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Abstract: In this paper, we theoretically and experimentally evaluated the quality of volume phase
transmission lenses stored in an environmentally friendly photopolymer. Holographic lenses (HLs)
were obtained using symmetrical and asymmetrical experimental setups with the same positive and
negative focal length and pupil diameter. The image quality was evaluated from the calculation
of the modulation transfer function (MTF) by capturing the point spread function (PSF) with a
charge-coupled device (CCD). A maximum frequency of 14 L/mm, reaching an MTF value of 0.1, was
obtained for a negative asymmetrically recorded HL, evaluated at 473 nm wavelength. A theoretical
study of aberrations was carried out to qualitatively evaluate the experimental results obtained.

Keywords: holographic lenses; environment-friendly photopolymer; volume holography

1. Introduction

Holography is based on Gabor’s principle of wavefront reconstruction [1]. It is a technique to
register and reconstruct three-dimensional objects. Holographic optical elements (HOEs) are among
the most interesting applications of holography because they replace curved and heavy refractive
optical elements with a simple, flat, and lightweight element.

HOEs store the interference pattern produced by two spatially overlapping coherent beams.
This pattern creates a photonic structure capable of diffracting light in a desired way.

The first HOE concept of holographic application, a holographic mirror, was described by
Denisyuk in 1962 [2]. A point-source hologram which acts as a lens was demonstrated by Schwar et al.
in 1967 [3]. It is possible to gather various functions in a single substrate by multiplexing two or more
HOEs [4,5] according to its high diffraction efficiency and narrow-band frequency characteristics.

HOEs are widely used in many fields, such as the relief thin holograms used in credit cards or
volume holographic optical elements that function as phase index modulation holograms seen in
holographic projections, couplers, storage, filters, and displays [6–10].

HOEs have evolved in parallel to the development of photonics, communications, and optical
information processing. Innovative technologies demand versatile and environmentally compatible
optical elements. Holographic lenses in particular show enormous potential in highly relevant
applications, such as in virtual and augmented reality head-mounted displays as image systems [11–13]
or in light deflectors and concentrators as non-image systems [14–16].

The key points of this applicability are the new recording materials, able to perform under the
most specific situations and applications.
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Typically, different materials, such as silver halide emulsion [17,18], dichromated gelatin [19,20],
photoresist [21], photorefractive [9], or photopolymer [22] are used in the manufacturing of HOEs.
Photopolymers were first used as holographic optical elements by Close et al. in 1969 [23]. Since
then, the range of photopolymer materials in optical applications has grown enormously [24]. This is
mainly due to their versatility both in composition and in design as well as to other interesting
properties, such as self-processing capabilities [25], low cost, good dimensional stability, variable
thickness, high energetic sensitivity, large dynamic range, sharp angular selectivity, and flexibility.
In this sense, the importance of photopolymers is growing spectacularly [26].

However, commonly used hydrophilic photopolymers contain poly(vinyl alcohol) (PVA), gelatin
binders, or monomers related to acrylamide [27–30]. This type of photopolymers has certain
undesirable features, such as the toxicity of some of its components; for instance, acrylamide has
a high potential to cause cancer. In order to avoid this risk, the latest trends in photopolymers
include materials with low toxicity [31–33] and exclude traditional solvents for better environmental
compatibility [34,35]. Additionally, these types of materials have good recycling properties. In this
sense, we developed “Biophotopol”, an environmentally friendly photopolymer for use as a recording
holographic material in optical applications [4,36–38].

In this work, we evaluated holographic lenses (HLs) fabricated in Biophotopol as an image system.
In this case, two types of HLs were fabricated, symmetrical and asymmetrical, each with the same
distance focal length. For each type, we registered both positive and negative distance focal lengths to
evaluate the image quality of the lenses with the environmentally friendly Biophotopol material.

2. Materials and Methods

2.1. Preparation of the Material

Volume phase transmission HLs were recorded in the environmentally friendly photopolymer
Biophotopol. Different compositions of this photopolymer were studied in our previous papers [36–38].
In the present work, the prepolymer solution was composed of poly(vinyl alcohol) (PVA) as inert
binder polymer (Mw = 130,000 g/mol, hydrolysis grade = 87.7%), sodium acrylate (NaAO) as
polymerizable monomer, triethanolamine (TEA) as coinitiator and plasticizer, and sodium salt
5’-riboflavin monophosphate (RF) as sensitizer dye. The NaAO was generated in situ through a
reaction of acrylic acid (HAO) with sodium hydroxide (NaOH) in a 1:1 proportion. All compounds
were purchased from Sigma-Aldrich Quimica SL (Madrid, Spain). The solvent was water, in which all
components were soluble. The chemical structures are shown in Figure 1. The optimized concentrations
in the prepolymer solution were 13.5 w/v %, 0.39 M, 9.0 × 10−3 M, and 1.0 × 10−3 M for PVA, NaAO,
TEA, and RF, respectively.
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The prepolymer solution was deposited through force of gravity on a leveled glass plate
(6.5 × 6.5 cm2), which had been previously washed and dried and left inside an incubator
(Climacell 111, MMM Medcenter Einrichtungen GmbH, Munich, Germany) with controlled conditions
(relative humidity = 60% ± 5% and temperature = 20 ± 1 ◦C) for 24 h. The process was carried
out under controlled light conditions to which the material was not sensitive. A part of the water
evaporated until reaching equilibrium with the environmental conditions inside the incubator during
the drying time. At that time, the layers were then ready for recording, which took place immediately.
After the exposure and reconstruction, the thicknesses of the dried layers were measured with an
ultrasonic pulse-echo gauge (PosiTector 200, DeFelsko, Ogdensburg, NY, USA). The physical thickness
of the photopolymer layer was around 200 µm. To avoid damaging the lenses, the thickness was
measured over unexposed areas. In order to increase the stability, the holographic lenses were cured
with a LED lamp (13.5 W, 875 lumens at 6500 K, Lexman, Alicante, Spain) for 20 min. The residual dye
was eliminated during this process.

It should be noted that the TEA concentration in this work varied with respect to the previous
Biophotopol composition. The optimization of TEA concentration in the prepolymer solution was
very important because of its function as both a coinitiator and a plasticizer. TEA lowered the
glass transition temperature of the photopolymer, maintaining the dimensional stability of the dry
layer under standard environmental conditions. Another important function of TEA was its ability
to increase the thickness of the photopolymer layer because of its high boiling point, which was
accompanied by a decrease in the concentration of the photopolymer components. This factor had
to be taken into account when the concentrations of the components present in the photopolymer
layer were optimized. Furthermore, TEA affected the viscosity of the medium, increasing the diffusion
coefficients of the components as the concentration of TEA became greater. However, taking into
account the capacity of TEA to form a H−bond with water, a low content of TEA made it more difficult
for the NaAO to dissolve, leading to crystallization during the drying process. The environmental
conditions during the recording stage had to be controlled to avoid precipitation of NaAO on the
surface of the photopolymer layer. Also, the permeability of PVA played an important role in the
drying and recording stages. Therefore, the control of humidity, temperature, and TEA/water ratio in
the dry layer with respect to the thickness and final composition of the photopolymer layer was very
important to obtain high diffraction efficiency.

2.2. Holographic Setup

The experimental holographic setup used to record HLs is shown in Figure 2a. An Argon laser
beam tuned at 488 nm wavelength, at which the material is sensitive, was split into two secondary
beams, the reference and object beams, using a beam-splitter (Newport, Irvine, CA, USA). Both beams
were spatially filtered and collimated. Subsequently, the object beam passed through a refractive
lens (LR), emerging as a convergent beam. The two beams were recombined at the photopolymer
layer with different incident angles (θo and θr) to the normal of the photopolymer layer. The ratio of
intensities between both beams was 1:1, and the total recording intensity was 3 mW/cm2. This value
is the sum of both intensity beam measures in the hologram plane, adjusting the intensities in each
case. The exposure time was 20 s. Because of the interference from both beams, bright (constructive
interference) and dark (destructive interference) zones were produced in the photopolymer layer.
In the bright zones, a radical polymerization reaction took place, and a modulation of the refractive
index was generated. H. Peng et al. provided the mechanism for this reaction. When the photopolymer
layer was illuminated, the RF absorbed photons, leading to the singlet excited state (1RF*). By means
of intersystem crossing, the triplet excited state (3RF*) was generated. Subsequently, the 3RF* was
quenched by TEA through an electron transfer reaction, and TEA radicals were generated which were
combined with acrylate monomers to generate chain initiators [39].
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The focal length of the HL was obtained as:

f’HL = f’RL − dRL-PL, (1)

where f’HL and f’RL are the focal lengths of the HL and RL, respectively, and dRL-PL is the distance
between the RL and the photopolymer layer. In this work, positive (+) and negative (−) HLs were
stored symmetrically and asymmetrically, with focal lengths of +90 and −90 mm at a wavelength of
488 nm. Since the photopolymer did not present any absorption, a He–Ne laser at 633 nm was used to
visualize in real time the interference pattern registered in the HL at an angle θm, indicated in Table 1.
A summary of the incidence angles, focal lengths, and dRL-PL used is presented in Table 1. It must be
noted that the experimental θm (45◦) for asymmetrical recording geometry differs from the theoretical
value (46.8◦). When the record of the HL was carried out in this geometry, changes in the orientation
and spacing of the fringes were produced because of the shrinkage of the photopolymer layer [40–42]
giving place to that difference. The shrinkage value was about 2.9%, and the index modulations
was 0.001 [4].

Table 1. Recording parameters of the holographic lense (HL).

Recording Geometry Angles HL− HL+

Symmetrical
θo, 488 nm = 17.1◦ dRL-PL = 240 mm dRL-PL =110 mm
θr, 488 nm = −17.1◦ f ’RL = 150 mm f ’RL = 200 mm
θm, 633 nm = −22.4◦ f ’HL = −90 mm f ’HL = 90 mm

Asymmetrical
θo, 488 nm = 0◦ dRL-PL = 240 mm dRL-PL = 110 mm

θr, 488 nm = −34.2◦ f ’RL = 150 mm f ’RL = 200 mm
θm, 633 nm = −46.8◦ f ’HL = −90 mm f ’HL = 90 mm

2.3. Evaluation of Holographic Lenses

The HLs were evaluated according to the quality of the images produced by them using the
experimental setup shown in Figure 3. A diode-pumped laser emitting at 473 nm (near to recording
wavelength) and a He–Ne laser at 633 nm were used to illuminate the HLs. The beam was spatially
filtered and positioned at the reconstruction angle (θc) which was equal to the recording angle.
The conjugated beam was used when the evaluated lenses were negative. Images of the focal
point image, located at a distance Ri and angle θi from the HL, were captured with a CCD camera
(Thorlabs GmbH, Munich, Germany). Table 2 shows the reconstruction distance (Ri) from the sample
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and the reconstruction (θc) and image (θi) angles. The experimental and theoretical values of the
modulation transfer function (MTF) and the aberrations were obtained to evaluate the image quality
of the HLs.
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Table 2. Parameters for the evaluation of the HL.

Recording Geometry 473 nm 633 nm

Symmetrical
θi = 16.6◦ θi = 22.4◦

θc = 16.6◦ θc = 22.4◦

Ri = 93 mm Ri = 70 mm

Asymmetrical
θi = 0◦ θi = 0◦

θc = 33.0◦ θc = 46.8◦

Ri = 93 mm Ri = 70 mm

2.3.1. MTF Calculation

The MTF measures the resolution of the image contrast compared with that of the object.
For a perfect optical system without aberrations, in which only the limit imposed by the diffraction is
taken into account, and considering a circular aperture, the theoretical MTF is given by W. Smith and
C. García et al. [43,44]:

MTF =
2
π
(φ− cosφ·sinφ) (2)

where φ is obtained as:

φ = cos−1
(

λυ

2NA′

)
(3)

where λ is the wavelength measured in millimetres, υ is the frequency in lines·mm−1, and NA’ is the
numerical aperture. The frequency at which the MTF becomes zero, the denominated cut-off frequency
(υ0), is calculated as:

υ0 =
2NA′

λ
=

1
λ( f /#)

(4)

where f/# is the diaphragm number defined as:

f /# =
f ′

ΦPE
(5)

where φPE is the entrance pupil of the lens that corresponds to the diameter of the lens.
The experimental MTF was obtained from the point spread function (PSF), which describes the

response of a system to a point of light. The PSF was acquired through the images captured with a
CCD Thorlabs DCU224 camera, which comprised a matrix of 1360 × 1420 pixel (horizontal × vertical)
and a spacing between pixels (∆x) of 4.65 µm. For this value of ∆x, the Nyquist spatial frequency
was 107.5 lines·mm−1. The image of a point is given by the diffraction spot for a perfect optic system.
However, when the system contains aberrations, the PSF will depend on them. The PSF is the intensity
distribution function in the image plane. The module of the optical transfer function (OTF), defined
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as the Fourier transform of the PSF, is the MTF. Through the representation of the theoretical and
experimental MTFs, the cut-off frequencies can be determined for the HLs, considering them free
of aberrations.

2.3.2. Determination of the Aberrations

The aberrations of the HLs recorded were obtained theoretically in the exit pupil plane (PS)
and in the image focal plane. According to J. Latta [45], the theoretical total aberration in the PS is
calculated as:

∆Total = ∆S + ∆C + ∆A (6)

where ∆Total is the wave front deviation from the Gaussian sphere, and S, C, and A subscripts indicate
the spherical, chromatic, and astigmatic aberrations, respectively. When the beams used in the recorded
process of the HLs are in the same plane normal to the hologram, a simplification in the equations is
possible. Thus, ∆S, ∆C, and ∆A can be obtained as:

∆S = −
(

1
8λc

)(
x2 + y2

)2
S, (7)

∆C =

(
1

2λc

)(
x2 + y2

)2
xCx, (8)

∆A = −
(

1
2λc

)
x2 Ax, (9)

where λC is the reconstruction wavelength. The S, Cx, and Ax are the aberration coefficients
calculated as:

S =
1

RC3
− 1

Ri3
+

µ

m4

(
1

RO3
− 1

RR3

)
, (10)

Cx =
sinθC

RC2
− sinθi

Ri2
+

µ

m3

(
sinθO

RO2
− sinθR

RR2

)
, (11)

Ax =
sin2θC

RC
− sin2θi

Ri
+

µ

m2

(
sin2θO

RO
− sin2θR

RR

)
, (12)

where Ri is the distance from HL to the Gaussian image, and θi is the image angle, i.e., the angle
between the Gaussian image point and the plane containing the HL. RR and RC are the distances
of the reference and reconstruction point sources, respectively, to the hologram plane. RO is the
distance between the object point and the HL, taking positive and negative values for HL+ and HL−,
respectively. The µ factor denotes the wavelength’s shift λC/λR, and m is the factor by which the fringe
spacing is increased or decreased (in this work we considered m = 1). Through Equations (10)–(12),
the aberrations in the exit pupil plane can be obtained.

Additionally, according to C. García, et al. and J. Latta [44,45], the aberrations in the image plane
can be calculated as:

I
(

x′, y′; z′
)
=

1
B2

∣∣∣∣∣x
S

A(x, y)exp[i∆(x, y; x′, y′; z′)]dxdy

∣∣∣∣∣
2

, (13)

where I(x’,y’;z’) is the intensity in the image plane, A(x,y) = 1 for an amplitude uniform, S is the area of
the exit pupil plane, and B is the amplitude at the Gaussian image point (x’ = y’ = 0) in the absence
of aberration.

The experimental aberrations were obtained from the PSF captured with the CCD camera through
the representation of the intensity profile. These results could be compared with those calculated
theoretically by means of Equation (13).



Polymers 2018, 10, 302 7 of 13

3. Results and Discussion

The images’ quality of the holographic lenses was assessed both by experimentally obtaining the
MTFs from the PSF images and by theoretically obtaining the intensity distribution in the image plane
and the PS, as explained in Section 2.3.

3.1. MTF

The theoretical values for an MTF of 0.1 at 473 and 633 nm are 227 and 170 L/mm, respectively,
from Equation (2).

The experimental MTFs of the HLs obtained for 473 and 633 nm wavelengths are shown in
Figure 4. To better distinguish the MTF behaviour of the HL, we used the limiting resolution criteria of
0.1 [46]. At this limiting resolution, the maximum reached frequency of 14 L/mm was obtained for
negative asymmetrically recorded HL, reconstructed at 473 nm wavelength (Figure 4a; red, dashed
curve with empty squares). A similar positive asymmetric HL showed a frequency of 7 L/mm
(Figure 4a; the blue, dashed curve with empty circles). Evaluating these asymmetrical HLs with a
633 nm wavelength showed a similar behaviour to that of their respective negative HLs at 473 nm
wavelength. In Figure 4b, the evaluation of symmetric HLs showed a decrease in frequency at
0.1 MTF with respect to the asymmetric ones. The frequency difference between positive and negative
symmetric HLs recorded was greater at different wavelengths. The frequencies evaluated at 473 nm
were higher than at 633 nm. At the same time, the frequencies of the negative HLs were higher than
their respective positive HLs.
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In conclusion, the frequency at 0.1 MTF for asymmetrical HLs was similar for both wavelengths.
For symmetrical HLs, it was higher for the wavelength of 473 nm. In addition, the HLs
recorded asymmetrically had a higher spatial frequency at 0.1 MTF than the corresponding HLs
recorded symmetrically.

3.2. Aberrations

A qualitative study of the aberrations was made, theoretically studying the aberrations produced
by the HLs in the exit PS and in the focal image plane.
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3.2.1. PS Aberrations

For the study of theoretical aberrations of asymmetrically and symmetrically recorded HLs in the
exit pupil plane, Equations (6)–(9) were used to obtain the intensity distribution at two wavelengths
(Figure 5).
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HLs recorded (a,c) at 473 nm and (b,d) at 633 nm wavelength.

In the case of asymmetrical lenses, the total aberration was given by the spherical aberration
(Figure 5a,b). When the wavelength used was 473 nm, the spherical aberration was positive (Figure 5a).
When the wavelength used was 633 nm, the spherical aberration was negative. By using the 473 nm
wavelength, the spherical aberration was one order of magnitude lower than at 633 nm.

In the case of symmetrical lenses, the total aberration was mainly given by astigmatism for both
wavelengths. Comparatively, astigmatism at 473 nm was positive, whereas the astigmatism was
negative at less than 633 nm.

3.2.2. Image Plane Aberrations

For the study of theoretical aberration in the image plane, Equation (13) was used to obtain the
intensity distribution at two wavelengths (Figure 6).

For asymmetrical lenses, the intensity distribution corresponding to the optical system with
a circular exit pupil and aberration-free intensity distribution was the airy pattern, centred at the
Gaussian image point.
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In the case of asymmetrical lenses, the image quality was limited only by the diffraction of the
object radiation at the system’s exit pupil. At 473 nm wavelength (Figure 6a), the theoretical intensity
of the image was maximum. However, at 633 nm, the theoretical intensity distribution in the image
was slightly lower. For symmetrical lenses, the intensity distribution at the image point showed the
astigmatism of the HL. At 473 nm wavelength reconstruction (Figure 6c), it was possible to see one
of the Sturm focal lengths. In Figure 6d, the same HL reconstructed at 633 nm had the worst image
quality. In all cases, it was possible to improve the image quality by decreasing the pupil diameter.

Polymers 2018, 10, x FOR PEER REVIEW  8 of 12 

 

 
Figure 5. Total aberration (ΔTotal) at the exit pupil plane (PS) of asymmetrical, (a) and (b), and 
symmetrical, (c) and (d), HLs recorded (a) and (c) at 473 nm and (b) and (d) at 633 nm wavelength. 

3.2.2. Image Plane Aberrations 

For the study of theoretical aberration in the image plane, Equation (13) was used to obtain the 
intensity distribution at two wavelengths (Figure 6). 

 
Figure 6. Intensity distribution at the image plane of asymmetrical, (a) and (b), and symmetrical, (c) 
and (d), HLs recorded (a) and (c) at 473 nm and (b) and (d) at 633 nm wavelength. 

Figure 6. Intensity distribution at the image plane of asymmetrical (a,b), and symmetrical (c,d),
HLs recorded (a,c) at 473 nm and (b,d) at 633 nm wavelength.

Figure 7 shows the experimental distribution of the image plane’s intensity obtained using the
CCD camera. The experimental PSF obtained from asymmetrical HLs at a wavelength of 473 nm
(Figure 7a) was similar to those obtained at 633 nm (Figure 7b), as the theory predicts in Figure 6a,b.
It is also observed in Figure 4a for their frequencies. In Figure 7a, the area of the experimental PSF
is 0.22 × 0.16 mm2, and in Figure 7b is 0.20 × 0.18 mm2. Contrary to what would be theoretically
expected, the PSF evaluated at 473 nm had a bit larger cross section than that evaluated at 633 nm.
This anomaly could be due to the lack of precision in placing the CCD camera in the image plane. As
would be expected, the cross section of symmetrical HLs was both larger than the asymmetrical ones.
The symmetrical HLs evaluated at 473 nm wavelength (Figure 7c) were smaller than those evaluated
at 633 nm (Figure 7d), as we obtained in Sections 3.1 and 3.2.

After evaluation, a sample with two HLs can be observed in Figure 8. The spots of the negative
asymmetrical HLs diffracted the daylight in the normal direction of the sample plane. The unexposed
zones were practically transparent to the sunlight.
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4. Conclusions

Holographic lenses were stored in an environmentally friendly photopolymer. Asymmetrical
and symmetrical HLs were analyzed in terms of image quality. The best results were obtained for
negative asymmetrical HLs with a frequency of 14 L/mm at 473 nm wavelength for an MTF value of
0.1. The intensity distribution in the image plane was identical to the airy pattern. For this reason, the
image quality was limited only by the diffraction, as can be also seen in the theoretical results. Similar
results were obtained for the same negative asymmetrical HLs at 633 nm wavelength.
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