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Real-space mapping of topological invariants using artificial neural networks
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Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically
protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions
under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant
by evaluating the system locally, and thus require information about the wave functions in the whole system.
Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local
projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological

superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters.
Our neural network correctly identifies the different topological domains in real space, predicting the location
of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel
polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local

quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our
results show that supervised learning is an efficient methodology to characterize the local topology of a system.
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I. INTRODUCTION

The study of topological electronic phases is one of the
central topics in modern condensed-matter physics. Depend-
ing on the symmetry class different topological states exist,
with the paradigmatic examples of time-reversal topological
insulators [1], topological superconductors [2], topological
crystal insulators [3], topological Kondo insulators [4], and
topological Mott insulators [5] among others. The most fun-
damental quantity to characterize these states is the so-called
topological invariant, the value of which determines the topo-
logical class of the system. In particular, interfaces between
systems with different topological invariants show topolog-
ically protected excitations, resilient towards perturbations
respecting the symmetry class of the system. Computationally,
the calculation of the topological invariant usually requires the
explicit knowledge of the wave functions of the entire system
[6-8]. In particular, topological invariants can be calculated
as the winding number of the occupied wave functions under
twisted boundary conditions [6-8]. In that way, these methods
generically require computing the full wave functions, that
becomes a cumbersome task for systems without translational
symmetry consisting of thousands of atoms.

In several situations of experimental relevance, translational
symmetry is broken and systems are able to show different
phases in real space due to the spatial modulation of the
effective parameters. This situation might lead to protected
modes between different regions of the system, dramatically
changing the low-energy properties of the whole material.
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This is the natural scenario in van der Waals heterostructures,
where Moire patterns [9—11] could coexist with any topological
state [12,13]. A more controlled situation is the proposals for
topological superconductivity involving nanowires, where the
topological state is controlled locally by electric gates [14,15].
Even though real-space formulations for the topological invari-
ant do exist [16-20], their computation requires an integration
over the whole space. Thus, there is not a simple methodology
to obtain a topological invariant in inhomogeneous systems by
evaluating solely their local properties.

Application of machine learning (ML) methods in
condensed-matter physics is a growing area. A significant
advantage of these techniques is that they are capable of finding
the important degrees of freedom of a dataset without needing a
profound insight of the treated problem. The identification of
phase transitions [21-26] and the study of the ground state
and correlations in different quantum many-body problems
[27-32] are just some of the problems that machine learning
has helped tackle in the past few years. Techniques have
even been used in combination with ab initio calculations,
allowing a broader and more accurate understanding of mate-
rials [25,33,34]. Within the language of machine learning, the
calculation of topological invariants is understood as a sim-
ple classification algorithm [35,36], that could be efficiently
tackled with the so-called artificial neural networks (ANNs)
[37-42].

In this paper we show that ANNs are capable of char-
acterizing the local topology of a system using as input a
restricted amount of real-space information. In particular,
we show that a trained ANN identifies correctly the local
topological character in spatially varying Hamiltonians that
create topologically different regions in space. Importantly,
we show that this technique, used in conjunction with the
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kernel polynomial method (KPM), allows one to compute local
topological invariants with an algorithm the computational cost
of which scales just linearly with the size of the system.

The rest of the paper is organized as follows. In Sec. II
we review the basics of artificial neural networks (Sec. ITA)
and summarize the use of the kernel polynomial method to
efficiently compute density matrices (Sec. IIB). In Sec. III
we apply the combined ANN-KPM technique both to a
model Hamiltonian for a one-dimensional (1D) topological
superconductor (Sec. IITA) and to a two-dimensional (2D)
anomalous Hall insulator (Sec. III B). Finally, in Sec. IV we
present our conclusions.

II. METHOD

A. Artificial neural networks

Machine learning is a broad field that includes many
different approaches, goals, and methods [43]. The defining
property of ML algorithms is that they allow computers to
perform specific tasks without being explicitly programed
for each one of them [44]. Within the vast variety of ML
algorithms, we will focus on supervised learning algorithms,
which require a training dataset to fit the parameters in the
model. One of the most common models of supervised learning
is the ANN, which has been proven very useful to model
patterns and correlations of complex problems that cannot
be modeled analytically such as image or sound recognition
[37-39], and even natural language processing [40,41]. In our
case, we aim to use an artificial neural network to characterize
locally the topological state of a 1D [Fig. 1(a)] or 2D [Fig. 1(b)]
system. The objective of the procedure is to have a neural
network that, given local information about the system, returns
the topological invariant as sketched in Fig. 1(c). The local
information that will be provided is a local block of the density
matrix of the system, as we will discuss later.

ANNS are loosely based on parts of the brain, consisting of
neurons, modeled as perceptrons [45], and synapses as shown
in Fig. 1(a). The neurons in an ANN do not attempt to model the
actual structure or behavior of the biological cells [46]. Instead,
they mimic one of their main features, the activation function.
This activation function, o, sketched in Fig. 1(b) provides the
output of each neuron based on the received inputs and an
external parameter (bias). For computational convenience, o
should be any smooth and differentiable function defined over
R but with its range restricted to a closed interval, namely,
o € [—1,1], as depicted in Fig. 1(e). Usually, these functions
are either the tanh or the sigmoid function, but others might
be used without loss of generality or functionality since these
models are only weakly sensitive to these details [47].

The inputs X entering each neuron are weighted by the
synapses W and shifted by the bias b. The synapses’ weights
are parameters to be tuned and they can be arranged as
rectangular matrices, W, so the output L of the layer o can
be obtained simply as L, = (X, - Wy + by), where X, is the
input of the layer « (note that for the hidden layers X, = Ly_).
As a formative example the outputs of every layer of the toy
model sketched in Fig. 1(d) can be calculated as follows:

Lo = 0(Xo) orjust Lo = X,
Li=0(Lo-Wi+b), Ly=o(Li-Wa+b)=3 (1)

(a) (0) -y

(c)

Topological
invariant

Pij

input

Ly=9

FIG. 1. (a,b) The two different geometries of the model Hamilto-
nians considered below, a one-dimensional topological superconduc-
tor (a) and a two-dimensional quantum anomalous Hall insulator (b).
(c) A schematic sketch of our procedure: a trained neural network will
take as input a local density matrix, and it will return the topological
invariant of the system. (d) An artificial neural network as described
in the text. (e¢) The standard behavior of an activation function of a
neuron, o (x), for different weights (colors) and bias (dashed lines).

where X is the input fed to the ANN. The matrices W, and
the arrays b, are the parameters to be fitted during the training
process in order to modify the activation functions of each
of the neurons in the ways showed in Fig. 1(e). Note that the
number of parameters in ANN models grows very quickly with
the size (number of neurons per layer) and depth (number of
layers) of the network.

An artificial neural network, like every supervised learning
algorithm, consists of three phases. First, the architecture
of the model (i.e., the number of layers and neurons per
layer) is decided depending on the complexity of the problem
addressed. Second, the model is trained. In this process, several
input-output pairs are provided to the model the parameters
of which are fitted to mimic the correlations present in the
user-provided data. Finally, when the training is completed,
the model can be used to evaluate new (unseen) input data.

Supervised learning algorithms require a training dataset
to optimize the parameters of the models. The training is per-
formed by minimizing a cost function, &£, usually proportional
to the squared difference between the expected output, y, and
the actual output of the network, J:

E=10-9"~ )

Notice that y is a constant defined by the (user-provided)
training dataset while $ depends on all the parameters of the
network (weights and bias). The minimization of £ is, then,
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performed by iteratively modifying the values of all the weights
and bias in the network until the desired output is obtained. This
is a computationally complex and expensive process since the
number of parameters can range from a few tens to millions.
In fact, it was not until 1986 that an efficient method was
developed for such a purpose [48]. We use the gradient descent
with the back-propagation algorithm to train the ANN, which
is the most common approach nowadays. We used the open
source library PyBrain [42], to create, train, and evaluate the
ANN.

B. Correlation functions with the kernel polynomial method

In this section we review how real-space correlation func-
tions can be efficiently calculated using the KPM [49]. We
will focus the discussion on the case of a normal electronic
system, since the case of a superconductor can be treated in
an analogous way. The main task that we have to perform is
to obtain the density matrix, evaluated in a restricted area of
real space, of a certain (very large) Hamiltonian. In terms of
the eigenfunctions |V ) of the Hamiltonian H, the elements of
the density matrix can be written as

Er
Pij =/ (i [Wie) (Wi /)8 (Ex — w)dw 3)
—00
where |i) and |j) are the elements of the basis for the
Hamiltonian H and Ep is the Fermi energy. The diagonal
elements of the matrix, p;;, are the integrated local density
of states. In the gapped state, the off-diagonal elements are
expected to decay exponentially with distance. So, when the
Fermi energy Er lies in the gap, the density matrix is properly
described by restricting the calculation to a set of neighboring
sites. Generically, calculating the previous matrix requires
diagonalizing the full Hamiltonian to obtain the occupied wave
functions, a task that scales with O(N?), with N the system
size of the system. The kernel polynomial method allows the
computation of p;;, for a restricted set of neighboring sites,
with a computational cost that scales only as O(N).
The KPM allows one to compute the quantity

gij(@) = Y (i|Wi) (Wil j)8(Ex — ) “

k

which can easily be integrated to obtain the density matrix (3).
The central idea is that g;; can be expressed in matrix form as

gij(@) = (i|6(H — w)|j). &)

The KPM consists of expanding Eq. (5) in terms of
Chebyshev polynomials 7,,(w). To do so, the Hamiltonian is
first rescaled so that all the eigenenergies lie in the interval
&r € (—1,1). The rescaled Hamiltonian is denoted as H. The
corresponding spectral function is calculated as

N
fin + 2ZﬁnTn(w)>. (6)

n=1

1
i) = WTT(

The coefficients fi, determine the expansion of a certain
element g;;, and are calculated as

iy = gyllv,un @)

where u,, are the coefficients calculated from the Hamiltonian
H and gV denotes the Jackson kernel that improves the
convergence of the series [49]:

mn M mn T
:(N—n—l)cosNH—i—smNHcotN—_H ®

N +1

Given two sites i and j, we define two vectors located in
those sites v; and v;. The coefficients 1, would be calculated
as a conventional functional expansion:

gy

1
pn = (Vi / 1 §(H — o)T(H)dwlv;), C))

which in the diagonal basis reads

1
Hn = /](vil‘l—’k>8(5k — o) (W v)) Ti(w)dw.  (10)

Performing the integration over w we get
pn = iV T (E) (Wi lv;) = (Uil Tu(FH)vj). Y

Therefore, the coefficients 1, can be calculated as the overlap
of two vectors:

Mn = (Uj|an) (12)

where «,, is calculated with the recursion relations associated
to the Chebyshev polynomials

lao) = |vi),
loey) = Hao),
|O(n+l> = 27‘”0[,1) - |an—l>~ (13)

This procedure thus involves matrix vector products to calcu-
late the coefficients. For a sparse matrix, as is the case of a
tight-binding Hamiltonian, the number of nonzero elements
scales linearly with the system size, so the computational cost
of calculating the density matrix for a fixed number of sites
also scales linearly. This method allows one to compute g;; at
every energy simultaneously, so that p;; can be calculated by
integration up to the Fermi energy.

For small systems, the density matrix can be calculated also
by exact diagonalization of the full Hamiltonian. In principle,
that procedure allows one to calculate the correlation function
of relatively large one-dimensional systems. However, for a
two-dimensional system, the dimension of the matrix will be
too large in general. It is in that situation when the kernel
polynomial method is especially suitable.

III. TOPOLOGICAL INVARIANTS
WITH SUPERVISED LEARNING

We now describe the procedure to characterize the local
topological character of a system using ANNs. We choose
as input the elements of the density matrix that involve one
site and its nearest neighbors (ANNSs). This procedure allows
one to naturally treat systems without translation symmetry
and with disorder, as the calculation of the density matrices is
not more computationally expensive in those situations using
the previous procedure. The process to calculate the density
matrix was discussed in Sec. II B but in order to use the density
matrix as input for our ANN some processing is required. The
density matrix is, in general, a complex Hermitian matrix, so
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FIG. 2. The process to evaluate the topological character of a local
region of space. The density matrix corresponding to a certain area
in space is calculated using the KPM; after removing the redundant
elements the matrix is rearranged in a 1D array that is used as input
for a neural network that will provide the corresponding topological
invariant as output.

we will remove the redundant elements (namely, the lower
triangle) and arrange the remaining elements in a 1D array,
concatenating the real and imaginary parts. Furthermore, we
included the eigenvalues of the density matrix as part of the
input. Strictly, the inclusion of the eigenvalues is a redundant
operation that could be avoided by increasing the size and/or
depth of the ANN, yet we found that it helped the optimization
of the model with a negligible computational overhead. The
output of the ANN will be the topological invariant of the
system. The calculation of the corresponding output is done by
constructing a translationally invariant Hamiltonian in which
the corresponding topological invariant is well defined and can
be calculated in a standard way. Finally, since we are using the
ANN as a classifier, it is convenient to encode the possible out-
puts as linearly independent vectors, v, rather than use a single
scalar. The use of vectors allows the discrimination between
wrong answers and false positives. This whole architecture is
sketched in Fig. 2.

In order to train the ANN we generate a large number
of realizations of a family of Hamiltonians, exploring their
parameter space. For a given choice of parameters, we compute
the topological invariant of the corresponding pristine case and
its local density matrix. This procedure allows us to generate a
set of inputs and outputs, which are used to train the ANN. Once
the ANN is trained, the model is ready to be evaluated with
new data that the network has never tried to test the accuracy
of the network. The last step is to create a new Hamiltonian
with spatially dependent parameters, and evaluate the ANN
with the local density matrix corresponding to a neighborhood
of every lattice site. In this way, we have a procedure to
locally evaluate the topological invariant of a system lacking
translational symmetry.

A. One-dimensional topological superconductor

In the following, we will consider a lattice model Hamilto-
nian for a one-dimensional electron gas that is able to host both
trivial and topological superconducting states. The correspond-
ing topological invariant is a Z, number that can be calculated
as a Berry phase [50]. Such an effective one-dimensional
system, in particular the superconducting topological phase,
is realized in semiconducting nanowires deposited on top
of a s-wave superconductor [51-57]. The model describes
electronsina 1D chain, in the presence of Zeeman field, Rashba

(@) (b)
Pij

=
w
T
1

5 9F 4 8 9F .
g 9 F
g - .-' = g -'
5F ] 5F 3
1 m} Il 1 Il # 1 1 1 1 7
1 5 9 13 1 5 9 13
index-i index-i

FIG. 3. Image representation of the density matrix for two partic-
ular different states for the superconducting 1D system, trivial (a) and
topological (b). In terms of the matrices shown, the task of the neural
network can be understood as an image recognition algorithm capable
of distinguishing a trivial input from a topological input, for different
parameters of the Hamiltonian chosen randomly. The different indices
inthe x and y axis run over spin and electron-hole sectors in the closest
sites.

spin-orbit coupling, superconducting proximity effect, and a
sublattice imbalance term. Thus, the model has six different
parameters: a spin-conserving hopping ¢, chemical potential u,
Rashba spin orbit 7, external Zeeman field B,, on-site pairing
term A, and a trivial mass m. Moreover, we also include the
possibility of having finite Anderson disorder W;, so that the
full Hamiltonian reads

H=—t ZC;L“CJ'O[ +itg Z e, - (Saﬁ X dij)C;raCjﬂ

(i))a (i)ap

+ B, chaazc,-a +A Z[Circw + CLC,‘H]
ia i
+u chacm +m Z ticle + Z Wicl cia.  (14)
i i i,a

The previous Hamiltonian can have topological and trivial
phases. In a nutshell, a topological phase may arise when the
Zeeman term B, is such that the chemical potential & crosses
only one of the spin channels, so that a small pairing A and
Rashba field 75 give rise to a spinless p-wave superconductor
[55]. In the absence of both Zeeman and Rashba couplings, the
induced superconducting gap is trivial.

The Hamiltonian (14) is solved in the Nambu repre-
sentation by defining a spinor wave function as Wi =
(CTT’ cI, ¢y, —cy) which gives rise to a Bogoliubov—de
Gennes Hamiltonian ‘H = %\IITH W. The matrix H is used to

calculate the correlation functions {c; s¢; ) and (c;r’scj,sr), as
introduced in Sec. II B, by integrating the different g;;(w) from
w = —oo up to w = 0. In Fig. 3 we show an example of two
different input data from the training dataset, for a topological
[Fig. 3(a)] and a trivial [Fig. 3(b)] state computed for an open
chain with N = 400 sites using the KPM. It is evident that
simple inspection is not enough to distinguish between the
two of them.

In order to generate the training dataset we considered
different Hamiltonians for a bipartite chain with 400 sites by
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varying the different values for the off-plane Zeeman field B,,
Rashba Ag, chemical potential u, superconducting pairing A,
and sublattice imbalance m. In order to prove the robustness
of our procedure, we also switch on the Anderson on-site
disorder [W € (0.0,0.4¢)], with a magnitude comparable to
the other energy scales. For the training dataset we generated
1000 different Hamiltonians with parameters randomly cho-
sen in the following ranges: 1z € [—0.3¢,0], B, € [0.2¢,0.8¢],
w e [t,2t], A € [0.1¢£,0.3¢], m € [—0.2¢,0.2¢], yielding a five-
dimensional phase space. Using the generated Hamiltonians
we calculate the density matrix of the central atom in the
nanowire, p;;, and its three closest neighbors. Since the
Hamiltonian in Eq. (14) only involves two Pauli matrices for
a linear chain, the Hamiltonian in real space can be chosen
to be purely real, so that its density matrix will be also real.
For each example the Z, topological invariant is calculated
for the pristine system (W; = 0) defined by that particular set
of parameters, which is used as expected output. Since this
topological invariant only has two possibilities, we encode
the Z, invariant as a two-dimensional vector v, so that the
topological case corresponds to v = (1,0) and the trivial case
corresponds to v = (0,1). With this methodology a single
element of the training dataset has a 152-dimensional input
and a two-dimensional output. We took two hidden layers with
101 and 21 neurons. After training, a validation set with 200
new samples is generated to test the accuracy of the ANN
yielding an accuracy of ~97%. In order to gain some insight
on the ANN capabilities, we run a simple test by freezing all the
parameters in the Hamiltonian (14) but the chemical potential
and comparing the actual Z, with the output provided by the
ANN. In Fig. 4(a) we see that even for unseen data the ANN
is able to provide the correct topological invariant.

Once the network is trained, it is ready to be used in
the case of an inhomogeneous system. We now generate
a one-dimensional system following Eq. (14) with spatially
varying couplings. In particular, we modulate the chemical
potential along the chain as shown in Fig. 4(b). Such modu-
lation is feasible by means of local gates in the experimental
realizations involving semiconducting nanowires [15]. With
such modulation, we observe the emergence of zero-energy
modes in the local density of states [Fig. 4(c)], which are
expected to be a signature of a boundary between a trivial and
topological phase. The evaluation of the topological invariant
on every atomic position of the chain can be carried out by
feeding the local density matrix to the trained neural network.
Our network shows that the different regions of the space
have different topological invariants as shown in Fig. 4(d).
It is observed that the points of space where the topological
invariant changes in Fig. 4(d) correspond to the location of the
zero-energy Majorana modes, as seen in Fig. 4(c), validating
the performance of our neural network.

The success of the neural network in describing the topo-
logical order of the different phases implies that, locally,
the density matrix carries enough information to distinguish
between the two cases. In particular, the elements of p;;
involving (c;sc;) encode information about the induced
superconducting order parameter, both in the s- and p-wave
channels, which physically is expected to determine the topo-
logical phase. If, in comparison, only the diagonal part of
the density matrix was used as input for the neural network,

(a) (b)
1 2 '
Z2 : 1.5F ]
0 1
—-200 0 200
x [a]
© (d)
1.5 '

—

SR

0
-200 0 200
x [a]

LDOS [a.u.]
—_ N
Z, invariant
—_

0
—200 0 200
x [a]

FIG. 4. (a) Comparison of the topological invariant computed
exactly with the one predicted by the trained neural network in a
pristine system, showing that the ANN perfectly captures the phase
transitions in the homogeneous system. Afterwards, we create an
inhomogeneous system with modulated chemical potential as shown
in panel (b). Such modulation creates trivial and topological zones,
with Majorana modes pinned at the transition points (c). The neural
network is then evaluated in every point of the space, yielding a site-
dependent topological invariant shown in panel (d). The topological
transitions shown in panel (d) mark the existence of zero Majorana
modes obtained in panel (c). The parameters used are Agx = —0.3¢
B, =0.5¢t,m =0,and A = 0.1¢.

it would not be possible to distinguish between trivial and
topological states. This is easily understood taking into account
that the diagonal part of p;; accounts for the total occupation
numbers and two topologically inequivalent band structures
can have arbitrarily similar density of states.

B. Two-dimensional Chern insulator

In this section we will use an analogous methodology
to study a topological two-dimensional state. In particular,
we consider a model Hamiltonian for electrons moving in a
honeycomb lattice with Rashba spin-orbit coupling 7z and off-
plane exchange B, thatis known to result in a two-dimensional
quantum anomalous Hall state [58]:

H=—t ZCLCI‘Q +itg Z e, (&af} X d,'j)CiTaCjﬂ
(if)a (i)}ap

+ B, Z cLaZcia +m Z ricjacm + Z Wicjacio,
(15)

where 5 is the Rashba coupling, & are the spin Pauli matrices,
B, is the external Zeeman field, and t; = %1 is the sublattice
operator. The first term is the usual tight-binding hopping term,
the second one describes the Rashba interaction [58,59], and
the third term is the so-called exchange or Zeeman term which
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couples to the spin degree of freedom. The fourth term is a
trivial mass term that assigns an opposite on-site energy for
the atoms in each of the sublattices, that we introduce in order
to have a trivial insulator phase in the model. Finally, the last
term is an Anderson disorder term that we introduce to prove
the robustness of the procedure. For m = 0, and B, # 0 and
tg # 0, the model has a topological gap with Chern number
C = £2.Form # Oand B, = 0, the model has a trivial (C = 0)
gap.

Each of these Hamiltonian terms can effectively describe
different experimental situations. The sublattice imbalance
could arise for a graphene monolayer deposited on boron
nitride in a commensurate fashion [11,60]. The Rashba and
exchange fields naturally arise for a graphene monolayer
deposited over a ferromagnetic insulator, such as YIG [61,62],
EuO [63], or Crl5 [64,65]. Furthermore, the noncommensu-
ration of graphene with the substrate creates Moire patterns,
resulting in an effective spatial modulation of the different
contributions [9-11].

It is worth mentioning two important differences with
respect to the model presented in Sec. IIIA. On one hand,
now the Hamiltonian involves the three Pauli matrices, so in
general it will be complex. This implies that the calculated
density matrices will also be complex, so that the neural
network will receive as input both the real and imaginary
components. On the other hand, since we are dealing now
with a two-dimensional system, a finite island will have L2
sites, with L the typical size of the island. In particular, the
calculation of the density matrix with the wave functions of an
island with side L = 300 would require the diagonalization
of a matrix of dimension L% ~ 90000, the computational
complexity of which is L. It is in this situation where the
KPM will be especially useful, as it allows us to calculate the
density matrix with a computational complexity of the number
of sites, L2

We now move to apply our methodology to the system
defined by Eq. (15). First, to train the neural network, we
generate different spatially uniform Hamiltonians by choos-
ing randomly each of the coupling parameters. The Zee-
man and Rashba were randomly generated in the interval
tg € [—0.4¢,0.4¢] and the mass between m € [0,0.47]. Again,
random Anderson-like disorder comparable to the other in-
teractions is introduced all across the system W; € [0.0,0.4¢].
The training dataset consisted of 564 samples. For every set
of parameters, we built the Hamiltonian as in Eq. (15) and
calculated the local density matrix for the central atom and its
three first neighbors which are used as input of the network, in
this case a 128-dimensional array. Again we chose having two
hidden layers with 101 and 21 neurons. It is worth considering
again the challenging task of distinguishing between different
inputs as those shown in Fig. 5, which highlights that the
classification of topological and trivial phases based only in
local properties is far from being a trivial task.

The output for each input was obtained by calculating the
Chern number of the ground state of the system integrating the
Berry curvature in the Brillouin zone of a translational invariant
(W; = 0) Hamiltonian with the same parameters. Once the
network was trained, we tested its accuracy on a validation
dataset with 586 samples randomly generated, showing an
accuracy of ~92%. The comparison of the result predicted

Tm(p;) -
) =010 01

— T —

Re(pi;) [
(@) o

m

7 -

1 | | 1 ] 1 1
1 3 5 7 1 3 5 7
index-i index-i
Re(pij) [N (o) B
0 0.5 (d) —9.1 9 O;l
7 ;
zs- ;
ki
st :
1 1 I .—. 1 1_
1 3 5 7
index-i index-i

FIG. 5. Real and imaginary parts of the density matrix for a trivial
C = 0 (a, b) and a topological C = 2 (c, d) two-dimensional system.
In this case, the neural network will implement an image recognition
algorithm, where the inputs are the two images representing the real
and imaginary parts.

by the network and the one calculated exactly in a system with
translational invariance is shown in Fig. 6(a) for the different
topological phases.

After the training, we generated a graphene nanoisland
with 7400 atoms. In this island, we choose a spatially modu-
lated exchange field of the form B,(x,y) = 0.1¢[cos(0.15x) +
c0s(0.15y) 4 2], amodulated mass term of the form m(x,y) =
0.1#[sin(0.15x) + sin(0.15y) + 2] [shown in Fig. 6(b)], and a
constant Rashba coupling Az = 0.2. The previous modulations
are expected to create neighboring trivial and topological areas
depending on which is the dominant contribution, mass or
exchange and Rashba couplings. With such a Hamiltonian, we
calculated the local density matrix using the kernel polynomial
method, that was used as input of the neural network. The
result of the evaluation of the neural network across the sample
is shown in Fig. 6(c). It can be seen that different regions
with different Chern number appear according to the spatial
modulation of the Hamiltonian parameters. The significance
of the different regions becomes clear once the in-gap density
of states is calculated in Fig. 6(d). This shows both in-gap
modes precisely at the boundary between different regions, as
expected form the bulk-boundary correspondence, as well as
edge states all around the sample.

This result highlights that the artificial neural network
faithfully distinguishes between the different phases based
solely on local information, providing a useful method to cal-
culate the topological invariant in systems without translational
symmetry.
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FIG. 6. (a) Comparison between the exact Chern number (black)
and the prediction of the trained neural network (red) using as input
the local density matrix. Once the accuracy of the network has been
checked, we created a big graphene island with modulated mass
and exchange term as shown in panel (b). The neural network is
used to evaluate the topological invariant in each atom, yielding the
result shown in panel (c). The boundary between different topological
phases is expected to give rise to in-gap states, which is confirmed by
calculating the in-gap spectral function as shown in panel (d).

IV. CONCLUSIONS

We have shown that an artificial neural network is capa-
ble of predicting the topological nature of different model

Hamiltonians using as an input a local sector of the density
matrix, i.e., evaluating solely local properties. Our procedure
consisted of training an artificial neural network using as input
the subspace of the density matrix corresponding to a local
area of the sample, and as output the topological invariant that
an analogous (pristine and translational invariant) Hamiltonian
with the same effective parameters would have.

We applied this procedure to two well-known models, a
1D topological superconductor and a 2D topological insulator.
In both cases we considered finite systems with a space de-
pendent Hamiltonian that create regions with both topological
and trivial character. By evaluating the network with local
quantities for each Hamiltonian we showed that the different
topological domains are accurately identified by the network,
even when the inhomogeneous systems have Anderson-like
disorder, proving that this methodology can be applied for
disordered systems.

It is worth remarking that the training procedure is carried
out for a specific model, and tested in that same model for
different parameters, including local modulations in space. An
open question is whether this methodology can be extended
to cases with the same topological classes but different ge-
ometries. Finally, it is interesting to note that an analogous
methodology could be applied to interacting systems, so that
similar procedures could be exploited to identify quantum spin
liquid states in two-dimensional spin systems.
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