming that a0sx � bs is either weakly saturated or nonsaturated in P,

then there exists x� 2 F � such that a0sx� > bs. Then c 2 D(F; x�)0 = D(Fs; x�)0, so that
x� 2 F �s too: This shows that v(Ps) = c0x� = v(P), as well as ; 6= fx 2 F � j a0sx > bsg �
F �s so that

F � = cl fx 2 F � j a0sx > bsg � F �s :
Hence,

F � � fx 2 F �s j a0sx � bsg : (1)

We shall prove that both sets in (1) are equal. In fact, if x� 2 F �s satis�es a0sx� � bs
then c0x� = v(Ps) and x� 2 F , so that v (P) � c0x� = v(Ps), and this entails x� 2 F �.
Thus, F � = fx 2 F �s j a0sx � bsg and v(Ps) = v(P):

Now assume that a0sx � bs is nonsaturated in P. If F �s 6= F �, there exists x1 2 F �s nF �:
Taking an arbitrary x2 2 F �, we have a0sx1 < bs and a0sx2 � bs, so that there exists
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x3 2 [x1; x2] � Fs such that a0sx3 = bs: Since c0x3 = v(P), x3 2 F � \ Hs, so that
a0sx � bs is saturated in P contradicting the assumption: Hence, F �s = F �:

(ii) Under the assumption, as 6= 0n and so Hs is a hyperplane containing F �. Since
dimF � = n � 1, Hs is the af�ne hull of F � and the vectors as and c are parallel to each
other. Even more, since F is full dimensional, there exists � > 0 such that c = �as. Then,

taking an arbitrary x1 2 F �, we have

v (P) = c0x1 = �a0sx
1 = �bs:

Let us take an arbitrary x2 2 FsnF (we are assuming that a0sx � bs is nonredundant).
Since a0sx2 < bs , we obtain

v (Ps) � c0x2 = �a0sx2 < �bs = v (P) ;
and we get the required conclusion. �

Obviously, if a strongly saturated constraint is redundant (as it occurs in Example

3.1, if c 2 R2+n f02g), then v(Ps) = v(P). None of the dimensionality assumptions in

statement (ii) is super�uous as the following examples show.

Example 4.1. The second constraint in

(P) inf x;

s.t. x � 0;�x � 0;

is strongly saturated and nonredundant, but v(P2) = v(P) = 0: Here

dimF � = n� 1 = dimF:

Example 4.2. The last constraint in

(P) inf 1
2
x2 + x3;

s.t. x1 + x3 � 0;�x1 + x3 � 0; x2 + x3 � 0;�x2 + x3 � 0
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is strongly saturated and nonredundant, but v(P2) = v(P) = 0; 03 being the unique

solution of P: Now dimF � < n� 1 < dimF .
Since any nonempty compact convex set can be represented by means of a countable

linear system without binding constraints, the simultaneous elimination of in�nitely many

nonsaturated constraints could modify both the optimal set and the value of the problem.

The next result refers to the elimination of �nitely many nonsaturated or weakly saturated

constraints.

Corollary 4.1. The simultaneous elimination from a solvable problem of a �nite

set of constraints, none of them being strongly saturated, preserves its value. If all the

eliminated constraints are nonsaturated, then the optimal set is also preserved.

Proof. Let a0sx � bs and a0ux � bu be two nonstrongly saturated constraints in P:
By Proposition 4.1, F � � F �s and v(Ps) = v(P): Since F �nHu 6= ;, we have

F �s nHu 6= ; and a0ux � bu cannot be strongly saturated in Ps: Applying again Proposition
4.1 we get F � � F �s � F �s;u and v(Ps;u) = v(Ps) = v(P), so that the elimination of both
inequalities does not modify the value of the problem.

In particular, if both inequalities are nonsaturated in P, then Proposition 4.1 yields

F � = F �s = F
�
s;u, so that the optimal set is also preserved.

The proof can be easily completed by induction. �
In particular, the simultaneous elimination of all nonstrongly saturated (nonsaturated)

constraints in a given LP problem preserves its value (its optimal set, respectively).

Concerning those strongly saturated constraints which are redundant, they can be

eliminated sequentially preserving the feasible set and, so, the optimal set and the optimal

value. We consider now the second nontrivial case.

Proposition 4.2. Let P be a bounded unsolvable problem and let a0sx � bs be a given
constraint in P: The following statements hold:

(i) If cone fat; t 2 Tn fsg ;�as;�cg = Rn, then F �s = F � = ;:
(ii) If cone fat; t 2 T ;�asg = Rn, then v(Ps) = v(P):
(iii) If cone fat; t 2 Tn fsg ;�asg = Rn, then F �s = F � = ; and v(Ps) = v(P):
Proof. (i) Let us assume the contrary, i.e., F �s 6= ;:
If F �s is bounded, then all the corresponding level sets of Ps are compact. Taking an
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arbitrary x 2 F � Fs, the set fx 2 Fs j c0x � c0xg is compact, so that

fx 2 F j c0x � c0xg = fx 2 Fs j c0x � c0xg \ fx 2 Rn j a0sx � bsg

is compact and the functional c0x attains its minimum on this set. Hence F � 6= ;
contradicting the assumption.

Since F �s is unbounded, there exists u 2 O+F �s , u 6= 0n: Such a vector u must be

a solution of the homogeneous system corresponding to the following representation of

F �s :

fa0tx � bt; t 2 Tn fsg ; c0x = v(Ps)g :
Moreover, we must have a0sx < bs for all x 2 F �s (otherwise F � 6= ;), so that a0su � 0:

Then u 6= 0n satis�es

fa0tu � 0; t 2 Tn fsg ;�a0su � 0;�c0u � 0g ;

i.e.,

u 2 [cone fat; t 2 Tn fsg ;�as;�cg]0 = (Rn)0 = f0ng ;
and this is the aimed contradiction.

(ii) Let fxrg � F be a sequence such that lim
r
c0xr = v(P) and assume the existence

of z 2 Fs such that c0z < v(P): Obviously, we must have a0sz < bs, so that there

exists zr 2 ]z; xr] � Fs such that a0szr = bs, r = 1; 2; :::: Then, fzrg � F \ Hs and
c0z � c0zr � c0xr, r = 1; 2; :::, so that lim

r
c0zr = v(P):

If fzrg is bounded, we can assume without loss of generality the existence of
z� = lim

r
zr 2 F , with c0z� = v(P), so that z� 2 F � contradicting the assumption.

Hence fzrg is unbounded and we can assume without loss of generality that

yr :=
zr � z1
kzr � z1k

is well de�ned, r = 1; 2; ::: and fyrg is convergent. Let y = lim
r
yr, with kyk = 1: Since

a0s (z
r � z1) = 0, r = 1; 2; :::, we have a0sy = 0: On the other hand, given t 2 Tn fsg,

since bt � a0tz1 is a lower bound of fa0t (zr � z1)g and

lim
r

zr � z1 = +1;
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we get

a0ty = lim
r

a0t (z
r � z1)

kzr � z1k � 0:
Hence y 6= 0n satis�es

fa0ty � 0; t 2 T ; � a0sy � 0g ;

i.e.,

y 2 [cone fat; t 2 T ; � asg]0 = f0ng
and this is a new contradiction. Therefore v (P) � c0z for all z 2 Fs and so v (Ps) = v (P) :

(iii) It is straightforward consequence of (i) and (ii). �
The next example shows that, if P is bounded but unsolvable, the elimination of a

constraint (necessarily nonsaturated) might alter the value of the problem and make it

solvable, i.e., that the assumptions in (i) and (ii) are not super�uous in Proposition 4.2.

Example 4.3. Consider

X1 = R+ � f0g � R+;

X2 =

8<:
0@ x1

1
1 + x3

1A j x1x3 � 1; x1 > 0; x3 > 0

9=;
(the sets in Fig. 2), and Fs = cl conv fX1 [X2g (a closed convex set in R3+).

Figure 2 about here

Let �s be an arbitrary linear representation of Fs with index set S: Choosing a new

index s =2 S, we denote by � the system obtained by aggregating to �s the constraint

x2 � 1 (associated with s), so that the index set of � is T = S [ fsg : Denoting by F the
solution set of �, we have F = X2:

Consider c = (0; 0; 1)0 and the corresponding problem P: It can be easily realized that

v(P) = 1 and F � = ;, whereas v(Ps) = 0 and F �s = R+ � f0g � f0g : In fact ,

O+Fs = X1 = [cone fat; t 2 Tn fsgg]0 ;

so that

cone fat; t 2 T ;�asg � X0
1 = R+ � R� R+:

Hence, we have
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cone fat; t 2 Tn fsgg � R+ � R� R+;
cone fat; t 2 Tn fsg ;�as;�cg � R+ � R� R 6= R3;

and

cone fat; t 2 Tn fsg ;�asg � R+ � R� R 6= R3;
so that the three conditions in Proposition 4.2 fail.

5. Stability

Lemma 5.1. Let G be a polytope with extreme points x1; :::; xp, and let yj 2
D (G; xj), j = 1; :::; p: Then 0n 2 conv fy1; :::; ypg :

Proof. Let us assume the contrary, i.e., 0n =2 conv fy1; :::; ypg : Then, by the
separation theorem, there exists u 2 Rn such that

u0yj > 0; j = 1; :::; p: (2)

The LP problem Max u0x s.t. x 2 G attains its optimal value at a certain extreme
point of G, say xi: Then u0 (x� xi) � 0 for all x 2 G: Since yi 2 D (G; xi) there exists
" > 0 such that xi + "yi 2 G, so that "(u0yi) = u0(xi + "yi � xi) � 0 and u0yi � 0 in

contradiction with (2). �
Lemma 5.2. Let G be a nonempty bounded exposed face of a quasipolyhedral set

F and let D be the set of unitary vectors in the direction of all those edges of F whose

intersection withG is the corresponding apex. ThenG is a polytope, coneD is polyhedral

and F � G+ coneD:
Proof. We can assume G 6= F without loss of generality. Fig. 3 illustrates the

geometrical meaning of this statement in the nontrivial case.

Figure 3 about here

Let G = fx 2 F j a0x = bg, a 6= 0n, with a0x � b for all x 2 F: Taking an arbitrary

15



basis of fag?, say fu1; :::; un�1g, we can de�ne the real numbers �i = min
x2G

u0ix and

�i = max
x2G

u0ix, i = 1; :::; n� 1, so that

G = fx 2 F j a0x = b; �i � u0ix � �i; i = 1; :::; n� 1g

is the intersection of F with a polytope and G is a polytope as well. Then G can be

expressed as G = conv fx1; :::; xpg, where fx1; :::; xpg is the set of extreme points of
G: Since D(F; xi) is polyhedral, there exists a �nite set of unitary extreme directions of

D(F; xi) (one direction for each edge of F with apex xi), Di, such that,

D(F; xi) = coneDi:

Then,

F � xi + coneDi; i = 1; :::; p: (3)

Let D0
i = fd 2 Di j a0d = 0g and D00

i = DinD0
i: If d =2 D, then there exists xj ,

j 2 f1; :::; pg, j 6= i, such that d = xj � xi
kxj � xik , so that a

0d = 0 and d 2 D0
i: Analogously,

if d 2 D, there exists x 2 FnG such that d = x� xi
kx� xik , so that a

0d > 0 and d 2 D00
i :

Hence, D00
i is the set of unitary vectors in the directions of those edges of F whose

intersection with G is xi, and D =
pS
i=1

D00
i :

Now, given an arbitrary x 2 F , from (3), and taking into account that

coneDi = (coneD
0
i) + (coneD

00
i ) ;

we can write

x = xi + yi + zi; yi 2 coneD0
i; z

i 2 coneD00
i ; i = 1; :::; p: (4)

Since yi is a nonnegative linear combination of the directions of the edges of F with

apex xi and contained in G (actually edges of G), then yi 2 D(G; xi), i = 1; :::; p, so that
0n 2 conv fy1; :::; ypg, according to Lemma 5.1.

Let �i � 0, i = 1; :::; p, be such that
pX
i=1

�iy
i = 0n and

pX
i=1

�i = 1:

Multiplying by �i both members of the i equation in (4), and adding the �rst and
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second members we get

x =

pX
i=1

�ix
i +

pX
i=1

�iz
i 2 G+ coneD:

This proves that F � G+ coneD: �
Proposition 5.1. If a0sx � bs is stably saturated in P, then it is strongly saturated and

F � is a nonempty bounded set. The converse statement holds if F is quasipolyhedral.

Proof. First, we assume that a0sx � bs is stably saturated in P.
If F � is unbounded, then there exists a half-line fx+ �u j � � 0g � F �, u 6= 0n:

Obviously, c0u = 0: Taking ec = c� "u, with " > 0, we have
lim
�!1

ec0 (x+ �u) = ec0x+ lim
�!1

�
�
�" kuk2

�
= �1;

so that v(ec) = �1, with kec� ck = " kuk arbitrarily small. This contradicts the
assumption.

Now, assume that a0sx � bs is weakly saturated in P. Let x� 2 F �nHs, so that x� 2 F ,
c0x� = v(c) and a0sx� > bs: Then, given an arbitrary x 2 F \Hs, and ec = c � "as, with
" > 0, we have,

ec0x = c0x� "bs � c0x� � "bs > c0x� � "a0sx� = ec0x�;
so that x =2 F �(ec): Hence a0sx � bs is nonsaturated in P(ec), with kec� ck = " kask
arbitrarily small. This is again contradictory with a0sx � bs being stably saturated in P:

In order to prove the converse statement, we assume that F is quasipolyhedral,

a0sx � bs is strongly saturated in P, and F � is bounded.
Since F � is a nonempty bounded exposed face of F , we can apply Lemma 5.2, so that

F � is a polytope and F � F � + coneD, whereD is the �nite set of unitary vectors in the
direction of all those edges of F whose intersection with F � is the corresponding apex.

Let F � = conv
�
x1; :::; xP

	
and D = fd1; :::; dqg : If c0dj � 0, since dj 2 D(F; xi) for a

certain i 2 f1; :::; Pg (if dj is the direction of an edge with apex xi), there exists �ij > 0
such that xi + �ijdj 2 F , with

c0
�
xi + �ijd

j
�
� c0xi = v(P );
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so that xi + �ijdj 2 F �, and dj =2 D: This is a contradiction.
Hence c0dj > 0 for j = 1; :::; q and we can take a positive real number � < min

j=1;:::;q
c0dj:

Let ec 2 Rn be such that kec� ck < �: The Cauchy-Schwartz inequality yields
��(ec� c)0 dj�� < �;

so that ec0dj > c0dj � � > 0; j = 1; :::; q: (5)

Now, given x 2 F � F � + coneD; we can write

x =

pX
i=1

�ix
i +

qX
j=1

�jd
j; �i � 0; i = 1; :::; p;

pX
i=1

�i = 1; �j � 0; j = 1; :::; q; (6)

with x 2 F � if �j = 0; j = 1; :::; q:
From (5),

ec0 qX
j=1

�jd
j

!
> 0

if �j > 0, for a certain j = 1; :::; q, so that each point x 2 FnF � is dominated with
respect to P(ec) by a certain point of F � (by (6)): Hence, the optimal value v(ec) is attained
at a certain point xi, i = 1; :::; p: Since xi 2 F �(ec) \ Hs we conclude that a0sx � bs is

saturated in P(ec) for all ec 2 Rn such that kec� ck < �: �
Examples 3.1 and 3.2 show that neither the boundedness of F � nor the

quasipolyhedrality of F are super�uous conditions in Proposition 5.1. If F is a polytope,

these two conditions hold independently of c, so that a constraint is stably saturated if and

only if it is strongly saturated.

Proposition 5.2. (i) If the system fa0tx � 0; t 2 T ; c0x < 0g is consistent, then all
constraints in P are stably nonsaturated in P:

(ii) If a0sx � bs is nonsaturated in P and F � is a nonempty bounded set, then a0sx � bs
is stably nonsaturated in P.

Proof. (i) Let y 2 Rn such that a0ty � 0 for all t 2 T and c0y < 0. Then y 2 0+F and
there exists " > 0 such that ec0y < 0 if kec� ck < ". In such case v (ec) = �1 and there is

no saturated constraint in P(ec) :
(ii) We are assuming that F � � Ws := fx 2 Rn j a0sx > bsg. On the other hand, we
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have seen that

�1 =

�
a0tx � bt �

1

r
; (t; r) 2 T � N

�
is another linear representation of F , as well as

�2 =
�
(rat)

0 x � rbt � 1; (t; r) 2 T � N
	
:

Since every point of F is an SS-point for �2 and F � is compact, according to Theorems

6.1 and 10.4 in Ref. 9, the optimal set mapping is upper semicontinuous (in Berge sense),

so that the optimal set of any linear optimization problem obtained through suf�ciently

small perturbations (for the pseudometric of the uniform convergence) of the data (c and

the coef�cients in �2) is contained in the open set Ws. In particular, there exists " > 0

such that F � (ec) � Ws if kec� ck < ", so that F � (ec) \Hs = ; and a0sx � bs turns out to
be nonsaturated in P(ec) : �

The next example shows that the condition in (i) cannot be replaced by the weaker

condition v (P) = �1 (in LP both conditions are equivalent).

Example 5.1. Consider the problem

(P) inf x1;

s.t. �2tx1 + x2 � �t2; t 2 R;

where F = fx 2 R2 j x2 � x21g : Hence, v(P) = �1: Taking ec = (1; ")0 with " > 0

arbitrarily small, the constraint corresponding to the index t =
�1
2"
is (strongly) saturated

in P(ec).
Concerning the boundedness in condition (ii), in Proposition 5.2, let us observe that

it entails that F � (ec) is a nonempty bounded set for all ec in a certain neighborhood of c as
a consequence of Corollary 9.3.1 in Ref. 9.

Recall that x� 2 F � is a strongly unique solution of P if there exists � > 0 such that
c0x � c0x� + � kx� x�k for all x 2 F . This property is equivalent to the uniqueness
of the optimal solution in LP and guarantees the fast convergence of the cutting plane

algorithms in LSIP. The last results show in which way the existence of a strongly unique

solution facilitates the classi�cation of a0sx � bs:
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Proposition 5.3. If x� is a strongly unique solution of P, then a0sx � bs is stably

saturated (nonsaturated) in P if and only if it is binding (nonbinding) at x�:

Proof. It is well-known that x� is a strongly unique solution of P if and only if

c 2 intD(F; x�)0 (see, e.g., Theorem 10.5 in Ref. 9), so that there exists " > 0, such thatec 2 intD(F; x�)0 if kec� ck < ": Since kec� ck < " entails F �(ec) = fx�g, a0sx � bs is

saturated (nonsaturated) in P(ec), with kec� ck < ", if and only if a0sx� = bs (a0sx� > bs,
respectively). �

Corollary 5.1. If x� is the unique optimal solution of P and F is quasipolyhedral, then

a0sx � bs is stably saturated (nonsaturated) in P if and only if it is binding (nonbinding) at
x�:

Proof. We have just to prove that x� is a strongly unique solution of P (so that

Proposition 5.2 applies).

Since fx�g is an exposed face of F , we have F � x�+coneD, withD = fd1; :::; dqg
being a set of unitary vectors such that � := min

j=1;:::;q
c0dj > 0 (same argument as in the

proof of the converse statement in Proposition 5.1).

If x 2 F we can write,

x� x� =
qX
j=1

�jd
j;
dj = 1; �j � 0; j = 1; :::; q;

so that c0 (x� x�) � �
qX
j=1

�j � � kx� x�k : �

Example 3.1 shows that Proposition 5.3 can fail if x� is a unique but nonstrongly

unique solution. Moreover, it also shows that Corollary 5.1 can fail if F is not

quasipolyhedral.
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