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Abstract 
Shoe lasts are the moulds used in the footwear industries in order to mount the shoe. Most of the machines 
used in the sector to make lasts are simply mechanical copiers. CAD/CAM systems have just arrived to the 
shoe last market but its accuracy and efficiency is not better than traditional machines, for this reason new 
systems have difficulty to implant.  Presented in the paper there is a tool path generation algorithm that takes 
the advantages of traditional copier systems that do not fulfil the CNC standards. The tool path is computed 
from a “virtually digitised” model of the last surface. The algorithm is then analysed in terms of computing 
cost and accuracy and refined by applying a series of optimisations. Some computer architectures are 
proposed in order to reduce the computation time. The proposed algorithm has been successfully implemented 
in a commercial CAD/CAM system specialised in shoe last making. Finally, some illustrative examples are 
shown. 
 
 
Introduction 

Traditional shoe last machining 
In the first half of this century a series of new machines appeared in the shoe market. Those machines were 
able to produce a couple (right and left sides) of shoe last pairs just in 5 minutes. Their precision was ± 0.1 
mm. The way of work of those machines was quite simple: two turning lathes, one for the original model and 
the other for the cutting wheels. The copying lathe consisted of a metallic torus with the same dimension and 
relative position as the cutting wheels; the original last model was put in the copying lathe by holding his 
extremes. In the cutting lathe a rough model was locked, when the machine started, the copying wheel was 
touching the last surface and a group of arms transmitted the spiral movement to the cutting wheels which 
perform the same movement and finished the copied model. 
 
The process was simple and robust, original models holders avoid the collision with the rough model’s 
holders, mechanical movement guarantied model precision and the only restriction was the motor cinematic. 
After this process, the operator unlocked the copied model and removed the holders by hand (the heel and the 
toe part). Using these machines surface corners are well defined and copied surface appears smooth. Last 
makers used this kind of machines for more than 50 years due to the fact they were accurate and simple to 
manage. 

State-of-the-art in shoe last machining 
In the recent years new numerical control (NC) machines have appeared in the last making world. They are 
managed by computer and the most are similar to the traditional ones (they are also turning lathes). The basic 
principle is very similar to the ancient machines: there is a mechanical digitiser that touches the original 
surface and stores the tool centre points (tool path) in the computer. Finally the NC reads these points that 
make the tool path.  



 
Shoe lasts can be considered as free-form surfaces; non-uniform rational b-splines (or NURBS) usually model 
these kinds of surfaces. There are a lot of commercial CAM applications that can generate tool paths for 
NURBS. Examples of such computer aided manufacturing (CAM) systems include Tebis1 from Germany, 
Work-NC2 from France, Clicks3 from Japan, Z-Master4 from Korea, and Shoemaster5 from England. Most of 
them are prepared to detect tool collisions and so on, however they are not used for NC shoe last machines. 
Presented in the paper is a straightforward tool path generation algorithm, which is as accurate and simple as 
the ancient shoe last machines. It has been implemented in a commercial CAM system Forma3D6 (INESCOP, 
Spain) as well.  
 
Problem definition and overall procedure 
It is assumed that the part surface is represented by a collection of parametric surfaces. In the following, we 
will use the term “surface” for a parametric surface r(u,v), such a Bezier or NURB surface. In the case of a 
shoe last, a part surface consists of 3 different surfaces one for the last and the other for the machine holders. 
 
Tool path generation problem: Obtain a trajectory of tool centres that defines the part surface with a given 
precision. Figure 1 shows the trajectory of a circle centre point in order to define a rectangle. In this case, the 
problem is presented in 2D. For 3D surfaces the problem becomes more complex. This problem can be related 
to the dilation process from the mathematics morphology where the object to mechanise is the shape to dilate 
and the tool is the structuring element, however, 3D versions of morphology operations are not efficient and 
techniques are still in development. 
 
 

 
There are different techniques to solve the problem: 
 

Figure 1 Circle trajectory around a rectangle 



Offset solution: consists of computing the offset of the part surface. All the offset-surface intersection curves7 
as well as self-intersection curves are computed, and then they are linked to perform pencil curves. These 
pencil curves are usually needed to finish the concave parts on the part surface using a little-end ball tool. 
Offsetting must be done twice for torus mill tool paths (two radiuses implied). 
 
Normal vector compensation: Each part surface point to be mechanised is compensated in two directions: 
first, normal to the surface for the torus minor radius, and then compensated in the tool attack plane for the 
torus major radius. Again it is necessary to obtain intersection between tool path lines in order to avoid 
collision with the part surface. 
 
Virtual digitising : Centre tool points are obtained by virtually touching the object to mechanise. This 
algorithm, typically used to compute pencil curve tracing9, is used here for imitating the way of work of 
traditional shoe last copier machines, the process can be divided into four phases: 
 
1. Definition of the tool motion 
2. Obtain a discrete model of the part surface 
3. Simulate the tool motion 
4. Virtual digitisation process 
 
Most of these methods are currently implemented by general-purpose CAD/CAM successfully1,2,3,4,5,6. All of 
them are able to generate trajectories for computer numerally controlled (CNC) machines. The problem gets 
bigger when it is necessary to use a particular machine that does not fulfil the CNC standards. This is the case 
of traditional copiers for shoe lasts. 
 
Virtual digitising for shoe last turning lathe machines 

Definition of the tool motion 
One of the main concepts to be considered in virtual digitising, consists of defining the motion of the tool in 
order to mechanise the object. For a turning lathe machine, this movement is well defined. There are three 
axes that produce a spiral movement. Let call X to the translation axis, Y to the tool attack axis and Z to the 
rotation axis. The rotation speed for translation and rotation axis is constant, as a result, the tool arm trajectory 

Figure 2 Torus mill tool path for a woman shoe last 
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makes a spiral of a determined step. For each point of this spiral the tool attack axis is moved in order to reach 
the surface point to mechanise. Figure 2 shows a typical tool path for a shoe last copier machine: 

Obtaining a discrete model 
In order to obtain a discrete model of the part surface, it is necessary to obtain a grid for each free-form 
surface of the part surface.  Let suppose that every surface is normalised for each parametric direction u and v. 
 
 
Let PS the part surface defined as a set of n free-from surfaces (NURBS): 

 
 
 
 
Let DS the domain of a grid for a surface defined as follows: 

 
 
Finally, let define a grid, GS as: 

 
Obtaining a discrete model for computing the tool path suppose precision loose, in next section the method 
accuracy will be analysed. On the other hand, the algorithm becomes simpler and faster when a discrete 
model is used. As show in Equation 2, a discrete model of more or less definition can represent every surface. 
The proper mi and si values will depend on the surface complexity. 

Simulating the tool motion 
Next step consists of making a virtual model for the toroidal tool. For simplicity, the cutting wheel is 
considered as a infinite stack of circles. The 3D disk is defined as follows:  
 
Let R and r the major and minor tool radius respectively, C the tool centre point and v a 3D orientation vector. 
For simplicity let assume v as the Cartesian X-axis and C the origin. (It is always possible to find a 3D-
transformation matrix that translates any director vector v to the X-axis and any centre point to the Cartesian 
origin). 
 
Then:  
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For every simulation step the tool is not moved, the surface is transformed to simulate the milling process. In 
this case the surface is moved along the rotation axis and rotated in order to simulate a spiral movement along 
the rotation axis. 
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Figure 3 a) Front and b) side view of a modelled toroidal tool 

 

Figure 4 Axis implied on a shoe last turning lathe machine  

 



Digitalisation process 
The digitalisation algorithm becomes simple once the surface and tool motion is well defined. Basically, the 
behaviour can be described as follows: For each point of the trajectory the part surface is transformed in order 
to face the cutting tool. Then the minimum distance from every grid point to the tool is computed in the 
direction of tool attack axis (Y). This minimum distance determines the tool centre point for this step in the 
virtual digitalisation process. Physically we select the point that touches the tool surface in first place when 
the tool is moved along the attack axis. The process is similar to that of is used for obtaining z-maps of the 
tool envelope surface, typically used for 3-axis CNC machining: the inverse offseting method10 and the direct 
cutting simulation11,12. 

 
A pseudo code algorithm is presented below: 

 
In order to find the nearest point from the grid to the tool in the attack axis direction, it is necessary to use the 
Equation 5. This distance is computed by projection of the grid point on the tool, in the tool attack direction. 
The distance between the given point and the projected one will be used to compute the tool centre point for 
that machining position. 
 
Next figure shows a simple example in 2D in order to obtain a single trajectory point for a circular tool. 
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For every trajectory position trpos do 

 Min_distance= ∞ 
 For every surface PS i  in PSn do 
  For every grid point  pg j,k  in GSi  do 
    pg’ j,k=  pg j,k * TR4x4 

    Current_distance= D(pg’ j,k ) 
    If Current_distance<Min_distance  
    then Min_distance=Current_distance 
    Endif 
  Endfor 
 Endfor 
 Tool_centre= Get_centre_point(MinDistance,trpos ,TR4x4) 
 Add_trajectory(Tool_centre) 
EndFor 

Algorithm 1  Simple virtual digitising algorithm 

 Tool centre Part 
Surface 

Dmin 

Grid 
points 

Tool motion 

Figure 5 Virtual digitalisation process example for 2D shapes 

 

Winner point 



 
As shown above, the minimum distance represents the tool centre distance in order to reach the grid point 
without collision with the shape. 
 
Error analysis 
The accuracy of the virtual digitised method is analysed in this section in terms of maximum distance between 
the part surface and the mechanised one. 
 
Due to the fact a discrete model is being used for modelling the part surface, there exits an implicit error 
joined to the election of the grid points. There are several methods in literature12 used to obtain a grid from a 
NURB given a maximum error parameter. For this reason this kind of error is not going to be analysed in this 
section although is going to be taken into account. 
 
Every point in the grid is associated with four neighbours in the grid, one pair for each surface direction. 
When the digitalisation process is carried out, the virtual tool can enter into the gaps existing between 
associated neighbours. The error will depend on both the tool radius and the gap length, that is, the distance 
between neighbours. Figure 6 shows the maximum error produced between a couple of neighbours. 
 

 
 
For example, using a toroidal cutting wheel with major radius of 40mm and a grid of point with a maximum 
gap of 2 mm, we can obtain a maximum error of 0.0125 mm. 
 
Algorithm cost 
Computational cost is analysed in this section in terms of the problem size for the algorithm introduced in the 
Algorithm 1. The operator used is omega “O” to determine an upper limit of the computation cost. 

Problem size 
Analysing algorithm, it is possible to observe up to three nested loops. One of them, the most internal one, it 
is used to access to every grid point in the selected surface, that is, it consists into two loops, one for rows and 
the other for columns in fact.  
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Figure 6 Gouging produced by the torus tool in a discrete model surface 
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Every loop iterates on different data. The most external one goes through every trajectory position. In order to 
obtain a good quality finishing it is necessary produce, at least, as many trajectory points as grid points the 
surfaces have. The finishing quality also depends on the material to be milled, for example, metallic ones 
produce best results but need more trajectory points than organic ones (plastics) also more grid points (surface 
definition). 

 
Let assume n as the maximum number of grid points of all the surfaces in PS (see expression 2). 
 
The second loop iterates on every surface in the part surface. This number is inappreciable related to n, for 
this reason, is not going to be taken into account to compute an upper limit. In this way n will be define the 
problem size for computational cost analysis in next section.  

Computational Cost 
We analyse the algorithm from the most internal loops to the most internal ones in order to obtain an upper 
limit for the computational cost. 
 
The third loop (the most internal) it is repeated for n times. Every time, a product vector x matrix it is 
computed and stored in a local variable. We call this cost ct31, this cost can be considered constant since it 
does not depend on the problem size. After the product is made, we apply the formula expressed in 5) to carry 
out the digitalisation process. We call ct32 to the cost to do this operation. As the previous one, we can 
consider it constant. Finally, a comparison and an assignment is done. In the worst case the assignment is 
always done. We summarise the comparison and the assignment cost with the constant ct33. 
 
Next expression evaluates the cost of the third loop: 

  
Next loop, the second one repeats the third one for every surface in PS. Lets call ct2 as the number of surfaces 
that belong to the part surface. Its cost is expressed as: 
 
Finally, first loop operates on trajectory positions, as commented above, this number is close to n in order to 
obtain good milling results. In this loop an assignment is done with a constant cost called ct1. The function 
Get_centre_point obtains the centre tool point given a tool position and a transformation matrix of 4x4 
elements. This function uses a couple of trigonometric operations and a vector x matrix multiplying. It can be 
considered constant related to n and called ct3. The final Add_trajectory function consists of adding result 
points to a list, its computational cost can be considered constant and called ct4. 
 
The cost of the first loop, and consequently the algorithm cost, is: 

 
As a guide, a usual value for n in shoe last machining is about twenty thousand, that is, a high computer cost, 
in next sections we will show some quantitative examples with time measures. 
 
Optimisations 
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In this section we propose an alternative to the algorithm introduced in order to improve the average response 
time. We will show that using this kind of optimisations we can not reduce the Omega cost of the algorithm, 
but we should reduce the average response time for the machining. 
 
The basic idea for the reduction is the local principle. As mentioned before, the algorithm proposes to go 
through the part surface “touching” it and reporting the tool centre point for every nearest point of the 
trajectory. In every trajectory step of the algorithm, a distance “D” formula is applied for all grid points 
belonging to the part surface. However, due to the physics of tool motion some points can not to be touched 
for a specific trajectory point. For this reason, in every trajectory step, we will analyse only the grid points 
that the tool can touch, i.e. the D formula does not return infinity. 
 
Another related idea to the local principle is does not to compute those points that are not faced to the tool, 
since we are working with solid surfaces it has no sense touching a point from the back part. We should 
determine which points are faced off the tool and eliminate them before computing the distance formula (this 
step will be eliminated approximately the 50% of the points to be analysed). 
 
Going forward the local principle, since surfaces are continuous, we should conclude that for consecutive 
trajectory points, the nearest touching points are nearly the same. We should define a delta distance (defined 
in grid co-ordinates) that assures that the nearest point is included in.  
 
Lets define delta “δ” as the maximum distance between neighbours (vicinity range), and LSi the subset of 
neighbours for the grid point u,v: 
 
Then, the algorithm becomes to: 

 

 
 
Due to the fact LS is much less than GS the average computational time is reduced a lot. Notice that a new 
function is added to the pseudo-code: “ObtainSubGrid”. This function chooses a new local region in order to 
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For every trajectory position trpos do 

 Min_distance= ∞ 
 For every surface PS i  in PSn do 

   LSi =ObtainSubGrid(Gs i ,LS i-1,  δ) 
   For every grid point  pg j,k  in LSi  do 
     pg’ j,k=  pg j,k * TR4x4  

     Current_distance= D(pg’ j,k ) 
     If Current_distance<Min_distance  
     then Min_distance=Current_distance 
     Endif 
   Endfor 
 Endfor 
 Tool_centre= Get_centre_point(MinDistance,trpos ,TR4x4) 
 Add_trajectory(Tool_centre) 
EndFor 

Algorithm 2  Optimised virtual digitising algorithm 



compute the minimum distance. From the previous local region (taken into account the winner grid points), 
the new region is computed by adding the δ factor to these winner points.  

Choosing the delta factor 
Delta factor determines the continuity “strength” for a surface. A big delta factor means the grid is very 
irregular along every direction, e.g. a tridimensional star, on the opposite, a small factor means that the grid is 
very regular for every direction, e.g. plane. Given from experience, for traditional turning lathes for shoe last, 
this factor is about 20 from a range of 120 points in the v direction and 8 from a range of 150 in the u 
direction. It is possible to use artificial intelligence algorithms to determine this factor for every free surface. 
The problem is the efficiency, the more complex obtaining the delta factor is, the less computational reduction 
you get. Usually, using this factor is good for a subset of prototype surfaces (for example if we mechanise 
always shoe last or heels), and the time reduction you may obtain is about 90%. 

Computer architectures for virtual digitising optimisation 
Due to the fact of the local principle, it is possible to use a parallel computer architecture to make the 
computation in an efficient way. Let suppose n processors (e.g.: transputers, digital singal processors (DSPs, 
and so on) and a master processor that controls the data exchange. The basic idea consists of distribute all the 
grid points of the discrete part surface between  the processors, so every processor only computes the tool 
distance formula for its own surface extent. Finally, every processor sends back the tool path for its extent to 
the master processor which joins the data and obtains the solution. 
 
Next figure shows the extent distribution among 4 processors for a shoe last. Notice that every extent is 
overlapped with its neighbours. Overlapping is necessary because of the tool geometry and the minimum 
distance computation, since for the last tool path point of each processor, we need the rest points affected by 
the tool geometry. 
 

U Direction 

V Direction 

Extent 1 

Extent 2 

Extent 3 

Extent 4 

Figure 7 Surface splitting in direction u for 4 processors 
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In this case we have used only the u direction for the extent distribution, since the tool geometry makes the 
overlapping smaller in this direction. For another tool geometry (spherical, cylindrical, conical) it is possible 
to distribute extents in both directions with a minimum overlapping.  
 
Two different architectures are proposed in figure 8 and figure 9. In the first one there is no communication 
between neighbour processors, the master processor distribute each overlapped extent to each processor, so 
overlapped information is twice in neighbours.  On the other hand, using architecture shown in figure y the 
master processor distribute extents without overlapping, however, neighbour processors are communicated by 
links, so a processor receives the overlapped points from the neighbour one. In first architecture, main 
processor makes the main effort in extent distribution, on the contrary, in second one, overlapped information 
distribution is carried out by every processor in parallel. 
 

 
Theoretically computation cost becomes from 9) expression to: 
 
 
 
 
 
Where p is the number of processors and o is the cost associated to the communication time. 
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Figure 8 Multiprocessor architecture without communication 
between neighbours  



 

 
Illustrative examples 
In this section a series of experimental results are showed. These tests were realised using the commercial 
Forma3D system for design and machining of shoe lasts. This CAD/CAM program uses the algorithm 
proposed in this article and takes the advantages of the local optimisation we proposed in the previous section. 
 
Next table shows the average response time in seconds for some shoe last machining tests. The trials were 
carried out using a personal computer (PC), Intel Pentium II processor at 233MHz under Windows 98 
operative system. The maximum grid spacing was 2mm, and the grid density is specified for every direction 
(Gu and Gv). Chosen delta values were 8 and 20 for u and v direction respectively. 
 
The trajectory is defined by the user, specifying the spiral step (in millimetres) and the number of trajectory 
points per spiral revolution. Total number of point trajectory is obtained by just multiplying the points per 
revolution and the number of rounds on the last (total length of the model divided by the spiral step). In these 
tests we took into account 3 different surfaces: one for the last and two more for the back and fore holders. 
The parameters for the holders were the same for all the tests. 
 
Experiment 1: Delta factors 8 and 20 
Gu Gv Points per revolution Spiral Step (mm.) Time (s.) 
159 120 360 2 215 
137 90 120 1 100 
140 100 90 5 5 
 
Experiment 2: None optimisation 
Gu Gv Points per revolution Spiral Step (mm.) Time (s.) 
159 120 360 2 2315 
137 90 120 1 912 
140 100 90 5 42 
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Figure 9 Multiprocessor architecture using communication between 
neighbour processors 



As a result, it is possible to observe that the average response time of the algorithm depends mainly on the 
number of trajectory points to be obtained and not too much on the number of grid points (this is the effect of 
the local optimisation). 
 
Figure 10 shows a step in the machining simulation taken from the Forma3D simulation system. 

 
Conclusions and Discussions 
Traditional processes used in shoe last manufacturing are simple, robust and efficient. The algorithm 
presented in the paper copies those processes and takes its advantages using virtual digitising. The results are 
good and allow introducing CAD/CAM systems in the shoe last sector. The procedure of virtual digitising it 
is simple to implement, offers good results and avoid the problem of tool collision by its own definition. On 
the other hand, this algorithm becomes efficient when we can assure a good vicinity factor in the surface to 
machining and/or we have a subset of prototypes to mechanise. For this reason, the algorithm is not suitable 
for general purpose machining algorithms since it is too slow versus another types of tool path generation 
algorithms. The algorithm needs to know the generic tool motion around the surface (spiral, zigzag, steps) in 
order to compute the tool path, so that is not suitable to compute automatically tools strategies (this kind of 
problems may be solved in a previous phase by another algorithms and the passed to the virtual digitising 
algorithm). 
 
Another advantage of the algorithm presented is the paralellisation. Due to  fact, we dispose of a grid of points 
along a surface and a set of trajectory positions, it is possible to distribute the computation among a series of 
processors reducing the computing time of the algorithm. Every surface can be subdivided in regions and each 
processor may be able to compute the distance ‘D’ formula for a region of the surface, finally join all sub-
trajectories we obtain the resultant tool path. Paralellisation is not tested in the architectures proposed in the 
article but it is an interesting start point for future studies. 
 
The weak point of the algorithm presented is the election of delta factor, with a high factor we loose 
efficiency, on the other hand, we a very low delta factor we can fail the election of the winner grid point. At 
the present time, we use factors given from experience for a reduced set of prototype surfaces. It would be 
interesting to obtain automatically the optimum factor for every surface. These kinds of optimisation 
problems are solved usually via the Artificial Intelligence algorithms and will allow the generalisation of the 
algorithm. 

Figure 10 Shoe last machining simulation by Forma3D 
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