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Abstract

This paper presents a metric for the efficient application of selective hardening using software based techniques against
soft-errors. It offers a method for selecting the resources to be protected obtaining maximum fault coverage with the
minimum overhead. Common approaches are based on exhaustive exploration of the solution space or time-consuming
fault injection campaigns. Contrarily, our Software based HARdening Criticality metric (SHARC) relies on early estima-
tions of the impact that protection techniques will have on the global reliability of the application. SHARC estimations
are based on features extracted from the dynamic analysis of source code, and produce a prioritization of the resources
involved accordingly. For assessing our approach two case studies were carried out using low-cost embedded micropro-
cessors. Results were compared to traditional approaches like brute-force exploration and the Architectural Vulnerability
Factor (AVF) metric. Experiments show that SHARC improves the results between 5% and 21% at a fraction of the effort.

1. Introduction

The miniaturization of electronic components has sig-
nificantly increased the susceptibility of processor-based
systems to radiation effects, increasingly affecting reli-
ability. For these systems, the effect of radiation could
cause Single Event Effects (SEEs), which provoke exe-
cution faults known as soft-errors. These are transient
faults that affect the system behavior by altering tem-
porarily signal transfers (Single Event Transients - SETs)
or stored values (Single Event Upsets - SEUs) [1]].

The protection against soft-errors, also known as hard-
ening, has traditionally relied on hardware redundancy.
Although these techniques offer excellent results, they
produce expensive and power costly solutions. More-
over, fine-grain hardware replication does not fit well on
Commercial Off-The-Shelf (COTS) processors, which
are becoming a key component in industry for produc-
ing low-cost reliable systems [2].

In recent years, a large number of techniques based
on redundant software, also known as Software Imple-
mented Hardware Fault Tolerance (SIHFT) techniques
[3l], have been proposed as a cost-effective alternative
to traditional approaches based on hardware. Although
SIHFT can be easily applied to COTS processors, they
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cause non-negligible overheads in terms of code size,
execution time, and data storage [4]. These overheads
present a challenge for designing fault tolerant systems
and, in any case, they impose new limitations to their
reliability. In fact, performance degradation caused by
the execution of redundant instructions may prevent their
application to systems with severe time constraints. Fur-
thermore, the time span that vulnerable resources are ex-
posed to radiation increases, making the system more
prone to faults. In the same way, the augmented memory
footprint increases the area susceptible to faults and, in
some cases, may exceed the resources’ capacity.

Recent approaches propose the partial or selective
application of hardening techniques to overcome those
drawbacks [3]]. These are also known as selective-SIHFT
in the case of the software-based ones [0l [7]. The gen-
eral approach consists of protecting only a selected sub-
set of elements (e.g., processor registers, basic blocks of
instructions, among others) to achieve significant reduc-
tions in overheads with minimal impact on the system’s
reliability. Theoretically, it is possible to find an opti-
mum trade-off between reliability, cost, and performance
from the hardening design space. However, identifying
the more critical resources and selecting the order that
they should be protected is not a trivial task.

In first place, when a SIHFT technique is applied to
a specific resource, and contrarily to the effect of the
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equivalent hardware protection, the vulnerability of the
rest of elements can be negatively impacted. Conse-
quently, common hardware-based metrics of vulnerabil-
ity, like Architectural Vulnerability Factor (AVF) [8]] [9],
are not always suitable for selective-SIHFT techniques.
In second place, software offers designers a huge num-
ber of possibilities when exploring the hardening design
space. In terms of flexibility this could be great, but
in practice assessing the reliability of different solutions
is a time-consuming process that makes the exploration
both costly and cumbersome. In fact, just a few brute-
force approaches have been proposed in that direction.
For instance, in [6] reliability was estimated for every
protected version of the code. Some refinements have
been proposed to reduce the exploration area, like in [[10]
where an evolutionary algorithm was used for guiding
the exploration of a dense solution space in the search of
the optimal trade-offs. However, in spite of the reduction
of the number of candidate solutions, it still supposes a
considerable cost and effort, since agile fault injection
tools and processor models are not always available for
implementing these kinds of analyses.

In this context, the present work is based on [11]
and [12], extending the initial efforts in two directions.
Firstly, a lightweight metric named SHARC (Software
based HARdening Criticality) is proposed to early assess
the impact that the protection of each individual resource
will produce on the overall system reliability. Secondly,
a refined strategy is presented to improve the mitigation
of soft errors keeping overheads as low as possible. It
relies on an incremental and iterative process where suc-
cessive software versions are re-evaluated and resources
are hardened following a strict order given by SHARC.
In this way, maximum fault coverage increase is ensured
for each hardening step.

The rest of the paper is organized as follows. Section
defines the SHARC metric and proposes a method for
the selective hardening of software based on it. Section
[B|reports and discusses the experimental results obtained
using the method. It also includes a brute-force harden-
ing strategy and the comparative analysis between AVF
and SHARC metrics for selective SIHFT techniques. Fi-
nally, Section[z_f]describes the conclusions of the work.

2. SHARC: metric for Selective Hardening based on
Software

SHARC is aimed to obtain an assessment about the
suitability of an individual resource to be protected us-
ing a specific SIHFT technique. As software hardening
techniques can be applied to both high-level code (e.g.,
C/C++) and low-level code (e.g., assembly), in each case

different kinds of resources might be considered: regis-
ters, variables, arrays, etc. Moreover, every technique
produces a different effect to the overall reliability and
introduces new potential vulnerabilities in the program.
Therefore, to improve the accuracy of the estimations,
SHARC is tightly coupled to the SIHFT under consid-
eration. In this work, the SHARC metric is adapted to
an assembly-level hardening technique and is applied for
assessing the processor’s register file, however, it could
be employed for any kind of STHFT and resources.

In this particular context, SHARC tries to identify the
register that, once hardened, will produce the higher im-
pact in the overall reliability of the application. For this
purpose, two factors are taken into account: the criti-
cality of the resources, and the vulnerability overhead.
Both factors are formally expressed by the correspond-
ing terms in the following definition:
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As defined in equation[I] the first term is weighted by
coefficient Wypc and corresponds to the contribution of
the unprotected resources to the global criticality. As-
suming that hardening of register x will have a negligi-
ble effort on the rest of resources, it is calculated as the
summation of the individual criticalities and normalized
by the original overall criticality (i.e., including register
x). The individual criticality is proportional to the prob-
ability that a fault, affecting the resource, becomes an
error during the code execution. The ABC metric was
used for estimating this criticality in advance by means
of dynamic analysis of the program (assembly code). It
is calculated as a weighted sum of three parameters: the
effective time span when useful data is present in a re-
source (i.e. effective lifetime), the number of times that
aresource is involved in the evaluation of a branch condi-
tion (i.e. weight in conditional branches) and the number
of times that a resource contains the result of an expres-
sion involving the value stored on another resource (i.e.
functional dependencies) [11]].

The second term, weighted by the coefficient W¢y,
describes the vulnerability overhead. Unlike hardware
replication, software redundancy does not guarantee a
full protection of the data. Depending on the type of
instructions employed by the protection technique and
where they are inserted in the original code, new weak-
nesses may appear in the hardening code. Since SIHFT
techniques are well defined by a set of code transforma-
tion rules, these vulnerabilities can also be estimated in
advance during the analysis of the original code. They
are expressed in the equation as the number of Criti-
cal Instructions induced by the hardening of register x



Table 1: SWIFT-R transformation example.

Original code Reg. R4 Additional Critical
protected instructions | instructions
MOV #8, R4 MOV #8, R4
MOV #15,R5 | MOV #8, R8 * 0
loop: MOV #8, R9 * 0
CMP #0, R5 MOV #15, RS
JZ loop_done | loop:
ADD R4,R6 | CMP #0, R5
JMP loop JZ loop_done
CMP R4, R8 * 1
JZ voter 0 * 1
MOV R9, R6 * 0
voter_0: * 0
ADD R4, R6
DECRS5
JMP loop

(Clgpyx). Clgpy takes into account that the application can
pass through the same vulnerable state several times dur-
ing the execution, and it is normalized by the total num-
ber of instructions executed (7 Igy,y).

For illustrative purposes, Table [1| shows an example
of code protected with SWIFT-R technique (SoftWare
Implemented Fault Tolerance - Recovery) [13]. The
transformed code can be seen on the right, where in-
jected instructions are marked by * in the second col-
umn. SWIFT-R triplicates the register R4, creating two
identical copies (R8 and R9 registers), with one majority
voter ensuring correctness provided at least two out of
three copies of the register remain the same (voter_0).

However, the insertion of verification instructions
adds weak points to the program, classified as critical in-
structions and marked with a 1 in the third column. This
is due to the error propagation resulting from a fault in
the register R4 after executing the first or second veri-
fication instruction inserted in the majority voter. The
content of register R4 changes, so the addition between
registers R4 and R6 will output an incorrect value.

2.1. Method for selective hardening based on SHARC

Usually, selective methods are guided by the order
defined in the criticality rank, obviating the fact that
protections have an effect on the reliability of the un-
protected resources. Alternatively, we propose to re-
calculate the criticality rank at each successive code ver-
sion. As shown in the next section, our method renders
more accurate criticality estimations and guarantees the
maximum fault coverage for each incremental protection
step.

The procedure shown at Algorithm |l|has the original
code (un-hardened code) as input, jointly with the STHFT

technique and the number of protection steps N. STHFT()
is defined by a set of code transformations that can be
automatically applied to any version of the code. The
N parameter specifies the number of protection steps to
reach the final protected version of the program. It is
defined as the maximum number of registers used by the
application but also can be associated to the maximum
level of overhead allowed by the application. This way,
our method can be driven by the application reliability or
by memory/time constraints.

Algorithm 1 Selective SIHFT based on SHARC
1: function SELECTIVEHARD(S IHFT, code, N)
2 version[0] «code
3 fori <1 to Ndo
4: Rc < SHARCrank(version[i — 1]) » Step 2
5
6
7

> Step 1

version[i] < SIHFT(version[i — 1], R¢)
end for
return version|[]

The registers to be hardened are successively selected
using the SHARCrank() procedure for each version[i]. In
the first step, version[0] corresponds to the non-hardened
code and is used to select the most critical register, i.e.,
the best candidate to be hardened (R¢). This register is
classified as the first in the criticality rank, and then, it
is protected using the specific SIHFT technique to pro-
duce the next version of the code. In the second step, the
version[i] is used to estimate the criticality of the remain-
ing registers. As aresult, we obtain the highest criticality
register of the version[i], which is classified according to
the order of criticality, and it is hardened in the follow-
ing version[i + 1]. This loop is repeated until the total
number of steps is completed (V). As a final result, we
obtain the coverage percentages against faults of the dif-
ferent versions, when evaluating the selective hardening
with 1, 2, 3, up to N hardened registers.

3. Experimental Results and Discussion

To validate the feasibility of SHARC, two target pro-
cessors and one SIHFT technique were selected. The
first, Xilinx PicoBlaze [14], is a widely used IP (In-
tellectual Property) core for embedded systems based
on FPGAs. PicoBlaze processor includes 16 byte-wide
general-purpose data registers (denoted as sX). The sec-
ond, TI-MSP430, is a 16-bit RISC processor used in the
Texas Instruments MSP430 low-power microcontroller
family. It includes a register file with 16 registers (r0-
r15). The first four registers are intended for special pur-
poses and the remaining r4-r15 are general purpose reg-
isters.



The selective version of SWIFT-R was used to carry
out the selective protection [6]. This detection and re-
covery technique was automatically applied by means
of low-level instruction transformation rules to different
subsets of processor register file. Code and performance

usage of two copies of data, limiting the number of reg-
isters that can be protected. Other SIHFT techniques,
which only include detection, do not suffer of this limi-
tation and would produce even more hardened versions
of the code.

overheads produced vary significantly with the selected

resources, being greater than 2.5x when all registers are Table 2: Fault coverage on PicoBlaze (unACE%)

protected (fully protected version).

Hard regs PID | MM | POW | BUB | MADD | FIB

The benchmark software suite used in the experiments one 860 781 [ 817 | 783 376 333

covers from basic to complex applications of different
nature (data intensive vs control intensive), they are:
proportional-integral-derivative controller (PID), matrix
multiplication (MM), exponentiation (POW), bubble sort

875 | 787 | 8.7 | 788 92.8 84.8
87.1 | 827 | 873 | 783 89.9 85.3
89.7 | 80.2 | 84.6 | 745 89.4 85.6
89.7 | 833 | 84.0 | 844 86.3 88.1
90.5 | 84.5 | 85.1 83.9 86.4

875843 [ 920 | 820 953 89.0
90.8 | 84.1 | 903 | 80.3 95.0 88.9
86.6 | 832 | 914 | 859 92.8 90.6
915 | 848 | 924 | 855 93.1
912 | 824 | 89.3 | 804 93.0 90.7
87.7 | 87.6 | 873 | 852 87.2 91.8
919 | 888 | 87.6 | 85.1 89.2
89.5 | 86.3 | 87.8 | 84.0 89.3 90.6
94.6 | 86.3 | 885 | 835 87.9
90.1 | 89.0 | 88.3 | 90.1 86.1

(BUB), matrix addition (MADD), fibonacci (FIB).

3.1. Brute-force strategy for software hardening

Following the brute-force strategy, the hardened ver-
sions of a test program were evaluated by means of fault
injection campaigns. For every version, 10,000 faults
per register were injected in the register file. Each fault

Qoo PR OOoooOoWNNR—,—,OOoOOoORrWN—T

I
2
3
4
2
3
4
3
4
4
. s 1,2 920 | 862 | 940 | 83.6 97.7 94.1
?0n51sted of a bit-flip, one per run, randomly select- 13 g1 | 884 | 936 | 881 041 95.0
ing one clock cycle and one bit of the target resource. 1,4 92.1 | 89.8 | 94.0 | 87.6 955
The different versions of the programs were automati- ,2,3 90.5 | 88.7 | 91.8 | 86.1 95.7 | 94.0
cally generated using the Software Hardening Environ- 22,4 95.2 | 89.2 1 934 | 863 93.9
8 & the Jofiware 8 3.4 915 | 894 | 945 | 915 | 933
ment (SHE) [15]], and their reliability measured on pro- 2,3 914 | 87.9 | 90.0 | 86.5 914 | 954
cessor ISA simulators. Naken open source simulator 2,4 96.2 | 884 | 90.6 | 85.9 90.7
[16] was modified to support fault injection on MSP430 3,4 OLL | 937\ 919 | 917 87.8
- uPP! J ! 3.4 946 | 91.6 | 885 | 908 | 87.6
processor. Similarly SimPicoBlaze, included in the SHE 1,2.3 027 1903 | 964 | 88.7 97.0 1 993
toolchain, was used for PicoBlaze campaigns. , } % j ggg g};? ggg g?‘; ggila
The fault eﬂrécts were classified as unACE - unnec- 234 949 | 944 | 969 | 922 048
essary for Architecturally Correct Execution in case the ,2.3,4 96.1 | 94.1 | 945 | 923 89.1
system completes its execution, and obtains the expected ,1,2,3,4 1974 1965 | 999 | 953 96.0

output after a fault is injected. Otherwise they were clas-
sify as ACE - Architecturally Correct Execution, which
comprises any undesirable effect categories such as un-

corrected faults, abnormal program termination or infi- Table 3: Fault coverage on TI-MSP430 (unACE%)

nite execution loop [8]. Hard regs | PID | MM | POW | BUB | MADD | FIB
Tables [2 and [3| present the fault coverage for each ver- none 88.4 | 80.9 | 67.7 | 845 83.6 76.3
sion of the code in terms of unACE percentage. Hard- g g(l)i 2?2 ;gg ggg gg‘l‘ ggg
ened versions are grouped according to the number of 6 206 | 834 | 751 | 877 | 841 776
protected registers. The horizontal divisions separate 7 96.1 | 86.0 | 72.6 | 90.7 86.9 80.8
each group, so that the different versions evaluated can 4.5 914 1 89.1 [ 838 [ 90.5 88.5 88.1
. . 4,6 91.7 | 89.9 | 83.1 91.9 91.0 82.5

be observed using one, two, three, and up to four regis- 4,7 97.0 | 92.8 83.4 91.9 93.6 84.4
ters in the case of the TI-MSP430 processor, and five reg- 5,6 89.9 | 835 | 83.5 | 87.7 84.6 85.1
isters in PicoBlaze (except for the FIB case where only 3.7 2.3 | 865 | 812 | 918 88.2 88.5
. . .. 6,7 96.0 | 88.6 | 81.5 93.7 89.1 84.1

four registers were needed for coding the application). 1.5.6 918 1906 | 914 | 919 903 901
The registers used in the different hardened versions are 4,5,7 97.2 | 94.0 | 91.8 96.1 95.9 92.6
labeled using a comma-separated list, for example, the 4,6,7 97.0 | 955 | 914 | 97.9 96.0 88.1
ion “1. 2 of licati hat th . 1 5,6,7 96.1 | 89.2 | 89.9 | 94.0 90.6 91.6
version N oI an app 1cation means that the reglster 4_7 5’ 6, 7 970 956 097 987 0872 95.96

and 2 are hardened. It is worth to note that the protection
technique applied in these experiments not only provides

detection, but also correction of the faults. It involves the In general, fault coverage increases with the protec-



tion level (i.e. the number of registers protected). For
instance, in the case of PID (Table @]) the baseline is
86.00% of unACE when no protection is applied, and the
maximum values obtained are 90.53%, 94.61%, 96.29%,
96.94% and 97.40%, corresponding to one register pro-
tected (version “4” ), two registers protected (version*2,
4”), three registers protected (version “1, 2, 4”), four reg-
ister protected (version “0, 1, 2, 4”) and full protection
(version “0, 1, 2, 3, 4”) respectively.

However, an increment in the number of protected reg-
isters does not always produce an improvement of fault
coverage. As it can be observed, version “4” offers bet-
ter result than the majority of two register versions. In
the same way, version “2, 4” exceeds the value of all
three registers versions except just one, the version “I,
2, 4”. This apparent contradiction arises from the fact
that software redundancy enhances the fault tolerance of
protected resources, but also modifies the criticality of
everything else in the code introducing new vulnerable
states. This effect becomes particularly important for the
MADD application. In this case, the maximum unACE
is obtained by protecting only three registers (97.70% in
the version “0, 1, 2”), which is higher than the best result
offered by any version of four and five protected registers
(i.e., 96.00% in the version “0, 1, 2, 3, 47).

The results for TI-MSP430 (Table [3) show a similar
behavior. Although the extreme case of MADD is not re-
peated here, increasing the number of protected registers
does not guarantee the fault coverage enhancement. As
an example, the MM application offers a maximum un-
ACE percentage of 88.08% for one register (version “4”)
which surpasses versions “5, 6” and “5, 77 with two reg-
isters protected. It corroborates the trend observed and
clearly shows the different nature of software hardening
techniques in contrast to the hardware-based ones.

3.2. Comparative analysis of SHARC metric

Previous results helped us to compare the new method
with the state-of-the-art AVF metric. For this purpose,
fault coverage percentages were used to elaborate a ref-
erence ranking (golden rank) with the best register can-
didates to be hardened. The golden rank was obtained
as follows: for each one of the test programs, the max-
imum fault coverage was selected among the hardened
versions with only one protected register, i.e, the ver-
sions “07, “17, “2”, “3”, (and “4”). The register pro-
tected in the selected version was labeled at the top in the
golden criticality rank. Then, the maximum fault cover-
age was chosen among the hardened versions with two
protected registers, and at the same time, containing the
first register in the golden rank. The same procedure was
followed for the versions with protection in three, four,
and five registers to complete the rank.

To obtain a criticality rank based on AVF, each regis-
ter in the non-hardened version of the programs was at-
tacked separately by means of fault injection campaigns.
In this way, the rank was built according to the percent-
age of unACE faults exposed by each register in increas-
ing order (from the most critical to the least critical reg-
ister).

In contrast to the AVF metric which need, on aver-
age, 10, 000 runs per register, SHARC metric can be es-
timated with just one run. The statistics of each resource
involved are collected, during the execution of the orig-
inal code, by the ISA simulators and the estimations are
calculated on the fly. It represents an important saving
in development effort of, at least, four orders of mag-
nitude in comparison to any other fault-injection based
metric. In addition to the accuracy of the criticality esti-
mations, this is one of the main advantages of SHARC.
The weight coefficients used in (1) were adjusted to 0.5
each. This configures an equal weight for each criterion.
However, these coefficients can be modified according
to the vulnerability overhead introduced by the SIHFT
technique.

Pearson Product-Moment Correlation Coefficient
(PCC) was used to evaluate the quality of the criticality
ranks with respect to the golden rank for every program
in the benchmark. These correlations show the strength
of the linear association between the variables.

Tables 4] and [3] show the results of correlation coeffi-
cients obtained by SHARC and AVF metrics. Compar-
ing these results we can see that the coefficients obtained
using the SHARC metric on PicoBlaze are equal to or
higher than those obtained using the AVF metric. In av-
erage, the correlation is 88% in the case of the SHARC
metric, whereas it is only 76% in case of the AVF met-
ric. As for the results obtained in TI-MSP430, the corre-
lation coeflicients show a minimum difference of 1.66%
between the two metrics. On average, the AVF metric
obtains the highest percentage with 88.33%, whereas the
SHARC metric obtains a lower percentage with 86.67%.

However, regarding the number of matches of the two
most critical registers (marked with circles), SHARC of-
fers better results in all cases. As it can be seen, in the
case of the PicoBlaze processor, the maximum number
of matches of the most critical register according to the
golden rank was obtained by the SHARC metric with a
total of 6. Meanwhile, the AVF metric obtained only
3 matches. For the second most critical register, the
SHARC metric scored 4 matches against 2 of AVF. The
results on TI-MSP430 processor show the same trend.
SHARC metric scored a total of 5 matches on the most
critical register with respect to 4 of the AVF metric.
For the second most critical register, the SHARC metric



Table 4: AVF vs. SHARC in PicoBlaze

Test Rx Golden AVF metric SHARC metric
Rank | % ACE | Rank | PCC | Criticality | Rank | PCC
sO 4 64.6 3 0.50 4-5
sl 3 31.2 5 0.48 3
PID s2 @) 79.4 1 60% 0.47 @) 90%
s3 5 39.6 4 0.50 4-5
s4 O 69.9 2 0.46 [©)
sO 5 40.4 5 0.53 5
sl 3 74.3 2 0.40 2
MM s2 4 74.3 2 58% 0.52 4 90%
s3 [¢)) 69.5 4 0.48 3
s4 O 96.6 O 0.40 (0]
s0 (@) 92.1 1 0.46 @
s1 [0} 49.4 2 043 [0)
POW s2 5 36.5 4 80% 0.56 5 100%
s3 4 36.1 5 0.53 3-4
s4 3 48.0 3 0.53 3-4
sO 4 65.9 4 0.55 3-4
sl 3 70.1 3 0.55 3-4
BUB s2 5 209 5 90% 0.56 5 90%
s3 [0} 99.0 @ 0.38 [0)
s4 @) 99.2 O 0.42 @
s0 O) 72.8 ® 0.41 O
sl @) 523 @ 0.45 3
MADD | s2 3 49.7 3 90% 043 2 90%
s3 4 9.20 5 0.51 4-5
s4 5 9.50 4 0.51 5-5
sO 4 572 3 0.52 4
sl @ 79.2 @ 0.53 [@)
FIB s2 3 549 4 80% 0.53 3 70%
s3 [©) 81.0 [} 0.42 [0)
Average | 76% 88%
Table 5: AVF vs. SHARC in TI-MSP430
Test Rx Golden AVF metric _ SHARC metric
Rank | % ACE | Rank PCC Criticality | Rank PCC
4 Q 30.6 Q 0.45 3
5 3 54 4 0.52 4
PID 6 4 12.8 3 90% 0.43 2 70%
17 [0} 89.6 [0} 0.42 [O)
r4 [0} 84.5 2 0.41 [O)
5 4 10.9 4 0.53 4
MM 6 3 39.0 3 0% 0.46 2 0%
17 @ 94.7 1 0.51 3
r4 @ 95.2 3 0.43 @)
15 99.2 0.38
Pow 6 g) 94.1 ﬁ) 0% 0.58 (4? 100%
17 3 98.8 2 0.55 3
4 [O) 62.8 2 0.37 [0)
5 4 19.2 3 . 0.49 3
BUB 16 3 16.0 4 80% 0.51 4 90%
17 [¢) 872 1 0.47 Q@
r4 [0} 80.9 [0) 0.45 2
15 4 34.2 3 0.52 3
MADD 16 3 29.0 4 0% 0.53 4 80%
7 [©) 52.6 [©) 0.44 1
4 Q 633 3 0.46 0)
5 94.0 0.41
FIB 6 S4D 38.5 ?t) 90% 0.49 C?D 90%
17 3 87.7 2 0.56 4
Average | 88.33% 86.67%

scored 3 matches and the AVF 2 matches. These results
support the method for selective hardening depicted in
Algorithm T}

Tables [6] and [7] show the comparative analysis after
implementing the proposed method (Section [2.1). Note
that in this case, the Criticality column represents the
SHARC value of the best candidate for each hardened
version. Therefore, those values do not follow a rank
order.

As expected, the coefficients obtained by the method
based on the SHARC metric have improved consider-
ably in both processors. On average, the benchmarks
executed in PicoBlaze show the highest correlation per-
centages with an overall increase up to 97%, whereas the
AVF metric is 76%. Regarding the benchmarks executed
in TI-MSP430, we can see a notable increase in the cor-
relation percentages obtained. On average, the SHARC-
based method gets 93.33%, whereas the AVF metric is
88.33%.

Table 6: Selective Hardening with SHARC vs AVF in PicoBlaze

Test Rx Golden AVF M_e_lhm_i based on SHARC
Rank | % ACE | Rank | PCC | Criticality | Rank | PCC
sO 4 64.6 3 0.08 5
sl 3 31.2 5 0.37 3
PID s2 2 79.4 1 60% 0.42 2 90%
s3 5 39.6 4 0.19 4
s4 1 69.9 2 0.46 1
sO 5 404 5 0.08 5
sl 3 74.3 2 0.37 2
MM s2 4 74.3 2 58% 0.20 4 90%
s3 2 69.5 4 0.37 3
s4 1 96.6 1 0.40 1
sO 2 92.1 1 0.16 2
sl 1 49.4 2 0.43 1
POW | s2 5 36.5 4 80% 0.10 5 100%
s3 4 36.1 5 0.25 4
s4 3 48.0 3 0.40 3
s0 4 65.9 4 0.27 4
sl 3 70.1 3 0.37 3
BUB s2 5 20.9 5 90% 0.11 5 100%
s3 1 99.0 2 0.38 1
s4 2 99.2 1 0.36 2
s0 1 72.8 1 0.41 1
sl 2 52.3 2 0.41 2
MADD | s2 3 49.7 3 90% 0.21 3 100%
s3 4 9.20 5 0.26 4
s4 5 9.50 4 0.07 5
sO 4 57.2 3 0.13 4
sl 2 79.2 2 0.41 2
FIB s2 3 54.9 4 80% 0.36 3 100%
s3 1 81.0 1 0.42 1
Average | 76% 97%

Table |8 summarizes the results offered by the differ-
ent selective methods studied. The brute-force strategy
is the more effective method with a 100% match in every
case. It also implies the higher effort, in terms of de-
velopment time expressed as the number of executions
needed to get the best hardened version (#runs) . The
effort level depends on three factors: the number of code
versions (N, ), the number of registers involved (R, ) and
the minimum number of injected faults needed for an ac-
curate estimation of the fault coverage (Fr). AVF based
methods rely also on fault injection campaign, but just
the criticality of the registers in the original code is eval-
uated. It takes a time proportional to the parameters R,
and Fy. The average match levels reach to 76% and
83.3% for PicoBlaze and TI-MSP430 respectively. Fi-
nally, the SHARC method is able to make estimations
with just one run of each code version (R,,, versions in
total). In spite of this limited effort, the match level is



Table 7: Selective Hardening with SHARC vs AVF in TI-MSP430

Test Rx Golden Method based on AVF Method based on SHARC
i Rank | %ACE | Rank PCC Criticality | Rank PCC
r4 2 30.67 2 0.33 2
5 3 5.47 4 Y 0.08 4 P
PID 6 4 12.84 3 0% 0.16 3 90%
17 1 89.69 1 0.42 1
4 1 84.56 2 0.41 1
5 4 10.94 4 0.12 4 .
MM 6 3 39.01 3 0% 0.25 3 100%
r7 2 94.73 1 0.35 2
4 2 95.27 3 0.40 2
5 1 99.2 1 0.38 1
Pow 6 4 94.1 4 0% 0.13 4 100%
17 3 98.84 2 0.30 3
r4 1 62.85 2 0.37 1
15 4 19.2 3 0.30 3
BUB 6 3 16.05 4 80% 0.10 4 90%
r7 2 87.21 1 0.37 2
r4 1 80.91 1 0.36 2
5 4 34.22 3 . 0.30 3 P
MADD 16 3 29.04 4 90% 0.11 4 80%
17 2 52.64 2 0.44 1
4 2 63.39 3 0.39 2
5 1 94.07 1 0.41 1
FIB 6 4 38.57 4 90% 0.11 4 100%
17 3 87.71 2 0.31 3
Average | 88.33% 93.33%

Table 8: Summary of results

Method Brute-force AVF SHARC
Effort Level
(#rlll’lS) Nv : Rrgs . Ff Rrgs . Ff Rrgs
Match Level 100% 76.0% | 97.0%
PicoBlaze
Match Level
MSP430 100% 88.3% 93.4%

above 90% on average for both processors.

4. Conclusion

In this paper we presented a metric for the selective
hardening of software based on the dynamic measure of
the registers’ criticality (SHARC metric). The estima-
tion of the registers’ criticality is calculated during the
execution of the original code, avoiding time-consuming
fault injection campaigns. In addition, based on the
SHARC metric, an incremental method is proposed for
protecting software, taking into account design restric-
tions and ensuring maximum reliability in terms of fault
coverage.

Experiments carried out with programs of different na-
ture (control oriented, data processing, etc.) show that
criticality estimates based on SHARC metric not only
significantly improve the accuracy of results compared
to the AVF metric, but that higher performance is also
achieved for prioritizing the candidates to be protected
by implementing the proposed method. As a result, the
rank obtained better matches the ideal hardening config-
uration. Experiments show that SHARC improves the

results of state of the art methods between 5% and 21%
on average, at a fraction of the effort.
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