
Getting answers from semantic repositories: a
keywords-based approach

Obteniendo respuestas de repositorios semánticos usando
palabras clave

Francisco Abad Navarro1, Jesualdo Tomás Fernández Breis1
1 Departamento de Informática y Sistemas, Universidad de Murcia,

IMIB-Arrixaca, CP 30100 Spain
email:francisco.abad@um.es, jfernand@um.es

Abstract: The Web of Data proposes to publish and connect data by applying
the semantic web technologies for the representation of knowledge and data and the
definition of queries. The success of the Web of Data requires that both humans and
machines are able to extract information from such semantic repositories. For this
purpose, query interfaces for humans must make the interaction with the repository
as transparent as possible. In this work, we present a generic method for querying
semantic repositories based on processing and recognizing the keywords input by
the users as entities of the ontology used in the description of the data. A SPARQL
query is automatically derived from the query graph extracted from the list of key-
words. We also describe the application of the method to three different semantic
repositories from different domains.
Keywords: Semantic web, question answering, ontology, sparql, rdf, automatic
query construction, semantic exploitation

Resumen: La Web de Datos propone publicar y conectar los datos utilizando las
tecnoloǵıas de la web semántica para la representación del conocimiento, de los datos
y la especificación de consultas. El éxito de la Web de Datos requiere que tanto los
humanos como las máquinas sean capaces de obtener información en estos reposito-
rios semánticos. Para ello, los interfaces de consulta para humanos deben hacer lo
más transparente posible el proceso de interacción con el repositorio. En este trabajo
presentamos un método genérico para la consulta de repositorios semánticos basado
en el reconocimiento de las keywords introducidas por los usuarios como entidades
de la ontoloǵıa utilizada para la descripción de los datos. Del procesamiento del
grafo de consulta generado se deriva automáticamente la consulta SPARQL que se
ejecuta contra el repositorio. Describimos el uso del método con tres repositorios de
distintos dominios.
Palabras clave: Web semántica, pregunta-respuesta, ontoloǵıa, sparql, rdf, con-
strucción automática de consultas, explotación semántica

1 Introduction

The Semantic Web (Berners-Lee, Hendler,
and Lassila, 2001) is a set of technologies
whose principal goal is to describe the data
on the web in such way that a machine can
read and process it easily. Ontologies (Bech-
hofer, 2009) play a main role as part of
this set of technologies. They describe how
the data is organized through concepts, their
properties and relations with each others ex-
pressed by logical axioms. The other great
pillar of the Semantic Web is RDF (Resource

Description Framework) (Klyne and Carroll,
2006). RDF is used to represent the data
as triples formed by subject, predicate and
object, where subjects are concrete instances
of concepts from the ontology, predicates are
relations or properties described in the ontol-
ogy and objects could be another instance of
a concept or a primitive value. All the data in
a RDF repository could be represented as a
graph, where nodes are instances or primitive
values and edges are relations or properties
connecting the nodes.

Procesamiento del Lenguaje Natural, Revista nº 61, septiembre de 2018, pp. 39-46 recibido 04-04-2018 revisado 30-04-2018 aceptado 04-05-2018

ISSN 1135-5948. DOI 10.26342/2018-61-4 © 2018 Sociedad Española para el Procesamiento del Lenguaje Natural

The development of Web of Data is the
major objective of the Semantic Web initia-
tive called Linked Open Data (LOD) (Bizer
et al., 2008). There, data is ideally shared us-
ing formats like RDF, and the meaning of the
entities is provided by an ontology. The LOD
has penetrated in many domains such as bi-
ology (Consortium, 2016) or music (Swartz,
2002). The data stored in these reposito-
ries can be navigated through a web browser
or queried using SPARQL. The exploitation
of such repositories by non-semantic web ex-
perts is hampered by the need of knowing
such language, so there is a need for mak-
ing semantic web technologies as transparent
as possible for human users interested in ex-
ploiting semantic repositories.

In the last years there have been dif-
ferent approaches related to controlled or
natural language interfaces that automati-
cally generate SPARQL queries, such as au-
toSPARQL (Lehmann and Bühmann, 2011),
FREyA (Damljanovic, Agatonovic, and Cun-
ningham, 2011) or OWLPath (Valencia-
Garćıa et al., 2011), but they do not emulate
the keywords-based search users are familiar
with.

In this paper we propose a method
which processes the keywords input by the
users, generates the tree that interprets the
query and automatically designs and exe-
cutes SPARQL queries. The application of
the method to three freely available, not de-
veloped by us, SPARQL endpoints in Spanish
and English language is also reported in this
paper.

2 Method

In this section we describe our method, which
can be applied to any RDF dataset whose
vocabulary is provided by an ontology and
which offers a SPARQL endpoint for query-
ing. Our query model assumes that the in-
put consists of keywords in natural language,
which have to be processed, transformed into
semantic entities and then used for the cre-
ation of SPARQL queries.

The method consists of the following
modules: text normalizer, index builder,
named entity recognizer, tree generator and
SPARQL query generator. These modules
are summarized in Figure 1 and detailed
next:

2.1 Text normalizer

We use a language dependent text normaliza-
tion in order to transform natural language
text into a canonical form, so different forms
of the same word are translated into a unique
representation. Currently Spanish and En-
glish are the languages supported. This pro-
cess is performed in two steps:

1. Preprocessing: the input is converted to
lower case and common words and spe-
cial characters as *, + or & are removed.

2. Normalization: the preprocessed text is
the input for a Stanford NLP pipeline
(Manning et al., 2014), which provides
the following annotation tools, which are
configured depending on the language
used: token annotator, sentence annota-
tor and part of speech annotator. Also
a custom stem annotator was imple-
mented through Snowball stemmer API
1 and appended to the Stanford pipeline.

At the end of the normalization step, the
detected stems are concatenated with a blank
space between them. Table 1 shows several
examples of the text normalization.

Language Original Text Normalized
Text

Spanish Empresas SL empres
Spanish Pirineos (los) pirine
Spanish teléfono telefon
English Companies compani
English United States (the) unit state
English telephone telephon

Table 1: Examples of text normalization y
Spanish and English language

2.2 Index builder

We use a text index for the recognition of
the named entities in the input text. This
index is built by extracting the labels of the
ontology classes and properties, as well as of
the individuals stored in the dataset. The
index contains the following fields:

• URI. The uniform resource iden-
tifier of an element. For example
<http://opendata.caceres.es/recur
so/cultura-ocio/museos/Museo/10-m
useo-de-armas>.

1http://snowballstem.org/

Francisco Abad Navarro, Jesualdo Tomás Fernández Breis

40

pdi campus universitario categoria p d i

User input

String Normalizer

pdi campus universitari categori p d i

Normalized text

Named Entity Recognizer

Lucene Index

Entities

Label: pdi

URI: ont:PDI

Class: owl:Class

Label: campus universitari

URI: ont:campusUniversitario

Class: owl:DatatypeProperty

Tree Generator

Label: categori p d i

URI: ont:categoriaPDI

Class: owl:DatatypeProperty

Optimal Tree

ont:PDI

ont:Centro

?campus

Unversitario

?categoria

PDI

ont:categoriaPDI

ont:adscritoACentro

ont:campusUniversitario

ontology

SPARQL generator

SELECT ?instancia ?campusUniversitario ?categoriaPDI

WHERE {

?instancia rdf:type ont:PDI .

?instancia ont:adscritoACentro ?adscritoACentro .

?adscritoACentro ont:campusUniversitario ?campusUniversitario .

?instancia ont:categoriaPDI ?categoriaPDI .

}

SPARQL Query

Figure 1: Method pipeline example

• Local name. The last part of the URI.
For example 10-museo-de-armas in the
previous URI.

• Class. The class of the ontology
that the element belongs to. In this
case, 10-museo-de-armas belongs to
<http://opendata.caceres.es/def/
ontomunicipio#Museo>. If the el-
ement is not an individual, this
field is set as owl:Class for classes,
owl:DatatypeProperty for properties,
owl:ObjectProperty for relations.

• Type. The type of element, that could
include “INSTANCE”, if the element
is an individual or “CLASS”, “PROP-
ERTY” or “RELATION” if the element
is an ontology class. In this case the type
of 10-museo-de-armas would be “IN-
STANCE”.

• Label. The original label associated with
the element. For example “Museo de Ar-
mas”. The value of this field is obtained
from the rdfs:label annotations, filter-
ing by the language used.

• Preprocessed label. The label after the
preprocessing described in Section 2.1.
For example “museo de armas”.

• Normalized Label. The label after the
normalization described in Section 2.1.
For example “muse de armas”.

While classes, relations and properties are
extracted from the ontology owl file directly
through rdfs:label annotations, a query is
performed for each class to retrieve its indi-
viduals and their labels, also filtered by lan-
guage. It is possible to specify properties
that could play a textual label role, for in-
stance foaf:name. For example, when index-
ing individuals that belong to a hypotheti-
cal class ont:Person from a Spanish RDF
repository that uses foaf:name for represent-
ing the name of a person, the following query
would be performed (prefix definition is omit-
ted):

SELECT DISTINCT ?uri ?class ?label
WHERE{

VALUES ?class { ont:Person } .
?uri a ?class .
{

?uri rdfs:label ?label .
FILTER (lang(?label) = ’es’) .

}
UNION {

?uri foaf:name ?label .

Getting answers from semantic repositories: a keywords-based approach

41

FILTER (lang(?label) = ’es’) .
}

}

Finally, the result of the query has enough in-
formation to add the individuals of the class
ont:Person to the index.

2.3 Named entity recognizer

The named entity recognizer is implemented
through a language dependent Stanford
pipeline. This pipeline has the same annota-
tors than the pipeline used for text normal-
ization with a new custom annotator at the
end, whose objective is to perform the entity
recognition.

The implementation of this custom an-
notator is based on the standard named
entity recognizer TokensRegexNERAnnotator
from Stanford NLP. The original one uses
a gazetteer file that contains, for each line,
a regular expression associated with a type.
Our customization consists in using the index
instead of the original gazetteer file. This an-
notator is configured to use the index fields
normalized label, URI and class as tex-
tual label representing an element, its identi-
fier and its type, respectively.

By using this pipeline, the input text is
segmented in named entities. Each named
entity may match more than one entity in the
index so each one will have a list of matched
entities. For instance, if an ontology contains
the classes ont:CountryCapital, referring
the capital of a country, and ont:Capital,
referring the money used in business, both
annotated with the rdfs:label “capital”,
the entity recognizer would return both
classes for the input text “capital”.

Table 2 shows the named entities together
with their related entities (URI and class)
found in the Spanish version of DBpedia for
the input “ocupación personas España”.

2.4 Tree generator

The next step is to try to connect all the en-
tities extracted in the previous steps by using
the ontology. For this purpose a tree that de-
scribes the query is built and the goal of this
step is to obtain the tree with the minimum
height that connects all the entities through
the relations in the ontology, checking the do-
main and the range of these relations.

Firstly, the system tries to remove re-
dundant information in order to get more
precise results and to reduce the size of

Named
entity

URI Class

“ocu-
pación”

ont:occupation owl:ObjectProperty

“personas” ont:person owl:ObjectProperty
ont:Person owl:Class

“España” res:España ont:Country
res:España ont:PopulatedPlace
res:España ont:Place

Table 2: Example of named entity recognized
in the input “ocupación personas España” us-
ing the Spanish DBpedia

the problem. In this process, for each
named entity detected, we check the hierar-
chy of ontology classes, properties and re-
lations associated with it. The most spe-
cific classes are maintained while the general
classes are removed. For example, in DBpe-
dia, the resource res:Napoleon belongs to
the classes ont:Royalty, ont:Person and
ont:Agent. In this example, the method
would keep ont:Royalty since it is the most
concrete one. With this action, the system
is able to find more specific trees, which are
translated into more precise queries. Con-
trariwise, the method selects the most gen-
eral property or relations when a hierar-
chy of properties or relations is detected.
For example, if a hypothetical ontology has
the properties personalPhoneNumber and
workPhoneNumber, which are sub-properties
of phoneNumber, the method will maintain
phoneNumber. We expect that a query
performed against a SPARQL endpoint by
using a top-level relation or property re-
turns, at least, the union of the results
that have all its sub-properties as predi-
cate. That is, a query about phoneNumber
should include personalPhoneNumber and
workPhoneNumber.

As a named entity can be finally associ-
ated with more than one entity, a backtrack-
ing process is performed to iterate over all
possible combinations. Each one is evalu-
ated by calculating the height of the different
trees, which result from computing the short-
est path between each entity (playing the role
of root element) to the others (acting as leaf
nodes) by using breadth first algorithm. Fi-
nally, the combination whose evaluation re-
sults in a tree with the minimum height is
selected.

Francisco Abad Navarro, Jesualdo Tomás Fernández Breis

42

This process is performed twice using two
different strategies to compute the shortest
path between the ontology elements. On one
hand, paths between root and leaf elements
are computed by using the exact classes de-
fined in the range and the domain of the
ontology relations.On the other hand, ontol-
ogy classes that are compatible with the do-
main and range are taken into account in or-
der to expand the tree during their construc-
tion. The compatible classes of a class are
defined as the union of the super and sub-
classes of that class. Finally, if only one strat-
egy has found a tree, that tree is selected. If
both strategies have found a tree, that whose
height is lower is selected. At equal height,
the tree found by the most conservative strat-
egy is chosen. If none of the strategies finds a
solution, then the elements are not connected
and the method will not be able to generate
a SPARQL query.

Following the example of DBpedia com-
mented in Section 2.3, Figure 2 shows the tree
obtained from the named entities described
in Table 2.

ont:nationalityont:occupation

ont:Person

res:España?occupation

Figure 2: Example of tree construction by
using the input “ocupación personas España”
with the Spanish DBpedia

2.5 SPARQL query generator

If only one named entity is detected in the in-
put, the method generates a query depending
on the type of the first entity associated with
the named entity. If the entity is a property
or a relation, the SPARQL query retrieves all
RDF subjects and objects connected by that
property or relation. For instance, if only
ont:birthYear property is detected, the fol-
lowing query is generated:

SELECT ?instance ?object
WHERE {

?instance ont:birthYear ?object .
}

If the entity is a class, the SPARQL query
retrieves the individuals that belong to that
class. For instance, if only ont:Writer class
is recognized in the user input, the following
query is generated:

SELECT ?instance
WHERE {

?instance rdf:type ont:Writer .
}

If the entity is an individual, firstly a
SPARQL query is executed to retrieve all the
RDF predicates that link the individual to
other entities or primitive types. Then, the
returned predicates are used for generating
the final query. For example, if the individ-
ual res:Napoleon is detected in the input,
the following query will extract the predicates
that are linked to the individual:

SELECT DISTINCT ?predicate WHERE {
res:Napoleon ?predicate ?value .
}

Then, the final query is built using the pred-
icates. For example, if the returned pred-
icates are rdf:type,ont:deathPlace and
ont:deathDate, the following query will be
generated:

SELECT ?instance
?type
?deathPlace
?deathDate

WHERE {
VALUES ?instance { res:Napoleon } .
?instance rdf:type ?type .
?instance ont:deathPlace ?deathPlace .
?instance ont:deathDate ?deathDate .

}

In the case of more than one named en-
tity detected in the input, the SPARQL query
generator transforms the tree of entities into
a SPARQL query by applying the following
heuristics:

1. The root element of the tree is the ele-
ment from which the user wants to re-
trieve information. This element could
be a concrete individual or a class. In
the latter case the method would return
a list of the individuals that belong to
that class.

2. The leaf nodes of the tree could be
classes, relations or properties in the on-
tology. In this case they act as the infor-
mation that the user wants to retrieve

Getting answers from semantic repositories: a keywords-based approach

43

from the root element. On the other
hand, a leaf node could be a concrete
individual, so playing the role of a filter,
imposing that the root element had to
be related with the individual.

This kind of trees fits very well to
SPARQL queries. Root and leaf elements of
the tree are associated with variables that
appear in SELECT clause. If the root ele-
ment is a concrete individual, its URI identi-
fier will be stored in the associated variable
through a VALUES expression. Otherwise, if
the root element is a class, the associated
variable will contain all individuals that be-
long to the class through an statement of type
?var rdf:type classURI. Then, this root
variable is connected to the leaf variables ac-
cording the paths in the tree. Finally, if a
leaf element is an individual, their associated
variable is set with its URI through a VALUES
clause, acting as filter. Otherwise, the leaf
variable will contain all elements related with
the root variable through the relations found
in the tree.

According to the example described in
Section 2.4, whose tree is shown in Fig-
ure 2, the root element is the class
ont:Person and the leaf nodes are the re-
lation ont:occupation and the individual
res:Espa~na, which is reached through the
relation ont:nationality. Therefore, based
on the heuristics, this tree indicates that the
user wants to retrieve a list of persons from
Spain together with their occupations. The
final SPARQL query built from this tree is
the following (prefix definition is omitted):

SELECT ?instance ?occupation ?Country
WHERE {
?instance rdf:type ont:Person .
?instance ont:occupation ?occupation .
?instance ont:nationality res:Espa~na .
VALUES ?Country { res:Espa~na } .
}

3 Results

A web application (available at
http://sele.inf.um.es/sesssamo-demo/)
has been developed implementing the de-
scribed method. Three repositories have
been configured: the University of Ex-
tremadura, the city of Cáceres and both the
English and Spanish versions of DBpedia.
Next, we describe some examples of queries
executed against each repository. All the

queries generated a tree of height 2 except
one, which generated a query of height 3.
The time to build these queries was 435.5
ms on average, with a median of 297 ms.
These tests were performed on a laptop with
12 GB of RAM and an Intel Core i5-3337u
processor.

3.1 University of Extremadura

This university publishes RDF data in Span-
ish through a SPARQL endpoint (http:
//opendata.unex.es/sparql). The data
is organized according to ontouniversidad
ontology (http://opendata.unex.es/def/
ontouniversidad.html)

The following list shows some examples of
queries:

• directores departamento. List of de-
partments together with their heads.

• asignaturas isabel cuadrado
gordillo. The subjects from which
Isabel Cuadrado Gordillo is teacher of.

• publicacion isabel cuadrado
gordillo. List of publications of
Isabel Cuadrado Gordillo.

• asignaturas pdi. List of professors to-
gether with their subjects.

• pdi campus universitario. Returns a
list of researchers together with the uni-
versity campus that they belong to. This
query generates a tree of height 3.

3.2 City of Cáceres

The city of Cáceres has a SPARQL endpoint
(http://opendata.caceres.es/sparql)
in which RDF data in Spanish are pub-
lished according to ontomunicipio ontology
(http://opendata.caceres.es/def/
ontomunicipio.html).

The following queries were tested:

• cofradias nombre asociacion nu-
mero miembros. List of brotherhoods
together with their official name and
number of members.

• monumentos enlace s i g. List of
monuments with their Geographic Infor-
mation System link.

• barrios centro. List of neighborhoods
that belong to the center district.

• hoteles via. List of hotels and the
street name where they are situated.

Francisco Abad Navarro, Jesualdo Tomás Fernández Breis

44

• cofradias procesiones. List of broth-
erhoods together with the processions
they organize.

3.3 DBpedia

DBpedia is an encyclopedic knowledge base
whose data is extracted from Wikipedia
through automatic processes (Auer et al.,
2007). Different SPARQL endpoints are
available depending on the language, but
all conform to an unique ontology, avail-
able at http://downloads.dbpedia.org/
2016-04/dbpedia_2016-04.owl.

Spanish labels were added to the ontol-
ogy automatically via Google Translator API
in those cases where it exists an English but
not a Spanish label. Moreover, only elements
from the ontology were added to the index.
The named entity recognizer uses the index
for identifying these elements (concepts, rela-
tions and properties) and the DBpedia Spot-
light API (Mendes et al., 2011) for detecting
concrete individuals.

Some examples of queries using Spanish
and English versions of DBpedia are shown
below.

3.3.1 Spanish version

• progenitores Juan Carlos I. Par-
ents of Juan Carlos I of Spain (Juan
de Borbón, Maŕıa de las Mercedes de
Borbón-Dos Sicilias).

• ocupación personas España. List of
Spanish persons together with their oc-
cupation.

• superficie Atlanta. The area of At-
lanta (3.412E8).

• esposa John Lennon. The spouse of
John Lennon (Yoko Ono).

3.3.2 English version

• The Beatles former band mem-
bers. The name of the persons who
formed The Beatles (George Harrison,
John Lennon, Ringo Starr, Paul Mc-
Cartney).

• Einstein spouse. The spouse of
Albert Einstein (Mileva Marić, Elsa
Löwenthal).

• Stephen Hawking doctoral advisor.
The advisor of Stephen Hawking’s PhD
thesis (Dennis William Sciama).

• mean temperature k Mars. The
mean temperature of Mars in Kelvin de-
grees (210.0, 210.15).

4 Discussion

In this paper we have presented a method
whose goal is to facilitate human users the
exploitation of semantic repositories, among
whose main applications we can identify se-
mantic search and question answering sys-
tems. State of the art solutions in this field
usually require a complete, well written ques-
tion in natural language. This permits a
more exhaustive analysis of the query, and
shows good results, but this is not the usual
interaction way between users and search en-
gines. Our work assumes that we should use
the same type of interaction when exploiting
semantic repositories, and that this is an es-
sential feature for the success of semantic web
technologies.

Our work is in line with the method shown
in (Tran et al., 2007), which proposes a
searcher based on keywords. This method
also uses trees to describe queries. As in our
work, and based on the locality principle, the
tree with the lowest height is consider more
likely to contain the answer the user wants
to know. Nonetheless, in this work only one
entity is associated with each keyword before
computing the tree. This may cause prob-
lems if a keyword is ambiguous and the se-
lected entity is not what the user had in mind.
Our method takes this into account and, as
previously mentioned in Section 2.4, it uses
all possible entities matching a keyword in
order to compute the tree. Finally, based on
locality, the correct entity will be selected.
Our method renovates the technological ap-
proach developed by our research group in
(Valencia-Garćıa et al., 2011), since now the
query design is not driven by the ontology
but by the user input.

One limitation of our current implemen-
tation is due to ambiguity in cases where
two concepts are linked by more than one
relation. That situation permits to gen-
erate different trees with the same height,
and we are currently executing only one of
them. For example, in DBpedia, the in-
put “writers Spain” shows no results be-
cause the system links ont:writer and
res:Spain through ont:livingPlace in-
stead of ont:nationality. As future work
we will explore the execution of both queries

Getting answers from semantic repositories: a keywords-based approach

45

or offering the users the two interpreta-
tions of the queries and asking them to se-
lect the desired one. This way of solv-
ing ambiguity has already been used (Daml-
janovic, Agatonovic, and Cunningham, 2011;
Lehmann and Bühmann, 2011). Another
limitation is the use of synonyms that are
not indexed. We plan to enrich the index
by using tools like WordNet (Miller, 1995) to
provide these synonyms. Once these limita-
tions have been overcome we hope to obtain
good results by using the Question Answering
over Linked Data (QALD) evaluation system
(Lopez et al., 2013).

Acknowledgements

This work has been funded by the Span-
ish Ministry of Economy, Industry and Com-
petitiveness, the European Regional Devel-
opment Fund (ERDF) Programme and the
Fundación Séneca through grants TIN2014-
53749-C2-2-R and 19371/PI/14.

References

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. 2007. Dbpedia:
A nucleus for a web of open data. In The
semantic web. Springer, pages 722–735.

Bechhofer, S. 2009. Owl: Web ontology lan-
guage. In Encyclopedia of database sys-
tems. Springer, pages 2008–2009.

Berners-Lee, T., J. Hendler, and O. Lassila.
2001. The semantic web. Scientific amer-
ican, 284(5):34–43.

Bizer, C., T. Heath, K. Idehen, and
T. Berners-Lee. 2008. Linked data on
the web (ldow2008). In Proceedings of the
17th international conference on World
Wide Web, pages 1265–1266. ACM.

Consortium, U. 2016. Uniprot: the univer-
sal protein knowledgebase. Nucleic acids
research, 45(D1):D158–D169.

Damljanovic, D., M. Agatonovic, and
H. Cunningham. 2011. Freya: An inter-
active way of querying linked data using
natural language. In Extended Semantic
Web Conference, pages 125–138. Springer.

Klyne, G. and J. J. Carroll. 2006. Resource
description framework (RDF): Concepts
and abstract syntax. Technical report,
W3C.

Lehmann, J. and L. Bühmann. 2011. Au-
tosparql: Let users query your knowledge
base. In Extended Semantic Web Confer-
ence, pages 63–79. Springer.

Lopez, V., C. Unger, P. Cimiano, and
E. Motta. 2013. Evaluating question an-
swering over linked data. Web Seman-
tics Science Services And Agents On The
World Wide Web, 21:3–13.

Manning, C., M. Surdeanu, J. Bauer,
J. Finkel, S. Bethard, and D. McClosky.
2014. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings
of 52nd annual meeting of the associa-
tion for computational linguistics: system
demonstrations, pages 55–60.

Mendes, P. N., M. Jakob, A. Garćıa-Silva,
and C. Bizer. 2011. Dbpedia spotlight:
shedding light on the web of documents.
In Proceedings of the 7th international
conference on semantic systems, pages 1–
8. ACM.

Miller, G. A. 1995. Wordnet: a lexical
database for english. Communications of
the ACM, 38(11):39–41.

Swartz, A. 2002. Musicbrainz: A seman-
tic web service. IEEE Intelligent Systems,
17(1):76–77.

Tran, T., P. Cimiano, S. Rudolph, and
R. Studer. 2007. Ontology-based inter-
pretation of keywords for semantic search.
In The Semantic Web. Springer, pages
523–536.

Valencia-Garćıa, R., F. Garćıa-Sánchez,
D. Castellanos-Nieves, et al. 2011. Owl-
path: An owl ontology-guided query edi-
tor. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Hu-
mans, 41(1):121–136.

Francisco Abad Navarro, Jesualdo Tomás Fernández Breis

46

	Bloque 1
	00portada
	01comites
	02preambulo
	02preambulo_en
	03indice

	Bloque 2
	Combinado-51
	05Articulos
	5_1 Extracción y Recuperación de Información Monolingüe y Multilingüe
	issue610
	issue612
	issue614
	issue616

	Combinado-52
	5_2 Análisis de textos médicos
	issue618
	issue6110
	issue6112
	Página en blanco

	Combinado-53
	5_3 Análisis del habla
	issue6114
	1 Introducción
	2 Modelos de lenguaje estadísticos
	2.1 N-gramas
	2.2 Modelos de lenguaje alternativos
	2.3 Evaluación de los MLs: Perplejidad

	3 Creación de los MLs
	4 Marco experimental
	4.1 Descripción del sistema ASR
	4.2 Entrenamiento de los MLs
	4.3 Corpus de análisis.
	4.3.1 Primer Corpus: Oralidad formal
	4.3.2 Segundo Corpus: Habla en noticiarios
	4.3.3 Tercer Corpus: Habla en TED Talks

	5 Resultados experimentales
	5.1 Resultados con MLs simples – fase 1
	5.2 Resultados con combinaciones de MLs – fase 2

	6 Discusión
	7 Conclusiones y líneas futuras
	8 Agradecimientos
	9 Referencias

	issue6116
	Página en blanco

	issue6118
	Patricia Elhazaz Walsh
	Universidad CEU San Pablo, Urbanización Montepríncipe, 28925 Alcorcón, Madrid
	2 Metodología

	2.2 Instrumentos y procedimiento
	2.2.1 Grabaciones
	2.2.2 Transcripción
	2.2.3 Anotación de errores

	3.2 Errores de pronunciación
	4 Discusión y conclusiones
	Bibliografía

	Combinado-54
	5_4 Aprendizaje automático en PLN
	issue6120
	issue6122
	issue6124

	Combinado-55
	5_5 Proyectos
	issue6126
	issue6128
	issue6130
	issue6132
	issue6134
	issue6136
	AMIC: Affective multimedia analytics with inclusive and natural communication
	AMIC: Análisis afectivo de información multimedia con comunicación inclusiva y natural
	1 Project consortium
	2 Introduction
	3 Technologies involved in the project
	4 Project objetives
	4.1 Strategic objectives
	4.2 Scientific-Technological objectives
	4.3 Transferring knowledge objectives

	Acknowledgments
	This work is supported by Ministerio de Economía y Competitividad under the grants TIN2017-85854-C4-(1, 2, 3, 4)-R.
	References

	issue6138
	issue6140
	issue6142
	issue6144
	issue6146
	issue6148

	Combinado-56
	5_6 Demostraciones
	issue6150
	issue6152
	issue6154
	issue6156
	issue6158
	issue6160

	Bloque 3
	13Informaciвn General
	15InformacionAutores
	18OtraInformacion
	19contraportada

