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Abstract 

 Recent results on the formic acid oxidation on platinum electrodes, especially those 

obtained for platinum single crystal electrodes are reviewed. With all the available data, a 

detailed mechanism for both reaction paths of the mechanism is proposed. For the CO formation 

path, oxidation and reduction steps are involved sequentially. On the other hand, the active 

species is a monodentate adsorbed formate. This adsorption mode is favored in the presence of 

additional adsorbed species in the neighborhood. The proposed mechanism agrees with all the 

experimental results obtained for the reaction.    

 

Introduction 

Formic acid has been always regarded as a promising reactant for the fuel cell 

technology. From all the organic molecules susceptible to be used, formic acid is the smallest 

one and the number of exchanged electrons is only two. For this reason, it has been also 

regarded as a model molecule in the study of the oxidation of other organic molecules with a 

more complex structure and oxidation mechanism. Although many efforts have been devoted 

to the study of the oxidation of these molecules, the overpotentials for the oxidation reaction 

are still too high for massive practical applications. Thus, better electrocatalyst with lower 

overpotentials should be developed so that the final energy efficiency of the fuel cell system is 

maximized. In the research of better electrocatalysts, a crucial piece of information is the 
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reaction mechanism. Knowing the details of the reaction mechanism will allow developing new 

electrode materials which have the property of accelerating the slowest steps in the reaction, in 

order to solve the bottlenecks in the reaction and to obtain higher efficiencies.  

In principle, formic acid oxidation reaction (FAOR) appears to be a reasonably simple 

reaction since only two electrons are exchanged. In fact, the complete oxidation to CO2 only 

requires the cleavage of two bonds: an O—H bond (which is implied in an acid-base equilibrium) 

and a H—C bond. This second cleavage is probably the most difficult step, but there are pure 

metals, such as platinum or palladium which are active for this step, due to their excellent 

properties for hydrogen adsorption. However, when this reaction was first studied on platinum, 

it was found that a poisoning species [1], which was later identified as adsorbed CO [2], was 

formed. The formation of CO implies the presence of unexpected complications in the oxidation 

mechanism. Moreover, adsorbed CO is oxidized at high potentials, so that it blocks the surface 

for the reaction. Thus, the oxidation mechanism contains two parallel paths [3,4],  one giving 

rise to CO2 at reasonably low overpotentials through the so-called active intermediate and a 

chemical dehydration step leading to adsorbed CO, which will be further oxidized to CO2 at 

higher potentials. Studies with single crystal electrodes have demonstrated that both paths are 

structure sensitive [5,6]. As aforementioned, if the electrocatalysis is to be improved, the key 

elements in the mechanism should be fully understood. In this manuscript, the recent advances 

in the knowledge of the oxidation mechanism on platinum electrodes will be reviewed, focusing 

on the results obtained on well-defined platinum surfaces. The use of well-defined platinum 

electrodes simplifies the experimental response controlling the surface structure of the 

electrode allows establishing a clear relationship between surface structure, adsorbed species, 

and reactivity. These relationships are vital if the oxidation mechanism needs to be solved so 

that better electrocatalysts are to be proposed from a rational perspective.  
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The poisoning path. 

 The identification of CO as the poison intermediate and its role in the oxidation 

mechanism was possible by DEMS and in situ FTIR [7,8], experiments which serve to 

experimentally corroborate the existence of a dual pathway. In the recent years, the efforts have 

been focused to understand the potential and surface structure dependence of the CO 

formation rate using single crystal electrodes. From the initial studies, it was clear that the CO 

formation rate on the Pt(111) was significantly lower than those measured on the other basal 

planes, namely Pt(100) and Pt(110) [9,10]. However, until recently, it was not proven that the 

observed activity of the Pt(111) electrode was due to the presence of surface defects [11-14]. 

Thus, the use of stepped surfaces with (111) terraces demonstrated that the activity of the ideal 

(111) plane of the Pt(111) surface was negligible in comparison with that of the steps present 

on the (111) terrace and also with the (100) surface. Moreover, the turnover rates for the 

different sites are compared, it has been shown that the activity of the (110) step on the (111) 

terrace and that of the (100) plane are very similar, and that corresponding to the Pt(111) is 

even lower than that expected [15].  

Regarding the potential dependence of the reaction rates for CO formation, it was 

observed that CO was formed in a very narrow region (ca. 100 mV wide) [12,13]. The center of 

this region, that is, where the activity for CO formation reaches the maximum, depends on the 

surface site and is very close to the potential of zero total charge of the site [12,13]. On practical 

surfaces, that is, platinum nanoparticles, the observed behavior followed the same trends than 

those obtained for single crystal electrodes, with several local maxima for CO formation, which 

are associated to the different sites necessarily present on the surface of the nanoparticles  [14]. 

On platinum, the potential of zero total charge (pztc) roughly corresponds with the potential at 

which the amount of anion and hydrogen species adsorbed is small and balances. In this case, 

OH or specifically adsorbed anions are present on the surface at potentials more positive than 

the pztc, whereas hydrogen is adsorbed at negative values.  
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To understand these results, the elementary steps giving rise to the formation of CO 

should be analyzed. First of all, the formation of CO is a more complex reaction than the direct 

oxidation of formic acid, because it requires the cleavage of the C—H and C—OH bonds. When 

compared to the direct oxidation path, the cleavage of this latter bond is significantly more 

difficult than that of the O—H bond. Recent DFT results have shown that the catalytic cleavage 

of these bonds implies the formation of adsorbed H and OH as intermediate species [15]. The 

formation of these species as intermediates explain the narrow potential window for CO 

formation and the inactivity of the (111) surface. If we assume the formation of adsorbed 

hydrogen and OH, the formation of CO would then require the simultaneous adsorption of both 

species. For the Pt(111) surface, hydrogen and OH adsorption take place in non-overlapping 

potential regions, so that, when hydrogen as readily adsorbed, adsorbed OH is very unstable, 

and vice versa. Therefore, the reaction rate is negligible for this surface. For Pt(100), Pt(110) and 

step sites, the pztc is located where hydrogen and OH adsorption regions overlap and OH and H 

coverages are almost identical. Thus, this is the ideal potential in which the reaction should take 

place, explaining the observed results.  

This qualitative hypothesis has been confirmed numerically by potential dependent DFT 

calculations [15]. Using adsorbed formate species in monodentate configuration as the starting 

point for the reaction, a detailed mechanism has been proposed (figure 1). As can be seen, initial 

steps (A to D in figure 1) involve a dehydrogenation process to form a bidentate adsorbed 

carboxylate (figure 1D), whereas in the second part of the mechanism (D to H in figure 1), the 

C—OH bond is broken to yield adsorbed CO and OH (figure 1G), which is eventually desorbed as 

OH- (figure 1H). The energetics for this mechanism at different electrode potential is displayed 

in figure 2. As can be seen, the Pt(111) surface has the highest activation energy for the reaction 

as compared with a stepped surface or the Pt(100) electrode, in good agreement with the 

experimental results. Since the initial steps involve the formation of adsorbed hydrogen and its 

desorption in an oxidation step, this part of the mechanism is favored as the potential is made 
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more positive, as can be observed in figures 2A-C. However, the final steps (D to H) become less 

favorable as the potential increases since the final step which involves the desorption of OH is a 

reductive process. As can be seen in figure 2, these steps become uphill at 0.6 V for the Pt(100) 

and Pt(553) surface since D state has lower energy than that of the final H state. For the Pt(100) 

and stepped surfaces, a compromise between both trends is obtained at ca. 0.3 V, where the 

global activation barrier for the process reaches a minimum. On the other hand, for the Pt(111) 

electrode, the barriers, especially that related to the cleavage of the C—H bond (step B), are still 

very high in the whole potential range, so that measurable reaction rates would be negligible. 

This detailed scheme is also in agreement with additional experimental pieces of evidence: i) 

Electrochemical and spectroscopic results implied a general mechanism for the CO formation 

path involving, sequentially, oxidation and reduction steps [16,17] and ii) it has been shown that 

this reaction path requires more than 2 neighboring free Pt sites to occur [18,19]. As can be 

observed in figure 1, the formation of CO requires several contiguous free sites.  

 

Figure 1. Reaction scheme for the formation of CO on platinum from monodentate adsorbed 
formate. In this scheme, A, C, D, G, and H are stable states, E is a metastable state and B and F 
are transition states. Adapted from reference [15]. 
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Figure 2. Energetics of the states, pseudo-states, and transition states involved in the proposed 
CO formation mechanism (see figure 1), estimated on different platinum surfaces different 
electrode potentials vs. RHE. 
 
 
The active intermediate path. 

 As aforementioned, the desired path for the reaction is that taking place through the 

active intermediate. However, the reactivity is significantly affected by the CO formation path. 

To put this effect into perspective, the reaction rates for both paths should be compared. It has 

been found that the maximum rates for the active intermediate path are at least two orders of 

magnitude higher than those measured for the CO formation steps [15]. This implies that, in the 

global mechanism, the CO formation path is a minor side path which has a significant effect on 

the overall reactivity, because its product accumulates on the surface. This fact highlights the 

importance of controlling every single detail of the reaction mechanism.  
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  To gain a detailed knowledge of the direct path, different reaction conditions and 

techniques should be explored. Thus, experiments at different pH values have been conducted 

to determine the active species in the reaction, since the reaction can be initiated either from 

bulk formate or formic acid. These studies have shown that currents were proportional to the 

concentration of solution formate [15,20-23], provided that the measurements are carried out 

in absence of specific anion adsorption. It has been shown that the specific adsorption of the 

anions present in the buffered solutions at neutral pH alters the reactivity of the surface [22,23]. 

These results were interpreted as the active species in the oxidation reaction is solution formate. 

However, the correct interpretation is that one proton has transferred before the rds. This 

implies that the reaction can be initiated from HCOO- or if the initial species is formic acid, this 

species has transferred one proton before the rds [24]. Additionally, using the theory for proton-

electron transfer reaction, all these pH dependent studies reveal that the rate determining step 

involves a concerted proton-electron transfer. [25,26] 

IR spectroscopy, especially under Attenuated Total Reflection (ATR) configuration also 

provided hints on the mechanism, since bidentate adsorbed formate (bonded to the surface by 

the two oxygen atoms) was detected in the same region where formic acid oxidation reaction 

takes place. Additionally, specific adsorption of the formate anion was also detected on the 

Pt(111) electrodes using fast voltammetry [27]. Although the role played by this species in the 

mechanism was subject of a long debate, a general consensus has been finally reached 

nowadays. The analysis of the IR data coupled with analytical detection suggested that this 

species was not the active intermediate [28]. Recently, a detailed analysis of the spectroscopic 

data revealed that the measured currents were not proportional to the adsorbate coverage, 

which reinforced the idea that the adsorbed bidentate formate was not true active intermediate 

[29]. Also, some DFT calculation revealed that the cleavage of the C—H bond in this 

configuration was unlikely, due to a high activation energy [30].  



8 
 

Having discarded bidentate adsorbed formate as the active intermediate, another 

species should be proposed. Since the most difficult step in the reaction is the cleavage of the 

C—H bond, the reaction should take place from an adsorbed configuration in which this cleavage 

is feasible. The results with adatom modified surfaces have shown that, when the C—H bond is 

pointing to the surface, the cleavage is almost barrierless due to the affinity of the platinum 

surface for hydrogen [31,32]. This is the case of monodentate adsorbed formate shown in figure 

1A. However, this configuration rapidly evolves to the most stable configuration of adsorbed 

bidentate formate (figure 3).  

 

A

  

B

  

Figure 3. Bidentate (A) and monodentate (B) adsorbed formate on a platinum single crystal. In 
this configuration, the cleavage of the C—H bond is facile, due to the interaction of the H atom 
with the surface. 

 

However, bidentate adsorbed formate is not a dead end or undesired species in the 

mechanism; there are pieces of evidence that adsorbed species and also bidentate formate can 

have an active role in the mechanism.  First, on gold electrodes, the kinetic analysis of this 

reaction indicates a quadratic dependence on the coverage of the adsorbed species [33]. On the 

other hand, experiments with different supporting electrolytes indicate that some adsorbed 

anions, such as sulfate or acetate, catalyze the oxidation of formic acid on platinum electrodes 

[34]. In general, the presence of adsorbed species would hinder the electrocatalytic activity of 

the surface, but this effect is not observed on Pt(111) electrodes for formic acid oxidation, where 

the reaction seems catalyzed by the presence of some adsorbed anions, such as sulfate or 
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acetate. In fact, the calculated apparent activation energy reaches a minimum at the onset of 

the adsorption of these anions. These facts led to propose a reaction model in which the active 

species is monodentate adsorbed formate, which is able to interact with the surface through 

the C—H bond in a site adjacent to a bidentate adsorbed formate (or another anion such as 

sulfate or acetate). The resulting kinetic model was able to reproduce the measured currents for 

the Pt(111) electrode [34].  

These results have been confirmed by DFT calculations [15]. In the monodentate 

configuration, the adsorbed species can rotate freely through the O—C bond until the second 

oxygen bond comes close to the surface, giving rise immediately to the bidentate form. 

However, this rotation is precluded when the monodentate species is surrounded by bidentate 

species forming a pocket (figure 4). In this pocket, the formation of the bidentate form is 

inhibited and the cleavage of the C—H can take place. This mechanism also explains two 

experimental facts: the different reactivity of the surfaces and the inhibition of the reactivity at 

potentials above 0.8 V vs. RHE. In the first case, measured currents for the Pt(100) electrode are 

more than one order of magnitude higher than those measured for the Pt(111) electrode. Since 

the energetics of the C—H bond cleavage is very similar for the Pt(100) and Pt(111) electrode, 

the difference in the currents should be then related to the adsorption of anions that facilitate 

the stabilization of the monodentate form. On the Pt(100) electrode, the adsorption process of 

the anions is faster and takes place in a narrower potential window, explaining the higher 

currents. On the other hand, when the anion adlayer has reached the maximum packing density, 

irrespectively of the substrate structure, there are no free pockets available for the adsorption 

of monodentate adsorbed formate, and thus, currents are negligible at high potentials.  
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Figure 4. Monodentate adsorbed formate inside a pocket of preadsorbed bidentate formate on 
the Pt(100) surface. In this configuration, monodentate formate cannot rotate to yield the 
bidentate configuration. Adapted from reference [15]. 
 

As a summary, a detailed mechanism for the formic acid oxidation reaction has been 

described. In this mechanism, the active intermediate is the monodentate adsorbed formate. 

However, on platinum, this species can either react to yield CO2 or transform into the most 

stable adsorbed form: the bidentate configuration. The undesired transition is hindered by the 

presence of additional adsorbed species, which facilitates the reactivity of the active 

intermediate. Thus, the key to activate the reactivity for this process is to hinder the 

transformation to the bidentate form or to improve the energetics of the monodentate form 

with respect to the bidentate one. On the other hand, the formation of CO, which is an undesired 

and poisoning intermediate, requires that OH and H adsorption processes could take place 

simultaneously at the same electrode potential.  
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