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One of the current challenges in human motor rehabilitation is the robust application
of Brain-Machine Interfaces to assistive technologies such as powered lower limb
exoskeletons. Reliable decoding of motor intentions and accurate timing of the
robotic device actuation is fundamental to optimally enhance the patient’s functional
improvement. Several studies show that it may be possible to extract motor intentions
from electroencephalographic (EEG) signals. These findings, although notable, suggests
that current techniques are still far from being systematically applied to an accurate
real-time control of rehabilitation or assistive devices. Here we propose the estimation
of spinal primitives of multi-muscle control from EEG, using electromyography (EMG)
dimensionality reduction as a solution to increase the robustness of the method. We
successfully apply this methodology, both to healthy and incomplete spinal cord injury
(SCI) patients, to identify muscle contraction during periodical knee extension from the
EEG. We then introduce a novel performance metric, which accurately evaluates muscle
primitive activations.

Keywords: brain-machine interface, muscle primitives, corticospinal mapping, linear decoders, gait rehabilitation,

lower-limb exoskeletons

1. INTRODUCTION

A brain-machine interface (BMI) is a tool that can translate brain activity into device control
commands, thus enabling an alternative pathway for the brain to physically act upon the
environment (Wolpaw et al., 2002). In a rehabilitation context, BMIs are conveniently combined
with wearable robots such as exoskeletons (Contreras-Vidal et al., 2016). One of themain challenges
is the ability of restoring ambulatory functions in paraplegic patients with neurological conditions
including incomplete spinal cord injury or stroke (del Ama et al., 2012). Within this scope, the
combination of BMIs and lower limb exoskeletons can may exploit the concept of neuroplasticity,
i.e. linking descending neural commands and peripheral somatosensory feedback to promote
the reorganization of central nervous system damaged pathways in charge of motor control
(López-Larraz et al., 2016).
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BMI-extracted neural commands, which encode user’s
motor intentions, should be subsequently translated into
control commands to the exoskeleton in real-time during
the rehabilitation procedure. Reliable decoding of motor
intentions and accurate timing of the robotic device actuation
is fundamental to optimally enhance the patient’s functional
improvement (López-Larraz et al., 2016). It has been shown that
motor intentions can be detected from electroencephalographic
(EEG) signals and used to trigger an ankle exoskeleton
so that the assisted movement was perceived as voluntary
(Mrachacz-Kersting et al., 2012).

Current research has also focused on the relationship between
low-frequency cortical modulations and motor tasks. Slow-
cortical potentials (SCPs) reflect shifts in the cortical electrical
activity lasting from several hundreds milliseconds to several
seconds (Birbaumer et al., 1990; Shibasaki and Hallett, 2006).
An example of this paradigm are movement-related cortical
potentials (MRCPs) (Jiang et al., 2006; Shakeel et al., 2015).
SCPs are triggered naturally as a person commences or imagines
the onset of a movement. Moreover, there have been studies
proposing the use of global cortical activity to extract kinematic
information of upper and lower limb movements. In these
studies, kinematic parameters were directly decoded from the
activity of larger regions of the scalp by applying linear decoders
to SCPs for decoding both upper and lower limb jointmovements
(Bradberry et al., 2010; Presacco et al., 2011), sitting and
standing states (Bulea et al., 2014), finger movements (Paek
et al., 2014), and types of grasping (Agashe et al., 2015). Other
studies have dealt with the characteristics of the performed
movement, showing that hand kinematics are better decoded
when continuous and linear movements are performed (Úbeda
et al., 2015) and exploring the possibility of using them to classify
reaching directions (Úbeda et al., 2017).

In general, the use of linear decoders applied to SCPs
are subject of controversy. Mechanical artifacts strongly affect
the EEG low-frequency range during cyclic motion activities.
This is suggested to directly influence the reliability of these
decoders (Castermans et al., 2014; Costa et al., 2016). Moreover,
other studies show that performance is not statistically different
from chance levels due to the inherent properties of linear
regression (Antelis et al., 2013). As a result, there is general
consensus suggesting that current techniques are still far from
being systematically applied to an accurate real-time control of
rehabilitation or assistive devices (Úbeda et al., 2017). Indeed,
only a few attempts reported to have obtained a reliable real-
time decoder of movement kinematics (Bradberry et al., 2011).
This study has been as well criticized for the way results are
assessed which lead to performance similar to chance level (Poli
and Salvaris, 2011).

The present study seeks to establish a reliable procedure to
be applied in future real-time environments. Previous works are
based on a single macroscopic regression function to directly
map neural activity into the emerging/desired limb kinematics.
In this, a single regression function may not be sufficient
to capture all intermediate neuro-mechanical processes, thus
only partly representing the mechanisms underlying movement.
We suggest a possible solution to these major problems

that is based on the combined use of linear decoders (for
extracting high-level neural information) and multi-muscle
electromyography dimensionality reduction (for capturing the
basic spinal primitives of muscle control). Motor primitives
encode information of the neural drive and have shorter
pathways with respect to the cortical activity. As a consequence,
our proposed method may be intrinsically robust (better signal
to noise ratio) because it enables reconstructing a shorter neuro-
mechanical gap (from brain activity to spinal cord activity)
and applies the regression to a lower dimensional space (low-
dimensional muscle primitives). Importantly, primitives have a
lower dimensionality than lower limb kinematics, i.e., 12 degrees
of freedom are needed to control 2 legs but only 4 primitives
are needed to represent lower limb locomotion. To explore
this methodology, we propose a novel approach that consists
of detecting knee extensions from SCPs through the decoding
of EMG primitives extracted from the recorded activity of the
quadriceps femoris group.

2. MATERIALS AND METHODS

2.1. Experimental Setup
Four patients (P01–P04) (2 males and 2 females, age: 43.5
± 12.4 years old) were recruited from the patients services
at the National Hospital for Spinal Cord Injury in Toledo.
Only adults with incomplete spinal cord injury (iSCI) lesion
above D7-D8, with ASIA C or D were selected. All patients
were able to maintain standing position and ambulate for 30
m without external assistance and had enough functionality
and strength in the upper limbs to use a walker or crutches.
Additionally, four healthy subjects (H01–H04) (3 males and
1 female, age: 33.5 ± 7.9 year old) participated in the
study. This study was carried out in accordance with the
recommendations of the ethical committee of the National
Hospital for Spinal Cord Injury and Miguel Hernández
University of Elche, with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by both committees.

Subjects seated comfortably on a chair and were asked
to perform self-paced knee flexion-extension movements from
full flexion (90◦) to full extension (0◦) (Figure 1, left). For
each subject, data were recorded for 3 min, divided into
30-s runs with a 15-s rest period between them. Subject
P04 only performed five runs due to fatigue. In the case
of healthy subjects, the dominant leg was used to perform
the movements. In the case of SCI patients, the movements
were performed with the leg most affected by the lesion. All
patients were capable of performing the knee flexion-extension
movements, although more resting time between runs was given
when necessary. During the performance of the knee flexion-
extension movements, electroencephalographic (EEG) signals
were recorded with two gUSBamp amplifiers (g.Tec, GmbH,
Austria) at 1,200 Hz from 32 electrodes placed over the central
and parietal cortex according to this distribution: FZ, FC5, FC1,
FCZ, FC2, FC6, C3, CZ, C4, CP5, CP1, CP2, CP6, P3, PZ, P4,
PO7, PO3, PO4, PO8, FC3, FC4, C5, C1, C2, C6, CP3, CPZ, CP4,
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FIGURE 1 | Experimental setup (left). Example of muscle primitive extracted during the performance of several self-paced extension movements: synergy weights
(center) and non-negative activation coefficients (right). In this example, the subject performed four knee extensions in a period of 10 s.

P1, P2 and POZ. Subjects were asked to avoid blinks and head
movements during each run. EMG signals were also recorded
at 2,000 Hz from bipolar electrodes placed on 16 different
muscles (Wave Wireless EMG, Cometa SRL, Italy). Additionally,
knee angles were measured at 30 Hz using two inertial sensors
(Technaid SL, Spain) placed on the thigh and on the leg.

2.2. Signal Preprocessing
First, EMG signals were resampled to match EEG signal time
stamps. Raw EEG signals were analyzed to reject blinks. To
that end, sections of EEG data with abnormal amplitude were
rejected. Afterwards, EEG signals were low-pass filtered with a
zero-phase 2nd-order Butterworth filter (2 Hz). Finally, EEG data
from each electrode were standardized by subtracting, for each
time sample (t), the mean (V̄) of the signal and dividing the result
by the standard deviation (SDV ) as shown in Equation (1). This
standardization was computed for each individual run.

EV[t] =
V[t]− V̄

SDV
(1)

Raw EMG recordings were band-pass filtered (30–100 Hz),
full-wave rectified, and low-pass filtered (6 Hz) using a zero-
phase second-order Butterworth filter. For each subject and
muscle group, the resulting linear envelopes were normalized
with respect to the overall peak amplitude for that muscle.
This was selected as the maximum value of a 50 ms moving-
average window applied to the muscle linear envelopes across
each recorded run (Gonzalez-Vargas et al., 2015).

2.3. Muscle Excitation Primitives
Non-negative matrix factorization (NNMF) (Lee and Seung,
2001) was performed for the set of consecutive extension cycles
of each subject. Muscle activations are inherently non-negative.
NNMF decomposes a data matrix (EMG activity) into a synergy
matrix, W, and a command matrix, A, such that EMG = W∗A,
where the components of EMG, W, and A are all non-negative.
During the knee flexion-extension exercise two primitives were
identified, one active during the knee flexing phase and one

during the knee extending phase. The knee extending phase was
performed against gravity, resulting in pronounced extension
primitives when compared to those extracted during the flexing
phase. As a consequence, extension primitives (non-negative
factors) were selected as major determinants of periodical multi-
muscle contractions during the self-paced knee movements. An
example of this behavior can be observed in Figure 1, right,
where a representative subject performs four consecutive knee
extensions. Each extension is commanded by an almost equal
activation of all the muscles included in the quadriceps femoris
group and can be explained by the extension primitive.

2.4. Linear Decoder
To decode the muscle primitive in charge of knee extension, a
multidimensional linear regression has been applied in a similar
way to Úbeda et al. (2017) and according to the formula:

x [t] = a+
N

∑

n=1

L
∑

k=0

bnkSn
[

t − G∗k
]

(2)

where x[t] is the non-negative factor of the primitive at time t and
Sn is the voltage measured at electrode n. L is the number of lags
(past voltage samples), G is the gap between lags, N the number
of electrodes and a and b are the weights of the linear regression.
N corresponds to 16 (number of electrodes introduced in the
decoder). L was fixed to 10, meaning that 10 time samples per
electrode are selected to feed the decoder.

2.5. Automated EEG-Based Detection of
Periodical Muscle Contractions
2.5.1. Electrode Selection
Several distributions of electrodes have been evaluated to extract
valuable information of the activation of different cortical regions
during the performance of the movements (Figure 2). The first
distribution covers all the recorded electrodes (global activity).
This is in line with previous decoding studies where it is
suggested that regions not located over the motor cortex have
a significant contribution in decoding performance and, thus,
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FIGURE 2 | Electrode distributions used in the analysis. Each picture shows the location of each selected electrode (black dots) over the cortex. The colored area
represents the approximate region of cortical activation.

they should not be discarded in the analysis (Agashe et al.,
2015). However, under a classical electrophysiological basis,
cortical modulations in charge of lower-limb motor control
should be mainly located over the motor and premotor cortex
midline (Brouwer and Ashby, 1990). Two distributions (midline
region and midline) have been selected based on the assumption
that motor cortex regions will provide a better performance
than the activity of the whole cortex. The final distribution
(lateral regions) has been selected to show if regions apparently
not related to lower-limb motor activity have a significant
contribution in the decoding performance.

2.5.2. Decoding Process
The proposed linear decoder has been applied for each electrode
distribution. To improve decoding performance, the parameter G
(gap) has been swept to evaluate a processing time interval from
100 ms to 2.5 s. Processing time interval has been limited to 2.5 s
to minimize the effect of previous cycles in the decoding process.
For each subject, a cross-fold validation (6-folds) has been
applied (5-folds in the case of subject P04 who only performed
5 runs). For each fold, the training data was used to compute the
weights of the linear regression that are then applied to the test
data to obtain the decoded non-negative factors. We computed
the Pearson correlation coefficient between the real and decoded
primitives for each testing fold and reported the performance in
terms of average correlation. All electrode distributions have been
then compared to select the one with higher performance. From
the selected distribution, the processing time interval with the
higher correlation has been fixed for further analysis.

2.5.3. Significance Analysis
Shuffled data have been used as input to assess if the decoding
accuracy was above chance levels. Shuffled data was obtained by
randomly mixing trials of real cortical data and the associated
non-negative factors to keep the temporal structure of the
EEG signals in a way similar to Agashe et al. (2015). Shuffled
data were filtered and standardized in the same way as the
actual experimental data. Shuffled data decoding coefficients
were computed for each subject with the previously selected
best processing time interval for each electrode distribution. This

means that, for each electrode distribution and subject, the cross-
fold validation was applied to obtain a total of 96 correlation
coefficients for healthy subjects and 92 for SCI subjects. This
helps to avoid chance effects due to the stochastic nature of the
process and also reduces the possible bias of a particular electrode
distribution or subject.

2.5.4. Identification of Muscle Contractions
The EEG-decoded muscle primitive was then compared to the
one extracted from EMGs. To that end, peaks of maximum
contraction were computed for both the original and decoded
signal to obtain similarity metrics. Peaks were detected by
looking for downward zero-crossings in the first derivative that
exceeded a slope threshold and an amplitude threshold. The slope
threshold was fixed to a very low value (10−6) while the amplitude
threshold was fixed to 0.3 in the case of the original primitive and
0.05 in the case of reconstructed primitives, which were usually
decoded with lower amplitudes.

True positive rate (TPR) was computed as the number
of positive matches between the peaks extracted from both
signals divided by the total number of extracted peaks. Only
reconstructed peaks, which were closer thanM times the average
peak-to-peak distance in the original signal, were considered
as positive. Detection rate (DR) was computed as the number
positive matches divided by the number of peaks extracted
from the original signal. Finally, time shift (TS) was computed
as the average time shift between all the positive extracted
peaks and their corresponding peak in the original signal. For
comparison purposes, all the similarity metrics were computed
for three different values of the parameter M: 0.1, 0.25, and
0.5. Additionally, the previously generated shuffled data was
processed in the same way and compared to real data to evaluate
the significance of the identification.

3. RESULTS

We performed three tests to evaluate the performance of
the proposed methodology. The first test assessed decoding
performance trends across subjects and conditions. Figure 3

shows average decoding performance across subjects and cortical
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FIGURE 3 | Average decoding performance for four different electrode configurations (global activity, midline region, midline, and lateral regions). Curves computed
after sweeping the processing time interval (from 0.1 to 2.5 s) in the decoding protocol have been represented for healthy subjects (first and second row) and
incomplete spinal cord injured patients (third and fourth row).
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regions. Each plot shows four curves that correspond to each
preselected electrode distribution including: global activity,
midline region, midline, and lateral regions. Each curve evaluates
decoding performance for different processing time windows
ranging from 100 ms to 2.5 s. Results show that decoding
performance steadily increases from the minimum time window
(i.e., 100 ms) and peaks at a subject-specific processing time
interval (see Table 1). Then, decoding performance steadily
decreases to levels similar to the starting point. This behavior is
particularly evident for subjects H01, H02, H04, and for patient
P03. Across all subjects and conditions decoding performance
peaks approximately in the time frame 2–3 s (Figure 3). Subject
H04 and patient P03 have however earlier peak decoding
performance values, i.e., 0.66 s. Interestingly, lateral areas
generally show worst decoding performance than global and
midline areas. This is particularly visible in most of the subjects
and patients, i.e., P01, P02, P04, H01, and H02. This is however
not so clear in subjects H03 and H04 where lateral area decoding
performance is most favorable.

The second test (Figure 4) identified the best decoding
performance levels for each subject. These correspond to
the processing time interval peaks in a particular electrode
distribution (see Table 1). Additionally, chance levels (mean and
STD) are represented for both healthy and SCI patients. The
results obtained for all subjects are significantly different from
chance levels (Wilcoxon Sum-Rank Test, p < 0.05). For most of
the subjects and patients average decoding performance is >0.3
(subjects H04 and P04). Decoding performance for subjects H02
and P01 is >0.5. Interestingly, there is no significant difference
between healthy and SCI subjects (Wilcoxon Sum-Rank Test, p >

0.05). Figure 5 shows a representative example of how decoding
performance influences the behavior of the reconstructed signals.
It presents the original muscle primitive (activation coefficients)
and its reconstruction for 4 representative folds. Figure 5 (top-
left and top-right) shows a similar behavior of the reconstructed
signal despite the fact that decoding performance largely differs
between these 2-folds. In the case of patient P02 (Figure 5,
bottom-left), the decoding performance is high but the amplitude
level mismatches between the original and the reconstructed
signal. Finally, a poor reconstruction is shown in Figure 5

(bottom-right), where the reconstructed primitive does not
correctly match the original signal.

The third test assessed the ability of detecting periodical
muscle contraction patterns based on reconstructed primitives
and subsequently investigate how well they matched with the
original primitives, i.e., those experimentally derived from EMG
information. True positive rate (TPR), detection rate (DR), and
time shift (TS) are presented (mean and STD) in Table 2 for
each selected detection margin (M). From the table, we can see
that TPR and DR increase with higher margins. Unsurprisingly,
TS also increases with M. In this situation, the matching peaks
rise in number, as there is a wider window of detection.
TPR is generally consistent with previously obtained decoding
performance. Subjects with higher decoding performance, such
as H02 and P01, obtain the best results. Good TPR is also
achieved for subjects H01 and P03 who, on the contrary, have
lower correlation levels. Significant TPRs have been highlighted

TABLE 1 | Selected electrode distribution and processing time interval (PTI) for
each subject.

Subject Electrode

distribution

PTI (s) CC (mean ± STD)

H01 Midline 1.83 0.38 ± 0.13

H02 Midline region 2.16 0.56 ± 0.12

H03 Lateral regions 2.50 (max) 0.36 ± 0.18

H04 Global activity 0.66 0.28 ± 0.10

P01 Midline 2.50 (max) 0.50 ± 0.17

P02 Midline 2.33 0.36 ± 0.19

P03 Midline 0.66 0.36 ± 0.18

P04 Midline 2.33 0.28 ± 0.11

The corresponding decoding performance in terms of correlation coefficient (CC) is also
shown.

FIGURE 4 | Optimal decoding performance for each subject (mean ± STD).
Chance levels were also computed to infer the significance of the results
(Wilcoxon Sum-Rank Test, ***p < 0.001).

in the table after comparing them to chance levels (Wilcoxon
Sum-Rank Test, p > 0.05). Interestingly, TPR computed for M
= 0.5 is always above chance, while the remaining values are
not always significantly different. To illustrate how the peaks
are detected on both the original and the reconstructed signal,
Figure 6 shows an example for the same representative subjects
and folds shown in Figure 5. Peak detection performance on
each of the graphs is clearly consistent with previous results on
signal reconstruction. Figure 6 (top-left), with the best decoding
performance of all four, presents a very good detection of
original peaks (13 correct detections, 1 false detections, and 3
no detections). Figure 6 (top-right) also shows a high number
of accurate detections (11 correct detections, 2 false detections
and 3 no detection). The number of detected peaks is quite
lower for Figure 6 (bottom-left), although peaks are identified
with very good precision (9 correct detections, 0 false detections,
9 no detections). This is probably due to the bad scaling
of the decoded primitive whose amplitude was comparatively
lower than the rest. Finally, the fold with the worst decoding
performance (Figure 6, bottom-right) shows, consequently, a
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FIGURE 5 | Example of reconstructed primitives for several representative subjects and folds, including the Pearson correlation coefficient (CC) obtained for the
particular fold. Decoding performance does not depend on amplitude or baseline (subject P02) but decreases with increased phase delays (subjects H03 and P04).

quite low identification accuracy (6 correct detections, 3 false
detections, 5 no detections).

4. DISCUSSION

Themain goal of this study was to obtain a robust way to translate
brain signals into control commands provided to assistive devices
such as robotic exoskeletons. For this purpose we proposed to
identify motor primitives from SCPs. This enabled extracting
high-level motor-related neural information and capturing the
basic spinal primitives of multi-muscle control. As many motor
processes are usually rhythmic, this methodology can provide a
framework to identifiy periodical muscle activation from brain
modulations that could be later applied to map full lower-limb
mechanical information.

Current EEG-based continuous decoding techniques measure
performance based on the cross-correlation between the
original and the reconstructed signal. This correlation (Pearson
correlation coefficient) is reported to be generally <0.4, which
leads to difficulties in robustly translating the approach to a
real-time assistive or rehabilitation scenario (Bradberry et al.,
2010; Paek et al., 2014; Úbeda et al., 2017). One possible reason
for low correlation metrics is the fact that current paradigms
create direct mappings to body kinematics as a pure function
of brain activity, thus bypassing all intermediate non-linear
transformations, i.e., transmission pathways at the spinal and

at the muscular level. As a consequence, important information
may not be captured by a single macroscopic mapping. In our
study we have decoded muscle primitives from brain activity
instead of the direct kinematics of the lower limb. Results showed
high decoding performance significantly above chance-level for
all participants (Figure 4), with correlation coefficients being
on average between 0.3 and 0.4, and reaching higher standard
deviation values of up to 0.7. The obtained decoding performance
was in line or higher than what was obtained in previous studies
(Bradberry et al., 2010; Paek et al., 2014; Úbeda et al., 2017).

Moreover, our proposed approach offers the possibility to link
decoded primitives to neuromusculoskeletal (NMS) models. In
this context, it is not important to decode the exact shape and
amplitude of activation primitives but just their timings. These
would represent, in our formulation, the descending neural burst
produced by the central nervous system (CNS) in the control of
a group of muscles. In combination with modeling we propose
in the near future to translate this burst into precisely timed
mechanical function.

Our study resulted into three main findings: (1) decoding
performance generally increases when only taking into account
the information from motor cortex areas related to lower-
limb movements and, thus, our approach is physiologically
consistent with previous results of cortical motor control
(Brouwer and Ashby, 1990), (2) we provide evidence that the
processing time interval should be increased to achieve the
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TABLE 2 | Similarity metrics (mean ± STD) for different detection margins (M).

Subject M TPR (%) DR (%) TS (%)

0.1 42.07 ± 9.92 40.99 ± 12.72 0.08 ± 0.05

H01 0.25 74.19 ± 10.33 72.39 ± 18.28 0.19 ± 0.04

0.5 87.48 ± 3.73 84.63 ± 14.32 0.26 ± 0.07

0.1 60.51 ± 13.92 53.18 ± 15.22 0.06 ± 0.01

H02 0.25 88.08 ± 11.02 76.78 ± 13.31 0.11 ± 0.01

0.5 98.81 ± 2.92 85.97 ± 7.97 0.15 ± 0.05

0.1 25.09 ± 9.39 17.86 ± 11.68 0.09 ± 0.04

H03 0.25 76.25 ± 9.35 54.67 ± 28.88 0.24 ± 0.04

0.5 100.00 ± 0.00 69.96 ± 31.47 0.32 ± 0.06

0.1 33.07 ± 5.98 29.72 ± 7.18 0.10 ± 0.03

H04 0.25 70.99 ± 15.33 64.03 ± 17.89 0.20 ± 0.03

0.5 94.86 ± 4.00 84.72 ± 10.56 0.31 ± 0.08

0.1 40.99 ± 18.93 42.08 ± 22.10 0.10 ± 0.04

P01 0.25 81.19 ± 21.04 80.14 ± 22.80 0.27 ± 0.09

0.5 90.95 ± 11.94 88.84 ± 12.20 0.34 ± 0.14

0.1 31.08 ± 17.31 22.82 ± 9.98 0.09 ± 0.03

P02 0.25 65.48 ± 27.39 65.48 ± 27.39 0.16 ± 0.03

0.5 95.57 ± 3.59 74.44 ± 14.46 0.25 ± 0.07

0.1 35.30 ± 17.79 26.81 ± 19.33 0.08 ± 0.03

P03 0.25 80.14 ± 19.16 58.03 ± 30.94 0.18 ± 0.04

0.5 93.10 ± 9.91 64.65 ± 27.05 0.22 ± 0.06

0.1 39.72 ± 7.32 33.33 ± 7.42 0.11 ± 0.04

P04 0.25 67.61 ± 12.59 56.36 ± 9.07 0.19 ± 0.06

0.5 94.11 ± 5.47 78.94 ± 9.59 0.37 ± 0.06

True positive rates (TPR), detection rates (DR) and time shifts (TS) are presented for each
subject and condition. In gray, conditions that are significantly different from chance levels
(Wilcoxon Sum-Rank Test, p < 0.05).

optimal performance in the decoding process and that this
time interval is generally in the proximity of 2 s which is
consistent with the generation of anticipatory low-frequency
potentials (Jahanshahi and Hallett, 2003); and (3) our proposed
method to identify muscle contractions from the decoded
primitives is less dependent on amplitude and phase variations
compared to other correlation metrics such as the correlation
coefficient.

This study was based on a small subject size so caution must
be applied in the interpretation of results. However, it is worth
stressing that our method proved to operate on individuals with
spinal cord injury and with disrupted neuromusclar control. This
itself is an important element providing initial evidence that
our approach could be further extended and translated to larger
clinical scenarios.

4.1. Evaluation of Cortical Involvement in
the Decoding
Cortical modulations in charge of lower-limb motor control
are mainly located over the motor and premotor cortex
midline (Brouwer and Ashby, 1990). For this reason, we have
hypothesized that decoding performance of knee extension

muscle primitives should increase if these particular areas are
taken into consideration (test 1). We have compared decoding
performance for different cortical regions to evaluate which
distribution of electrodes increase the accuracy of the decoding
(Figure 2). Closer inspection of the graphs in Figure 3 reveals
that most of the subjects obtained a lower performance when
taking into account lateral regions. This is consistent with our
hypothesis, suggesting that regions not related to the lower-limb
motor cortex have less influence in the decoding performance.
For most of the subjects, the optimal electrode distribution is
centered on the cortex midline (H01, P01–P04) or on the midline
area (H02), which again suggests that these areas are more
relevant when decoding lower-limb activity.

In contrast, in the specific case of subject H03, when the
processing time interval increases, performance levels for lateral
areas increased compared to the other distributions. Subject
H04 also obtained better results from the global activity of the
whole cortex. A possible explanation of this behavior may be
found in the variability of the cortex modulations across subjects.
Indeed, EEG analysis is highly subject-specific and, for singular
individuals, certain regions, different from the motor cortex,
could contribute to motor control as previously suggested in
Agashe et al. (2015).

Another possible reason could be related to the presence
of motion artifacts affecting the global activity of the whole
cortex. Motion artifacts are a key limitation in the application
of BMIs under ambulatory conditions, particularly during gait
rehabilitation procedures (Costa et al., 2016). This fact could
also explain why all the configurations showed a similar behavior
in subjects P03 and P04. Even so, our results suggest that
artifact influence, if any, is limited due to the experimental
conditions: the experimenter permanently monitored head
movement and the proposed task did not involve important
movement transmission through the body affecting the head
of the participants (subjects sitting during the performance of
knee extensions). Also, the lower decoding performance that
many subjects obtained for lateral areas in comparison to other
configurations indicates that artifact activity is not dominating
the decoded output, being more dependent on actual cortical
modulations. However, a future application of the proposed
methodology in more complex conditions, such as the decoding
of locomotion, should consider this element, as it may hinder the
translation of the BMI system to the technology level in a realistic
environment.

4.2. Analysis of the Processing Time
Interval
Previous works used short processing time windows (i.e., 100ms)
in the application of linear decoders to SCPs, (Bradberry et al.,
2010; Presacco et al., 2011; Úbeda et al., 2015). By using this
approach, it is possible to obtain significant performance (in
terms of signal-to-signal correlation) in the decoding of upper
and lower limb kinematics. However, from the point of view of
signal analysis, there is little variation of the signal amplitude in
such a short time window, as the signals of interest are previously
filtered below 2 Hz. This is even more critical in the case of
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FIGURE 6 | Example of identified peaks for several representative subjects and folds, including the Pearson correlation coefficient (CC) obtained for the particular fold.
Scale differs between the decoded and the original peaks to improve visibility.

EEG modulations, where the signal to noise ratio is particularly
low. Our proposed approach provides robustness in this aspect.
As a result, we could enlarge the processing time interval (i.e.,
increasing it up to 2.5 s), thus enabling information extraction
from larger low-frequency EEG modulation windows.

The analysis of the processing time window revealed that
decoding performance peaks were associated to larger processing
time intervals, i.e., generally between 2 and 3 s (Table 1).
Our results showed that longer processing time intervals not
only carried more information of low-frequency modulations,
but also have electrophysiological consistency, e.g., previous
studies reported anticipatory SCPs initiating around 2 s prior to
movement onset (Jahanshahi and Hallett, 2003). These findings
are limited to the small size of the population (8 subjects) so
the assessment of larger populations is necessary to validate this
conclusion.

One of the limitations of our experimental setup is the
requirement of periodicity of the knee extensions as the
synergistic analysis generates primitives for cyclic movements.
However, important functional tasks in daily life are cyclic, e.g.,
locomotion, stairs climbing, ramp ascending, etc. Therefore, our
approach is expected to have important implications despite the
cyclic constraint imposed by muscle primitives analysis. Indeed,
this fact can explain why, for particular subjects and channel
distributions, decoding performance curves do not peak (for

instance, subject H3 for lateral regions or P1 for midline area)
(Figure 3). If the processing time interval is longer than one cycle,
cortical modulations responsible for previous cycles can sum
their influence into the decoding performance. To minimize this
effect, we limited the selected processing time interval to 2.5 s.
We also believe that a longer resting period between extensions
(instead of continuous movements) will provide a better analysis
of the proper processing time interval. In this sense, further
evaluation should analyze how well this method adapts to pauses
or absence of the periodical activity. This is a critical aspect to
be considered in future experiments that assess similar single-
joint lower limb movements as well as those related to human
locomotion.

4.3. Identification of Muscle Contractions
It is worth stressing that current correlation metrics may be
limited in determining the true performance of our proposed
system. Correlation is invariant to scale and location (baseline)
but very dependent on phase. This can be clearly seen in
our results. High correlation coefficients could be obtained
from a very good reconstruction (Figure 5, top-left) or with
important differences in amplitude (Figure 5, bottom-left). On
the contrary, a low correlation did not always translate into a poor
reconstruction, as it happened in Figure 5, top-right, where the
reconstructed signal was only slightly shifted but accurate. Future
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work will determine the proper performancemetric to be applied,
which will eventually depend on the final goal of the study. In
this sense, recent works have already discussed about the effects
of applying different performance metrics (Spuler et al., 2015),
from the more typical Correlation Coefficient (CC) applied in
our study, to other methods such as Normalized Root Mean
Squared Error (NRMSE) or Signal to Noise Ratio (SNR), among
others.

As a result, our study employed additional metrics for
evaluating decoding performance by extracting peaks in
the reconstructed signals that match the original muscle
contractions. This is more suitable for detecting neural bursts to
feed NMS models, as this method solves some of the limitations
of the previous performance metric, e.g., the high dependence
on phase. As an example, the reconstructed primitive for Subject
H03 in Figure 6, top-right, which had a quite low correlation,
achieved a very high identification accuracy, while folds with high
correlation kept a very low detection error (Figure 6, top-left
and bottom-left). In the case of Subject P02, the bad scaling in
the reconstruction increased no detections, but did not affect the
number of false detections.

Our proposed identification method is still dependent on the
tuning of internal parameters including the margin of detection
(M) or the amplitude threshold (Section 2.5.4). When parameter
L was increased, the true positive rate importantly increased
(Table 2). This is somehow misleading and does not represent
a proper identification of decoded peaks because of the already
mentioned continuous periodicity of the knee extensions. In
fact, a very wide margin can lead to the misidentification
of many detected peaks that are not really close to one of
the peaks in the original signal. On the other hand, short
margins failed to detect most of the peaks. To evaluate this
issue we have a applied a paired test between our identification
results and chance levels showing that both low (M = 0.1)
and high (M = 1) margins reduce the significance of the
identification accuracy (true positive rate) and, that an average
length of this margin (M = 0.5), which corresponds to half
of the peak-to-peak distance in the original signal, is a more
suitable tuning for parameter M. This tuning is a critical
aspect in the timing of actuated gait-assisting devices in realistic
scenarios.

4.4. Further Application of Corticospinal
Mapping
Our proposed procedure accurately extracts the activation onsets
of muscle primitives and, thus, reduces the dimensionality of
the decoding by directly mapping corticospinal transmission.
Extracting muscle primitives from EEG signals may be more
physiologically plausible than directly decoding joint kinematics
as EMG extracted motor primitives encode alpha motor neuron
discharges and have shorter pathways with respect to the cortical
output.

Another important advantage of the proposed method is the
reduction of dimensionality in the decoding procedure. In cyclic

movements, such as locomotion, up to 12 different variables
are needed to define movement, e.g., during gait, while with
this procedure it is possible to reduce this output to just 4
primitives.

In addition, we evaluated new metrics that may be more
suitable to trigger, for instance, an exoskeleton during gait
assistance, as they are more sensitive to cyclic muscular
activations. In this regard, the influence of mechanical artifacts
affecting corticospinal mapping should be evaluated and
removed to increase the robustness of the method and make it
feasible to be applied in a realistic scenario.

In the future, corticospinal mapping may be combined
with explicit models of the composite musculo-skeletal system.
This will enable extracting whole-limb mechanical information
from decoded muscle primitives, as previously proposed in,
Sartori et al. (2013, 2016, 2017). This novel approach may
open new avenues for the clinically viable interfacing with an
individual’s nervous system and the concurrent reconstruction of
the intendedmusculoskeletal function. This methodology has the
potential of, in the future, establishing man-machine interfaces
that are robust and intuitive.
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