
STABILITY AND WELL-POSEDNESS IN LINEAR SEMI-INFINITE
PROGRAMMING∗
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Abstract. This paper presents an approach to the stability and the Hadamard well-posedness of
the linear semi-infinite programming problem (LSIP). No standard hypothesis is required in relation
to the set indexing of the constraints and, consequently, the functional dependence between the
linear constraints and their associated indices has no special property. We consider, as parameter
space, the set of all LSIP problems whose constraint systems have the same index set, and we
define in it an extended metric to measure the size of the perturbations. Throughout the paper the
behavior of the optimal value function and of the optimal set mapping are analyzed. Moreover, a
certain type of Hadamard well-posedness, which does not require the boundedness of the optimal
set, is characterized. The main results provided in the paper allow us to point out that the lower
semicontinuity of the feasible set mapping entails high stability of the whole problem, mainly when
this property occurs simultaneously with the boundedness of the optimal set. In this case all the
stability properties hold, with the only exception being the lower semicontinuity of the optimal set
mapping.
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1. Introduction. We consider the linear optimization problem in Rn:

π : Inf {c′x | a′tx ≥ bt , t ∈ T} ,

where c, x, and at belong to Rn, bt ∈ R, and y′ denotes the transpose of y ∈ Rn. π is
alternatively represented by the couple (c, σ), or by

(
c, (at, bt)t∈T

)
.

If the index set T of the constraints system, σ := {a′tx ≥ bt , t ∈ T} , is infinite,
we have a linear semi-infinite programming problem (LSIP). We shall not assume any
structure for T and, consequently, the functions t 7→ at and t 7→ bt have no particular
property.

The parameter space, in our approach, is the set Π of all the problems π =
(c, σ), with c 6= 0n, whose constraint systems have the same index set T . When
different problems are considered in Π, they and their associated elements will be
distinguished by means of sub- and superscripts. So, if π1 also belongs to Π, we write
π1 =

(
c1, σ1

)
and σ1 := {(a1

t

)′
x ≥ b1t , t ∈ T}. Obviously, we can identify Π with

(Rn\ {0n}) × (Rn × R)
T

, where the set of possible systems is itself identified with

(Rn × R)
T
.
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STABILITY AND WELL-POSEDNESS IN LSIP 83

Many LSIP problems have coefficients whose values either are known only approx-
imately or have to be rounded off in the computing process. Therefore, we actually
solve a different problem, π1 =

(
c1, σ1

)
, proximal to the original one, π = (c, σ). An

extended distance δ : Π×Π→ [0,+∞] is introduced by means of

δ (π1, π) := max

{∥∥c1 − c∥∥∞ , supt∈T

∥∥∥∥(a1
t

b1t

)
−
(
at
bt

)∥∥∥∥
∞

}
.

(Π, δ) is a Hausdorff space, whose topology satisfies the first axiom of countability
(i.e., convergence is established by means of sequences, since each point has a count-
able base of neighborhoods), and describes the uniform convergence topology on Π. If
T is a compact Hausdorff space and the functions t 7→ at and t 7→ bt are continuous, π
is said to be continuous. We shall denote by Πo the set of continuous LSIP problems.
((Πo, δ) is a metric space.)

In this paper, we study the stability properties of π. More precisely, we analyze
the lower and upper semicontinuity of the optimal value function, ϑ, and the optimal
set mapping, F∗. The former assigns to each problem π its optimal value v (i.e.,
ϑ (π) = v), and the latter assigns to π the (possibly empty) optimal set, represented
by F ∗ (i.e., F∗ (π) = F ∗). We prove that the lower semicontinuity of the feasible
set mapping, F , assigning to π the (possibly empty) feasible set F (i.e., F (π) = F ),
and the boundedness of F ∗ (especially when both hold simultaneously), yield nice
stability properties of ϑ and F∗ at π. So, we devote section 3 to presenting different
characterizations of the lower semicontinuity of F at π, which are used throughout the
paper. As a counterpart of the important lower semicontinuity property, Lemma 4.1
states that the boundedness of the optimal set, assumed to be nonempty, is equivalent
to a certain stability of π: any sufficiently close problem, with nonempty feasible set,
also has optimal solutions.

Section 4 contains the main results concerning the optimal value function. The-
orem 4.2 deals with the continuity properties of ϑ, whereas in the second part of this
section we propose a definition of Hadamard well-posedness, based on the strategy
of solving, in an approximated way, the sequence of problems approaching π. Our
concept of Hadamard well-posedness, which does not require the uniqueness of the
optimal solution, is oriented toward the stability of the optimal value function and
can be traced out from Dontchev and Zolezzi [4]. Theorem 4.3 delimits the scope of
this new concept.

Section 5 focuses on the stability behavior of the optimal set mapping, F∗. The-
orem 5.1 clarifies the role played by the closedness of this mapping. At the end of
section 5, Table 5.1 summarizes the theory developed in the paper, emphasizing the
importance of the lower semicontinuity of F at π, and of the boundedness of F ∗, in the
global stability of π. Section 6 supplies examples showing that every unfixed possibility
in Table 5.1 can actually occur.

Some statements in sections 4 and 5 constitute extensions to the general LSIP of
different results obtained by Brosowski [2] and Fischer [5] for the continuous LSIP.
Moreover, in a forthcoming paper [3], we prove that, under the unicity of the optimal
solution, our concept of Hadamard well-posedness is equivalent to other concepts [17]
that, at first glance, seem much more restrictive.

2. Preliminaries. The optimal value function ϑ will take values in [−∞,+∞]
if we define ϑ (π) = +∞ when π is inconsistent (i.e., when F = ∅) and ϑ (π) = −∞
when π is unbounded (i.e., when c′x is not bounded from below on F ). Hereafter, Πc

represents the consistent problems subset (π ∈ Πc ⇔ F 6= ∅ ⇔ ϑ (π) < +∞), and Πb
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84 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

denotes the set of bounded problems (π ∈ Πb ⇔ ϑ (π) is finite). In addition, Πs will
be the set of solvable problems (π ∈ Πs ⇔ F ∗ 6= ∅ ⇔ ϑ (π) is attained). Obviously,
Πs ⊂ Πb ⊂ Πc.

At this point we introduce some necessary notation. Given ∅ 6= X ⊂ Rp, by
conv(X), cone(X), O+(X), and Xo we denote the convex hull of X, the conical
convex hull of X, the recession cone of X (assuming that X is convex), and the dual
cone of X (i.e., Xo = {y ∈ Rp | y′x ≥ 0 for all x ∈ X}), respectively. It is assumed
that cone (X) always contains the zero-vector, and so cone(∅) = {0n}. The Euclidean
and Chebyshev norms of x ∈ Rp will be ‖x‖ and ‖x‖∞, respectively, and the Euclidean
distance from x to X (6= ∅) is d (x,X) := inf {‖x− y‖ : y ∈ X} . The unit open ball,
in Rp, for the Euclidean norm is represented by B. From the topological side, if X
is a subset of any topological space, int(X), cl(X), and bd(X) represent the interior,
the closure, and the boundary of X, respectively. Finally, limr should be interpreted
as limr→∞.

If {Xr} is a sequence of nonempty sets in Rp, lim infrXr (lim suprXr) is the set of
all the limits (cluster points) of all the possible sequences {xr} , xr ∈ Xr, r = 1, 2, . . . ,
and it can be characterized as the set of points x such that every neighborhood of x
intersects all the sets Xr except a finite number of them (it intersects infinitely many
sets Xr). It is said that {Xr} converges to X, in the Painlevé–Kuratowski sense (see,
for instance, [15]) if X = lim infrXr = lim suprXr. In this case we write X = limrXr.

Next we recall some well-known continuity concepts for set-valued mappings. If
Y and Z are two topological spaces and S : Y →2Z is a set-valued mapping, we shall
consider the following properties of S.

If both spaces verify the first axiom of countability, we say that S is closed at
y ∈ Y if for all sequences {yr} ⊂ Y and {zr} ⊂ Z satisfying limry

r = y, limrz
r = z,

and zr ∈ S(yr), one has z ∈ S(y).
The mapping S is lower semicontinuous (lsc) at y ∈ Y if for each open set W ⊂ Z

such that W ∩ S(y) 6= ∅, there exists an open set U ⊂ Y, containing y, such that
W ∩ S(y1) 6= ∅ for each y1 ∈ U .
S is said to be upper semicontinuous (usc) at y ∈ Y if for each open set W ⊂ Z

such that S(y) ⊂ W , there exists an open neighborhood of y in Y, U , such that
S(y1) ⊂W for every y1 ∈ U .

Given a consistent system σ := {a′tx ≥ bt , t ∈ T} , with solution set F, we say
that a′x ≥ b is a consequence of σ if it is satisfied at each point of F , i.e., if a′z ≥ b
for every z ∈ F .

Throughout this paper we shall apply the so-called nonhomogeneous Farkas lemma
[19], which characterizes the linear inequalities a′x ≥ b that are consequences of a con-
sistent system σ := {a′tx ≥ bt , t ∈ T} as those satisfying(

a

b

)
∈ cl

(
cone

({(
at
bt

)
, t ∈ T ;

(
0n
−1

)}))
.(2.1)

If we introduce the cone, R(T )
+ , of all the functions λ : T → R+ taking positive

values only at finitely many points of T , (2.1) is equivalent to the existence of sequences

{λr} ⊂ R(T )
+ and {µr} ⊂ R+, such that(

a

b

)
= limr

{∑
t∈T

λrt

(
at
bt

)
+ µr

(
0n
−1

)}
,

where λr = (λrt )t∈T , r = 1, 2, . . . .

D
ow

nl
oa

de
d 

04
/3

0/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



STABILITY AND WELL-POSEDNESS IN LSIP 85

3. Feasible set mapping. In [7, sect. 2] it is proved that the mapping F
is always closed at any π ∈ Πc. In that paper, and also in [6], different char-
acterizations of the lower semicontinuity of F at a consistent problem π are pro-
vided, most of them based upon different stability concepts taken from the liter-
ature ([11], [14], [18], etc.). The following theorem gathers some of these charac-
terizations and adds some new ones, which will be applied below. We recall here
the strong Slater condition (SS condition), which is satisfied by π if there exist a
positive scalar ρ and a feasible point x satisfying a′tx ≥ bt + ρ for all t ∈ T (x
is called an SS element of σ). The SS condition is certainly stronger than the
well-known Slater condition, which only requires the existence of a strict solution,
x, satisfying a′tx > bt for all t ∈ T (obviously, if π is continuous, both condi-
tions are equivalent). The set of all the SS elements of σ will be represented by
FSS .

Theorem 3.1. If π = (c, σ) ∈ Πc, then the following statements are equivalent:

i. F is lsc at π;

ii. π ∈ int (Πc);

iii. 0n+1 /∈ cl (conv ({(atbt) , t ∈ T}));
iv. π satisfies the SS condition;

v. For every sequence {πr} ⊂ Π converging to π, there exists an r0 such that
πr ∈ Πc if r ≥ r0, and F = limr≥r0 Fr;

vi. F = cl (FSS) .

Proof. The equivalence between the first four statements is established in [7,
Thm. 3.1]. Next we prove the equivalence of statements i and v. Let us assume first
that statement i holds. Since i ⇔ ii has already been established, from π ∈ int (Πc)
we conclude the existence of r0 such that Fr 6= ∅ if r ≥ r0. Then, if x ∈ F and W
is an open neighborhood of x, statement i yields r1 (r1 ≥ r0) such that W ∩ Fr 6= ∅
for all r ≥ r1. In other words, W intersects all the sets Fr, except a finite number of
them, which identifies x as a point of lim infr≥r0 Fr. Moreover, lim supr≥r0 Fr ⊂ F
because F is closed at every π. Since the inclusion lim infr≥r0 Fr ⊂ lim supr≥r0 Fr
always holds, one concludes that F = limr≥r0Fr.

We proceed by assuming that part v holds and statement i fails. This implies the
existence of an open set W such that F∩W 6= ∅, whereas for each r ∈ N we can find πr
such that δ(πr, π) < 1/r and Fr ∩W = ∅. Consequently, if x ∈ F ∩W , and whichever
r0 we consider, x /∈ lim infr≥r0 Fr. Thus, limr πr = π and F 6= lim infr≥r0 Fr for every
r0, contradicting the assumption.

Next we prove i⇔ vi. If statement vi holds, since F 6= ∅ by hypothesis, FSS must
be nonempty too, and we apply the equivalence between statements i and iv, already
established. Conversely, if statement i is held, given any open set W intersecting F , we
can find ρ > 0 such that F1∩W 6= ∅ if π1 := (c, σ1) with σ1 := {a′tx ≥ bt + ρ , t ∈ T}.
Since F1 = F (π1) ⊂ FSS , we obtain FSS ∩ W 6= ∅. We have just proved that
F ∩W 6= ∅ implies FSS ∩W 6= ∅, which itself implies F ⊂ cl (FSS) . The opposite
inclusion comes from the trivial relation FSS ⊂ F.

Concerning the upper semicontinuity of F at π ∈ Πc, in the characterization given
in [8, Thm. 3.1], the boundedness of F (see [5]) is not required any longer, although
this condition is still sufficient [8, Cor. 3.2]. If n ≥ 2 and {at , t ∈ T} is bounded and
different from {0n}, F will be usc at π ∈ Πc if and only if F is bounded [8, Thm. 3.4].
Finally, in the case n = 1, it is remarked in [8, Ex. 3.3] that F is always usc at every
consistent problem.
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86 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

When we confine ourselves to continuous problems, we shall denote by Πoc the set
of consistent continuous LSIP problems in Rn, all of them having constraint systems
indexed by a compact Hausdorff space T. It was proved in [7, Thm. 6.2] that the
restriction of F to Πo, represented by Fo, is lsc at π ∈ Πoc if and only if σ satisfies the
well-known Slater condition or, equivalently, if π belongs to into (Πoc), the interior
set of Πoc in the topology relative to Πo. Moreover, and since {at , t ∈ T} is compact
when π ∈ Πo, it turns out that, for n ≥ 2, Fo is usc at π ∈ Πoc if and only if either
F is bounded or F = Rn.

In section 4 we shall apply the following uniform metric regularity property.
Lemma 3.2. Given π ∈ Πc, assume that F is lsc at π and that F is bounded.

Then, there exists a pair of positive scalars ε and β such that δ (πi, π) < ε, i = 1, 2,
imply, for every xj ∈ Fj ,

d(xj , Fi) ≤ β
[
supt∈T

{
bit −

(
ait
)′
xj
}]

+
, i, j = 1, 2, i 6= j,

where [α]+ := max {0, α}.
Proof. The boundedness of F implies that F is usc at π, and ε̂ > 0 exists such that

F1 ⊂ F +B if δ (π1, π) < ε̂. Thus we can find a positive scalar µ such that
∥∥x1
∥∥ ≤ µ

for every x1 ∈ F1, provided that δ (π1, π) < ε̂. Moreover, it can be assumed, without
loss of generality, that F1 6= ∅ in this ε̂-neighborhood of π, because of the lower
semicontinuity of F at π.

Now let us consider, in this neighborhood, two problems, π1 and π2. Take, for
instance, an arbitrary x2 ∈ F2 and suppose that x2 /∈ F1 (otherwise the inequality to
be proved holds trivially). Suppose that x1 ∈ F1 satisfies the d(x2, F1) =

∥∥x1 − x2
∥∥.

Following a reasoning similar to that in [7, Thm. 3.1], we obtain

d(x2, F1) =
∥∥x1 − x2

∥∥ ≤ 4µ

ρ
supt∈T

{
b1t −

(
a1
t

)′
x2
}
,

provided that δ (πi, π) < ε := min{ε̂, ρ2
(
1 + n1/2µ

)−1}, i = 1, 2, where ρ is the “slack”
associated with an arbitrarily chosen SS element, x, of σ (i.e., a′tx ≥ bt + ρ for all
t ∈ T ). We finish the proof by taking β = 4µ

ρ .
There are, spread out in the literature, many contributions to the stability theory

of F for a class of semi-infinite systems structurally richer than our linear inequality
systems. This class is formed by those systems σ whose index set T is a compact set
in the Euclidean space, defined as a solution set of finitely many analytic constraints.
Moreover, the coefficient functions a (·) and b (·) are assumed to belong to C1 (T ) .
Obviously, this class of C1-systems is a subclass of continuous systems.

Assuming that C1 (T ) is equipped with the so-called Whitney topology, it is es-
tablished in [11] that, under the assumption of the boundedness of F , F will be
topologically stable at π (homeomorphic feasible sets in a neigborhood of π) if and
only if the Mangasarian–Fromovitz constraint qualification (MFCQ) is held. The ex-
tension of this result for an unbounded F can be found in [10]. In this semi-infinite
programming context (with C1 data), the equivalence between the MFCQ and the
metric regularity of the constraints has been established in [9]. Parametric versions
of these results are given in [12] and [13], again in the C1-data context (see also [16]).
When one is confined to the context of linear data without any structure for T , the
corresponding counterparts of these results were provided in [6] and [7], using ad hoc
techniques based exclusively upon the semi-infinite version of the alternative theo-
rems. (The analytic approach does not make sense in our context since nothing is
known about the functions a (·) and b (·).)
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STABILITY AND WELL-POSEDNESS IN LSIP 87

4. Optimal value function and Hadamard well-posedness. Let us consider
the sublevel sets of the problem π:

L(α) := {x ∈ F | c′x ≤ α} = {x ∈ Rn | a′tx ≥ bt, t ∈ T ; c′x ≤ α} , α ∈ R.
L (α) depends on π. So, the sublevel sets of a different problem π1 will be denoted
L1 (α) .

Obviously, O+ (L(α)) = {y ∈ Rn | a′ty ≥ 0 , t ∈ T ; c′y ≤ 0} = {at, t ∈ T ; −c}o,
which is independent of α, so that all the nonempty sublevel sets will have the same
recession cone.

In the following key lemma, intc (Πs) will represent the interior of Πs in the
topology relative to Πc. Theorem 2.7 in [5] can be obtained as an immediate corollary
of this lemma together with Theorem 3.1.

Lemma 4.1. π ∈ intc (Πs) if and only if F ∗ is a nonempty bounded set.
Proof. If F ∗ is a nonempty bounded set, O+ (F ∗) = {0n} = {at , t ∈ T ; −c}o

and, consequently, 0n ∈ int (Rn) = int (cone ({at , t ∈ T ; −c})) . Now, let us note
that if δ (π1, π) is small enough one still has 0n ∈ int

(
cone

({
a1
t , t ∈ T ; −c1})) [7,

Lem. 4.2]. Thus, by reversing our previous argument, we observe that every nonempty
sublevel set of any consistent problem π1 in a certain neighborhood of π is bounded
and, then, F ∗1 is nonempty (c′x attains its minimum in a compact set).

Conversely, if π = (c, σ) ∈ intc (Πs) and F ∗ is unbounded, we shall take u ∈
O+ (F ∗), u 6= 0n, and then we shall construct the sequence of problems {πr :=(
c− 1

ru, σ
)}.

Obviously, limrπr = π and {πr} ⊂ Πc\Πb, because, whichever x∗ ∈ F ∗ we take,

one has x∗ + λu ∈ F ∗ ⊂ F = Fr for all λ > 0, and limλ→∞
(
c− 1

ru
)′

(x∗ + λu) =

v − 1
ru
′x∗−limλ→∞ λ

r ‖u‖2 = −∞. Hence, the existence of such a sequence {πr}
contradicts our current hypothesis.

The continuity properties of the optimal value function ϑ are established in the
following theorem.

Theorem 4.2. Let π = (c, σ) ∈ Πc. Then
i. F is lsc at π if and only if ϑ is usc at π.
ii. If F ∗ is a nonempty bounded set, ϑ will be lsc at π. If π ∈ Πb, the converse

statement holds.
iii. If F is lsc at π and F ∗ is a nonempty bounded set, then we can find positive

scalars, η and k, such that δ (πi, π) < η, i = 1, 2, yield the Lipschitzian inequality

|ϑ (π1)− ϑ (π2)| ≤ kδ (π1, π2) .

Proof. i. The “only if” part is a straightforward consequence of [4, Prop. 2,
Chap. IX]. In order to prove the converse statement, let us consider that ϑ is usc at
π. Let µ > v. Then, there will exist η > 0 such that δ(π1, π) < η implies v1 ≤ µ and,
necessarily, π1 ∈ Πc; i.e., π ∈ int(Πc) and, so, F is lsc at π.

ii. Given the scalar ε > 0, we have to prove that η > 0 exists such that δ (π1, π) <
η implies v1 ≥ v − ε. If ρ > 0 satisfies F ∗ ⊂ ρB, we shall take the open set W :=
{x ∈ Rn | c′x > v − (ε/2)} ∩ ρB. Obviously, W ⊃ F ∗.

Let us consider the system

σ̃ := {a′tx ≥ bt , t ∈ T ; c′x ≤ v}(4.1)

with index set T̃ := T ∪{t0}, where t0 is the index associated with the last inequality

of σ̃ (t0 /∈ T ). Obviously, its solution set, denoted by F̃ , coincides with F ∗, which
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88 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

is a nonempty bounded set by assumption. Consequently, if we represent by F̃ the
feasible set mapping defined on the parameter space Π̃ of all the LSIP problems with
constraint systems having T̃ as index set, it follows that F̃ is usc at π̃ := (c, σ̃).

Hence, η̂ > 0 exists such that, if δ̃ denotes the corresponding extended distance in Π̃,
δ̃ (π̃1, π̃) < η̂ will imply F̃1 ⊂W (although F̃1 might be empty).

Let us take any problem π1 =
(
c1, σ1

)
satisfying δ (π1, π) < η, with η := min{η̂,

ε/(2ρn1/2)}. Define the associated problem in Π̃, π̃1 =
(
c1, σ̃1

)
, where

σ̃1 :=
{(
a1
t

)′
x ≥ b1t , t ∈ T ;

(
c1
)′
x ≤ v

}
.

(The right-hand side term of the last constraint is fixed at v = ϑ (π).) It is obvious

that δ̃ (π̃1, π̃) = δ (π1, π) < η ≤ η̂ and, so, F̃1 = L1 (v) ⊂W.
Two possibilities can arise. If F̃1 = ∅, we have v1 ≥ v > v−ε (possibly, v1 = +∞).

Otherwise (i.e., when F̃1 6= ∅), if we take an arbitrary x∗ ∈ F ∗1 ⊂ F̃1, it can be written

v1 =
(
c1
)′
x∗ = c′x∗ +

(
c1 − c)′ x∗ > v − ε

2
− ∥∥c1 − c∥∥∞ ‖x∗‖ n1/2 > v − ε.

Assume now that ϑ is lsc at π ∈ Πb, and let us show that the level set L(µ), with
µ > v, is bounded, in which case π will be solvable and F ∗ bounded. Otherwise, we
can take u ∈ O+(L(µ)), u 6= 0n, and then construct the sequence {πr := (c− 1

ru, σ)}.
Obviously, limrπr = π and, reasoning as in Lemma 4.1, we prove that {πr} ⊂ Πc \Πb,
which contradicts our current hypothesis.

iii. By Theorem 3.1 and Lemma 4.1 there will exist η̂ > 0 such that δ (π1, π) < η̂
implies π1 ∈ Πs. Given ε > 0, the upper semicontinuity of ϑ at π guarantees that,
if η̂ is small enough, one also has v1 ≤ v + ε, which is equivalent in this case to
L1 (v + ε) 6= ∅, provided that δ (π1, π) < η̂.

If we consider, instead of the system introduced in (4.1), the system

σ̃ := {a′tx ≥ bt , t ∈ T ; c′x ≤ v + ε} ,

we observe that F̃ = L (v + ε) is bounded (all the nonempty sublevel sets are bounded

because F ∗ = L (v) enjoys this property) and F̃ will again be usc at π̃. Taking η̂
sufficiently small and π1 =

(
c1, σ1

)
satisfying δ (π1, π) < η̂, we have

L1 (v + ε) ⊂ L (v + ε) +B,(4.2)

since L1 (v + ε) is the feasible set of π̃1 =
(
c1, σ̃1

)
, where

σ̃1 :=
{(
a1
t

)′
x ≥ b1t , t ∈ T ;

(
c1
)′
x ≤ v + ε

}
(note that δ̃ (π̃1, π̃) = δ (π1, π)).

Statement (4.2) means that µ > 0 can be found such that ‖x‖ ≤ µ for all x ∈
L1 (v + ε) and for every π1 in the η̂-neighborhood of π.

Applying Lemma 3.2 to π̃ = (c, σ̃), we conclude the existence of η > 0 (we shall
take η < min {1, η̂}) and β > 0 such that, if πi =

(
ci, σi

)
, i = 1, 2, are contained in the

η-neighborhood of π and, since Li (v + ε), i = 1, 2, is the feasible set of π̃i =
(
ci, σ̃i

)
,
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STABILITY AND WELL-POSEDNESS IN LSIP 89

σ̃i :=
{(
ait
)′
x ≥ bit , t ∈ T ;

(
ci
)′
x ≤ v + ε

}
, one has for x2 ∈ L2(v + ε)

d
(
x2, L1 (v + ε)

) ≤ βmax
[
supt∈T

{
b1t −

(
a1
t

)′
x2
}
,
(
c1
)′
x2 − v − ε , 0

]
= βmax

[
supt∈T

{[
b2t −

(
a2
t

)′
x2
]

+
[(
b1t − b2t

)− (a1
t − a2

t

)′
x2
]}

,(
c2
)′
x2 − v − ε+

(
c1 − c2)′ x2 , 0

]
≤ βmax

[
supt∈T

{(
b1t − b2t

)− (a1
t − a2

t

)′
x2
}
,
(
c1 − c2)′ x2 , 0

]
≤ β (1 + µn1/2

)
δ (π1, π2) = β0δ (π1, π2) ,

where β0 := β
(
1 + µn1/2

)
. Now, if x2 ∈ F ∗2 ⊂ L2 (v + ε), and taking x1 ∈ L1 (v + ε)

such that
∥∥x1 − x2

∥∥ = d
(
x2, L1 (v + ε)

)
, it follows that

v1 − v2 = v1 −
(
c2
)′
x2 ≤ (c1)′ x1 − (c2)′ x2 ≤ ∥∥c1 − c2∥∥ ∥∥x2

∥∥+
∥∥c1∥∥ ∥∥x1 − x2

∥∥
≤ µn1/2δ (π1, π2) + n1/2 (‖c‖∞ + η)β0δ (π1, π2) ≤ kδ (π1, π2) ,

provided that k := n1/2 [µ+ β0 (‖c‖∞ + 1)] .
Repeating the procedure for v2 − v1, one obtains |v1 − v2| ≤ kδ (π1, π2).
In LSIP, existence and continuous dependence of the optimal solutions from prob-

lem’s data might be established as follows.
Given {πr = (cr, σr)} ⊂ Πb such that limrπr = π, the sequence {xr} is said to be

an asymptotically minimizing sequence (a.m.s.) for π associated with {πr} if xr ∈ Fr
for all r, and

limr

{
(cr)

′
xr − vr

}
= 0;

i.e., as r increases, xr approximately solves the approximating problem πr.
The problem π ∈ Πs will be Hadamard well posed (Hwp) if for each x∗ ∈ F ∗

and for each possible sequence {πr} ⊂ Πb converging to π, there exists at least an
associated a.m.s. converging to x∗.

Theorem 4.3. Given π = (c, σ) ∈ Πs, the following statements hold:
i. If π is Hwp, then the restriction of ϑ to Πb, denoted by ϑb, is continuous at π.

If F is lsc at π, the converse statement is also true.
ii. Provided that F ∗ is bounded, π is Hwp if and only if either F is lsc at π or F

is a singleton.
iii. When F ∗ is unbounded and π is Hwp, F has to be lsc at π.
Proof. i. First, we assume that π is Hwp, and take {πr} ⊂ Πb converging to π.

We will see that limrvr = v.
The definition of Hadamard well-posedness states that, given x∗ ∈ F ∗, there will

exist a sequence {xr} tending to x∗, such that xr ∈ Fr and limr

{
(cr)

′
xr − vr

}
= 0.

Since limr (cr)
′
xr = c′x∗ = v, we obtain limrvr = v.

In order to prove the converse, we start from the continuity of ϑb at π and from
the lower semicontinuity of F at π. If {πr} ⊂ Πb converges to π and x∗ ∈ F ∗ ⊂ F,
the lower semicontinuity of F at π implies x∗ ∈ lim infrFr (condition v in Theorem
3.1). In other words, there must exist a sequence {xr} converging to x∗ and such
that xr ∈ Fr. Then {xr} turns out to be an a.m.s. for π associated with {πr} , since
limr

{
(cr)

′
xr − vr

}
= 0.

ii. Assume that π is Hwp, that F ∗ is bounded, and that, at the same time, F is
not a singleton and F fails to be lsc at π.
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90 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

Pick an optimal point x∗ ∈ F ∗ and an arbitrary y ∈ F\ {x∗} . Define u := y − x∗
and, associated with each r ∈ N, take a positive scalar kr satisfying∥∥∥∥ 1

kr
u

∥∥∥∥
∞
<

1

r
and

∣∣∣∣ 1

kr
u′y
∣∣∣∣ < 1

r
.

According to condition iii in Theorem 3.1, the unfulfillment of the lower semi-

continuity of F at π gives rise to the existence of a sequence {λp} ⊂ R(T )
+ , satisfying∑

t∈T λ
p
t = 1, p = 1, 2, . . . , and

0n+1 = limp

∑
t∈T

λpt

(
at
bt

)
.(4.3)

Let us introduce, for each r ∈ N, the problem πr = (c, σr) with

σr :=

{(
at +

1

kr
u

)′
x ≥ bt +

1

kr
u′y, t ∈ T

}
.

Obviously, δ (πr, π) < 1
r and, so, limrπr = π. Moreover, y ∈ Fr for every r, and

u′x ≥ u′y is a consequence of each σr, since (4.3) implies

limp

∑
t∈T

λpt

(
at + 1

kr
u

bt + 1
kr
u′y

)
=

1

kr

(
u

u′y

)
.

According to Lemma 4.1, the boundedness of F ∗ entails that {πr}r≥m ⊂ Πs for
a certain m.

We have realized that u′x ≥ u′y for every x ∈ Fr, but u′ (x∗ − y) = −‖u‖2 and,
so, u′x∗ < u′y. This implies that, for this optimal point x∗ and for this particular
sequence of bounded problems converging to π, there is no associated a.m.s. {xr}r≥m
converging to x∗, and the Hadamard well-posedness fails.

Let us proceed with the proof of the converse. First, we assume that F ∗ is
bounded and F is lsc at π. By Theorem 4.2, parts i and ii, we conclude that ϑ is
continuous at π and then apply the converse statement in part i. If, alternatively,
F = F ∗ = {x∗}, our first preliminary conclusion is that F is usc at π, and we shall
check that the condition for the Hadamard well-posedness of π is fulfilled in this case.

Let us consider an arbitrary sequence {πr} ⊂ Πb converging to π. Lemma 4.1
applies again, yielding m such that πr ∈ Πs if r ≥ m. Take xr ∈ F ∗r for r ≥ m and
xr ∈ Fr if r < m. Then, {xr} is obviously an a.m.s. for π associated with {πr} .

The upper semicontinuity of F at π implies that, given any open set W containing
F = {x∗} , there will exist an integer r0 such that Fr ⊂ W if r ≥ r0. In other words,
xr ∈W when r ≥ r0, and this means limrx

r = x∗.
iii. Take x∗ ∈ F ∗ and u ∈ O+ (F ∗) with ‖u‖∞ = 1. Then define µr = 1

u′x∗+r ,
with r sufficiently large to guarantee the positiveness of the denominator, and take
cr := c− µru and yr := x∗ + ru. Obviously, yr ∈ F ∗ and (cr)

′
yr = v − 1.

Now let us define the systems

σr :=

{(
at +

1

kr
cr
)′
x ≥ bt +

v − 1

kr
, t ∈ T

}
, r = 1, 2, . . . ,
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STABILITY AND WELL-POSEDNESS IN LSIP 91

where the constants kr are chosen in such a way that∥∥∥∥ crkr
∥∥∥∥
∞
<

1

r
and

∣∣∣∣v − 1

kr

∣∣∣∣ < 1

r
.

Finally, we shall introduce the associated problems πr := (cr, σr), which obviously
verify limrπr = π and πr ∈ Πc (because yr ∈ Fr).

If F is not lsc at π, condition iii in Theorem 3.1 will fail, and a sequence {λp} ⊂
R(T )

+ exists verifying
∑
t∈T λ

p
t = 1, p = 1, 2, . . . , and (4.3). This implies, for each

r ∈ N,

limp

∑
t∈T

λpt

(
at + 1

kr
cr

bt + v−1
kr

)
=

1

kr

(
cr

v − 1

)
,

and the nonhomogeneous Farkas lemma allows us to conclude that (cr)
′
x ≥ v − 1

is a consequence of σr, which in fact entails yr ∈ F ∗r and vr = v − 1, contradicting
part i.

Corollary 4.4. Let π be a Hwp problem. If x∗ is the limit of a certain a.m.s,
then x∗ will be optimal for π (i.e., x∗ ∈ F ∗).

Proof. There must exist a sequence {πr} ⊂ Πb converging to π, and an associated
sequence {xr} , xr ∈ F (πr) for every r ∈ N, such that

limr

{
(cr)

′
xr − vr

}
= 0 and limr x

r = x∗.

Statement i in Theorem 4.3 establishes the continuity of ϑb at π, entailing limr vr = v.
Thus,

0 = limr

{
(cr)

′
xr − vr

}
= c′x∗ − v

at the same time that x∗ is feasible for π since, for every t ∈ T,

0 ≤ limr

{
(art )

′
xr − brt

}
= a′tx

∗ − bt
(convergence in (Π, δ) yields limrc

r = c, limra
r
t = at, and limrb

r
t = bt for all

t ∈ T ).
The only antecedents of the results presented in this section come from the field

of continuous LSIP, and they can be traced out from [2] and the references therein.
Most of the statements in [2, sects. 2 and 3] can be obtained as corollaries of Theorem
4.2, emphasizing the fact that our results subsume all the previous contributions to
the continuous problem. Additionally, the Lipschitzian condition given in [2, Thm.
3.5] is a trivial consequence of the inequality established in part iii of Theorem 4.2.

5. Optimal set mapping. The only theorem in this section concerns the sta-
bility behavior of F∗.

Theorem 5.1. Given π ∈ Πs, the following propositions hold:
i. F∗ is closed at π if and only if either F is lsc at π or F = F ∗.
ii. If F∗ is usc at π, then F∗ is closed at π. The converse statement holds if F ∗

is bounded.
iii. F∗ is lsc at π if and only if F is lsc at π and F ∗ is a singleton.
Proof. i. Suppose that F∗ is closed at π and that, simultaneously, F 6= F ∗ and

F is not lsc at π.
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92 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

Let y ∈ F\F ∗. Then c′y = v + α for a certain α > 0, and we shall consider a
sequence of problems {πr = (c, σr)}, where

σr :=
{(
at + r−1c

)′
x ≥ bt + r−1 (v + α) , t ∈ T

}
, r = 1, 2, . . . .

It follows that limrπr = π, that y ∈ Fr for all r, and that c′x ≥ c′y is a consequence
of σr, again for every r (we should apply the technique used in the proof of proposition
ii in Theorem 4.3). This fact actually implies y ∈ F ∗r , r = 1, 2, . . . , and the closedness
of F∗ at π gives rise to the contradiction y ∈ F ∗.

We continue with the proof of the converse statement. If F = F ∗, we take
sequences {πr} and {xr} , converging to π and x, respectively, and also verifying
xr ∈ F ∗r . Since F ∗r ⊂ Fr and F is always closed at π, one attains x ∈ F = F ∗.

Alternatively, if F is lsc at π and we have limrπr = π, limr x
r = x, and xr ∈ F ∗r ,

r = 1, 2, . . . , we shall prove that c′x ≤ c′x0 for any possible SS element of σ, x0. First,
we prove that x0 ∈ Fr if r ≥ r0 for a certain r0. Actually, if ρ > 0 satisfies a′tx

0 ≥ bt+ρ
for all t ∈ T, and δ (π0, π) < ρ

2 min{1, n−1/2
∥∥x0
∥∥−1} (writing

∥∥x0
∥∥−1

= +∞ in the
case x0 = 0n), the Cauchy–Schwarz inequality leads us to(

a0
t

)′
x0 ≥ a′tx0 − ∥∥x0

∥∥∥∥a0
t − at

∥∥ ≥ a′tx0 − ρ

2
≥ bt +

ρ

2
≥ b0t .

Once we have established x0 ∈ Fr, if r is sufficiently large, we write (cr)
′
xr ≤

(cr)
′
x0 and, taking limits for r →∞, c′x ≤ c′x0 results.

Since F is, in this case, the closure of the set of all the SS elements of σ (condition
vi in Theorem 3.1), one concludes that c′x ≤ c′y for every feasible point y ∈ F , i.e.,
x ∈ F ∗.

ii. Since (Π, δ) behaves locally as the metric space (Π, d) with d(π1, π) = min
{1 , δ(π1,π)}, we can apply any property of set-valued mappings between metric spaces
(see, for instance, [1]). In particular the upper semicontinuity of F∗ at π and the
closedness of the set F ∗ imply that F∗ is a closed mapping at π.

In order to prove the converse statement, we assume that F ∗ is bounded. If
F = F ∗, we have that F is usc at π, entailing the upper semicontinuity of F∗ at the
same problem π. When F is lsc at π, we use the following reasoning.

Let W be an open set containing F ∗, the last one being interpreted as the solution
set of the system σ̃ introduced in (4.1). The boundedness of F̃ ≡ F ∗ implies the

upper semicontinuity of F̃ at π̃ := (c, σ̃) . In other words, η1 > 0 exists such that

δ̃ (π̃1, π̃) ≤ η1 guarantees F̃1 ⊂W. In particular, if we consider π̃1 := (c, σ̃1) , with

σ̃1 := {a′tx ≥ bt , t ∈ T ; c′x ≤ v + η1} ,
we deduce the inclusion F̃1 = L (v + η1) ⊂W.

Let x be an SS element of σ (remember that F is lsc at π). If c′x < v + η1, it

is evident that x is an SS element of σ̃1 too. Otherwise, we pick x̃ ∈ F̃1 satisfying
c′x̃ < v + η1. Then, if λ is sufficiently small, λx + (1− λ) x̃ will be an SS element of

σ̃. In any case, we conclude that F̃ is lsc at π̃1, implying the existence of η2 > 0 such
that δ̃ (π̃2, π̃1) ≤ η2 leads us to F̃2 6= ∅.

Moreover, the boundedness of F̃1 = L(v + η1) implies that F̃ is also usc at π̃1,

and for a certain η3 > 0, δ̃ (π̃2, π̃1) ≤ η3 ensures F̃2 ⊂W.
Now, take a problem π2 such that δ (π2, π) < η := min {η2, η3} , and let us

associate with it the problem π̃2 :=
(
c2, σ̃2

)
in Π̃, with

σ̃2 :=
{(
a2
t

)′
x ≥ b2t , t ∈ T ;

(
c2
)′
x ≤ v + η1

}
.
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STABILITY AND WELL-POSEDNESS IN LSIP 93

Table 5.1
Stability and Hadamard well-posedness of the LSIP problem.

F ∗ nonempty F lsc at π F non-lsc at π

F ∗ is a F = F ∗ I,II,III,IV,
I ,II,III, IV ,Hwp

singleton F 6= F ∗ Hwp
I , II ,III, IV , Hwp

F ∗ is bounded, F = F ∗
I ,II,III,IV, I ,II,III, IV , Hwp

not a singleton F 6= F ∗ Hwp
I , II , III, IV , Hwp

F ∗ is F = F ∗ Cell A:

I , IIIc ,IV

Cell C:

I , IIIb , IV , Hwp

unbounded F 6= F ∗ Cell B:

I , IIIc ,IV I , II , IIIb , IV , Hwp

Obviously, δ̃ (π̃2, π̃1) < η and, consequently, ∅ 6= F̃2 = L2 (v + η1) ⊂ W. Thus,
F ∗2 ⊂ L2 (v + η1) ⊂W and the upper semicontinuity of F∗ at π follows.

iii. Let us suppose first that F ∗ = {x∗} and that F is lsc at π. Then parts i and
ii apply, and we conclude that F∗ is usc at π.

Since F is lsc at π, there will exist η1 > 0 such that δ (π1, π) < η1 implies π1 ∈ Πc.
Lemma 4.1 allows us to write π1 ∈ Πs if η1 is small enough.

Now take an open set W containing x∗. The upper semicontinuity of F∗ at π
gives rise to the existence of η2 > 0 such that δ (π1, π) < η2 implies F ∗1 ⊂ W. If
η := min {η1, η2}, one gets ∅ 6= F ∗1 ⊂ W, when δ (π1, π) < η, so that F ∗1 ∩W 6= ∅ and
F∗ is certainly lsc at π.

Next we shall prove that the lower semicontinuity of F∗ at π implies that π has a
unique optimal solution. If this is not the case, we pick two different points in F ∗, x∗,
and y∗ and define u := y∗ − x∗. We shall introduce the sequence of problems πr :=
(cr, σ) , r = 1, 2, . . . , with cr := c − 1

r u. Obviously, limrπr = π, and a contradiction
will be attained.

Since u′ (y∗ − x∗) > 0, an open neighborhood of x∗, W , can be found such that
u′ (y∗ − x) > 0 for every x ∈W. Let us take an arbitrary x ∈W ∩ F , and notice that
(cr)

′
(y∗ − x) = c′ (y∗ − x)− 1

ru
′ (y∗ − x) < 0. Hence x /∈ F ∗r , and this contradicts the

lower semicontinuity of F∗ at π.
The last step in the proof will establish that the lower semicontinuity of F∗ at π

implies that this property also holds for F . Actually, we shall see that π ∈ int (Πc).
In fact, if W is an open set such that F ∗ ∩W is nonempty, there will exist η > 0 such
that δ (π1, π) < η yields F ∗1 ∩W 6= ∅, and F1 6= ∅ in this neighborhood of π.

In [5, Thms. 3.3 and 4.2], the continuity properties of the optimal set mapping at
a continuous solvable problem π are analyzed. The optimal set mapping considered
there is the restriction, F∗os, of F∗ to the subset of continuous solvable problems, Πos.
So, the characterization of the lower semicontinuity of F∗os at π ∈ Πos given in [5,
Thm. 4.2] requires the existence of an extreme point of F to guarantee the existence
of solvable problems in a neighborhood of π.

Table 5.1 summarizes all the results presented in the previous sections. The
following symbols are used: I ⇔ F∗ is lsc at π; II ⇔ F∗ is usc at π; III ⇔ ϑ is lsc
at π; IV ⇔ ϑ is usc at π; IIIb ⇔ ϑb is lsc at π; IIIc ⇔ ϑc is lsc at π (ϑc ≡ ϑ |Πc); I
means that I does not hold (etc.).
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6. Examples. By means of the following series of examples it is shown that
in the cells of Table 5.1 associated with the cases “F ∗ unbounded,” every possible
combination for the nonfixed properties can occur, showing that there is no additional
underlying connection between them. All the examples are LSIP problems in R2,
except Examples 6.3 and 6.4, which are posed in R3.

Cell A: F ∗ unbounded, F = F ∗, and F lsc at π
EXAMPLE 6.1. II and Hwp.

π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ Z,
sx2 ≥ −1 , s ∈ N.

F = F ∗ = {0} × R+ and v = 0. Moreover, 02 is an SS element and F is lsc
at π. If δ (π1, π) < 1, we have F ∗1 ⊂ F1 = F = F ∗ and F∗ is trivially usc at π. In
order to prove that π is Hwp, we have to establish the lower semicontinuity of ϑb at
π, since this function is already usc at π as a consequence of the lower semicontinuity
of F at π. In fact, π1 ∈ Πb and δ (π1, π) < 1 implies that v1 is attained in the only
extreme point of F1, namely, 02. In other words, v1 = 0 and this entails the required
continuity.

EXAMPLE 6.2. II and Hwp.

π : Inf x1

s.t. tx1 + 0x2 ≥ −1 , t ∈ Z.
F = F ∗ = {0} × R and v = 0. Since 02 is an SS element, F is lsc at π. If we

define, for r = 1, 2, . . . , the problem

πr : Inf
(
x1 + 1

rx2

)
s.t. tx1 + 1

rx2 ≥ −1 , t ∈ Z,
whose feasible set is Fr = {0} × [−r,+∞[ , we observe that limr πr = π and vr = −1.
Thus ϑb fails to be lsc at π.

EXAMPLE 6.3. II and Hwp.

π : Inf x1

s.t. tx1 + x2 + x3 ≥ −1 , t ∈ Z,
x1 + sx2 + x3 ≥ −1 , s ∈ N,
x1 + x2 + ux3 ≥ −1 , u ∈ N,
−x2 + x3 ≥ −1.

03 is an SS element and, so, F is lsc at π. It can be seen that x1 ≥ 0, −x1 ≥ 0,
x2 ≥ 0, and x3 ≥ 0 are consequent relations of the constraint system σ. To this end,
we divide the first (second, third) block of constraints by t (s, u) and take limits for
t→ ±∞ (s→ +∞, u→ +∞). Conversely, the infinitely many constraints in the first
three blocks are themselves consequences of x1 = 0, x2 ≥ 0, and x3 ≥ 0. Consequently,
F = F ∗ =

{
x ∈ R3 | x1 = 0, x2 ≥ 0, x3 ≥ 0, x3 − x2 ≥ −1

}
.

If π1 is a problem such that δ (π1, π) < ε < 1, we can write it as follows:

π1 : Inf {(1 + ε1)x1 + ε2x2 + ε3x3}
s.t. (t+ εt1)x1 + (1 + εt2)x2 + (1 + εt3)x3 ≥ −1 + εt4 , t ∈ Z,

(1 + εs1)x1 + (s+ εs2)x2 + (1 + εs3)x3 ≥ −1 + εs4 , s ∈ N,
(1 + εu1 )x1 + (1 + εu2 )x2 + (u+ εu3 )x3 ≥ −1 + εu4 , u ∈ N,

εw1 x1 + (−1 + εw2 )x2 + (1 + εw3 )x3 ≥ −1 + εw4 .
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STABILITY AND WELL-POSEDNESS IN LSIP 95

It is also obvious that 03 ∈ F1 and that the first three blocks of constraints are
still equivalent to the finite system {x1 = 0, x2 ≥ 0, x3 ≥ 0}; i.e.,

F1 = {x ∈ R3 | x1 = 0, x2 ≥ 0, x3 ≥ 0 and (−1 + εw2 )x2 + (1 + εw3 )x3 ≥ −1 + εw4 }.

The first part of our argument consists in showing that F∗ fails to be usc at
π. Actually, if one introduces the approximating sequence (ap.s.) of problems πr,
r = 1, 2, . . . , which differ from π only in that the last constraint has been replaced
by −x2 +

(
1 + 1

r

)
x3 ≥ −1, respectively, it becomes evident that the open set W ={

x ∈ R3 | −x2 + x3 > −2
}

contains F ∗, but xr = (0, r + 2, r)
′ ∈ Fr \W = F ∗r \W.

So, F ∗r *W for every r and F∗ is not usc at π.
The second part is devoted to establishing the lower semicontinuity of ϑb at π.

Since F1 is a polyhedral set, if π1 ∈ Πb, its optimal value will be attained in any of
its two extreme points, namely,

03 and

(
0,
−1 + εw4
−1 + εw2

, 0

)′
; i.e., v1 = min

{
0,
ε2 (εw4 − 1)

εw2 − 1

}
.

Accordingly, we shall write

v1 ≥ − |ε2| (εw4 − 1)

εw2 − 1
>
−ε (1 + ε)

1− ε

and, since limε→0
ε(1+ε)

1−ε = 0, we conclude the intended property.

EXAMPLE 6.4. II and Hwp.
π : Inf x1

s.t. tx1 + x2 + x3 ≥ −1 , t ∈ Z,
x1 + sx2 + x3 ≥ −1 , s ∈ N,
x1 + x2 + ux3 ≥ −1 , u ∈ N,

−x2 ≥ −1.

03 is an SS element and F = F ∗ =
{
x ∈ R3 | x1 = 0, x3 ≥ 0 and x2 ∈ [0, 1]

}
.

Now, let us introduce the ap.s. {πr} with πr differing from π only in the last
constraint, which is replaced by −x2 + 1

rx3 ≥ −1. Consider the open set W = {x ∈
R3 | −x2 > −2}, the points xr = (0, 2, r)

′
, r = 1, 2, . . . , and observe that W ⊃ F ∗

but xr ∈ Fr \W = F ∗r \W, r = 1, 2, . . . ; i.e., F∗ is not usc at π.
Next we prove that π is not Hwp. Now we take into account the ap.s. {π̃r} ,

such that π̃r is obtained from changing the objective function of π by x1 − 1
rx3 and

substituting the last constraint of π by −x2 − 1
rx3 ≥ −1. We get F̃r = conv{03,

(0, 1, 0)′, (0, 0, r)′} and, consequently, ṽr = −1, r = 1, 2, . . . ; i.e., ϑb is not lsc at π.
Cell B: F ∗ unbounded, F 6= F ∗, and F lsc at π.
EXAMPLE 6.5. II and Hwp.

π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ N,
x1 + sx2 ≥ −1 , s ∈ N.

02 is an SS element of π, entailing the lower semicontinuity of F at π. The con-
straints system is obviously equivalent to x1 ≥ 0 and x2 ≥ 0, so F = {x ∈ R2 | x1 ≥ 0,
x2 ≥ 0} and F ∗ = {0} × R+. In addition, if δ (π1, π) < 1, we shall find F1 = F

and, since the objective function of π1 is
(
c1
)′
x = (1 + ε1)x1 + ε2x2, one gets(

c1
)′ (1

0

)
= 1 + ε1 > 0 =

(
c1
)′

02. Hence, the point (1, 0)
′

is not optimal for π1,
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96 M. CÁNOVAS, M. LÓPEZ, J. PARRA, AND M. TODOROV

which implies that in the nontrivial case, namely, π1 ∈ Πb, we have ∅ 6= F ∗1 ⊂ F ∗; i.e.,
F∗ is trivially usc at π. Simultaneously, v1 = 0 = v and ϑb is obviously lsc at π.

EXAMPLE 6.6. II and Hwp.
π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ N,
x1 + sx2 ≥ −1 , s ∈ N,
−x1 ≥ −1.

F is lsc at π because 02 is, once more, an SS element. It can be easily verified
that F = [0, 1] × R+ and F ∗ = {0} × R+. If δ (π1, π) < 1 we have c1 = (1 + ε1, ε2)

′

and F1 =
{
x ∈ R2 | x1 ≥ 0, x2 ≥ 0 and (−1 + εω1 )x1 + εω2 x2 ≥ −1 + εω3

}
. We shall

distinguish two cases:
i. εω2 < 0. Then

F1 = conv

{
02,

(
1− εω3
1− εω1

, 0

)′
,

(
0,

1− εω3
−εω2

)′}
.

ii. εω2 ≥ 0. Now F1 is unbounded, with two extreme points,

02 and

(
1− εω3
1− εω1

, 0

)′
.

In any case, if π1 ∈ Πs (or, equivalently, π1 ∈ Πb since π1 is equivalent to an
ordinary linear programming problem), the optimal value is attained at some extreme
point. Notice that (

1− εω3
1− εω1

, 0

)′
will never be optimal, because(

c1
)′

02 = 0 < (1 + ε1)
1− εω3
1− εω1

(remember that all the epsilons have absolute values smaller than 1). Consequently,
v1 will be attained at points with the first coordinate equal to zero; i.e., F ∗1 ⊂ F ∗ and
F∗ turns out to be usc at π.

Let us proceed, providing an ap.s. of problems for π, {πr} , such that vr = −1,
r = 1, 2, . . . , and, accordingly, ϑb will not be lsc at π. The problem πr is derived from
π, replacing the objective function by (cr)

′
x = x1 − 1

rx2 and the last constraint by

−x1 − 1
rx2 ≥ −1. Since Fr = conv {02, (1, 0)′, (0, r)′}, vr = (cr)

′
(0, r)′ = −1 results.

EXAMPLE 6.7. II and Hwp.
π : Inf x1

s.t. x1 + 0x2 ≥ 0.
x0 = (1, 0)′ is an SS element, F = R+ × R, and F ∗ = {0} × R.
Consider the approximating problem πr := Inf {x1 + 1

rx2 | x1 + 1
rx2 ≥ 0}, for

which δ (πr, π) = 1
r . Taking the open set W :=

{
x ∈ R2 | x1 > −1

}
and the points

xr := (−1, r)
′
, one has W ⊃ F ∗ but xr ∈ F ∗r \W, and the upper semicontinuity of F∗

does not hold at π.
In the following step, the Hadamard well-posedness of π is shown. If π1 is any

problem obtained by perturbation of π, and δ (π1, π) < ε < 1, we can write

π1 := Inf
{

(1 + ε1)x1 + ε2x2 |
(
1 + ε1

1

)
x1 + ε1

2x2 ≥ ε1
3

}
,
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STABILITY AND WELL-POSEDNESS IN LSIP 97

with all the parameters having values in ]−1, 1[ . Then, π1 ∈ Πb if and only if

1 + ε1

1 + ε1
1

=
ε2

ε1
2

,

in which case

v1 = ε1
3

1 + ε1

1 + ε1
1

and v1 ≥ v − ε (1 + ε)

1− ε .

Since limε→0
ε(1+ε)

1−ε = 0, ϑb comes to be lsc at π.

EXAMPLE 6.8. II and Hwp.
π : Inf x1

s.t. x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ −1.

x0 = ( 1
2 , 0)′ is an SS element, F = [0, 1]×R, and F ∗ = {0}×R. On this occasion,

πr := Inf
{
x1 + 1

rx2 | x1 + 1
rx2 ≥ 0,−x1 ≥ −1

}
, and the argument uses exactly the

same terms as in the previous example to conclude that F∗ is not usc at π.
In order to check that π is not Hwp, take π̃r := Inf {x1 − 1

rx2 | x1 − 1
2rx2 ≥

0, −x1 ≥ −1}. Note that δ (π̃r, π) = 1
r and {π̃r} is an ap.s. for π. Moreover, F̃ ∗r ={

(1, 2r)
′}

and ṽr = −1, precluding the lower semicontinuity of ϑb at π.
Cell C: F ∗ unbounded, F = F ∗, and F non-lsc at π.
EXAMPLE 6.9. II.

π : Inf x1

s.t. tx1 + 0x2 ≥ −1 , t ∈ Z,
x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ 0.

F = F ∗ = {0} ×R. There is no SS element and, so, F is not lsc at π. If δ (π1, π)
is finite, F ∗1 ⊂ F1 ⊂ F = F ∗, implying II.

EXAMPLE 6.10. II.
π : Inf x1

s.t. x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ 0.

F = F ∗ = {0} × R, and we have no SS element. Defining πr := Inf{x1 + 1
rx2 |

x1 + 1
rx2 ≥ 0, −x1 − 1

rx2 ≥ 0}, one has δ (πr, π) = 1
r , x

r := (−1, r)
′ ∈ F ∗r , but

xr /∈W := {x ∈ R2 | x1 > −1} ⊃ F ∗. This yields II.
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