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Causality in complex systems 

 

 
Abstract 

Purpose The concept we call "naive" causality can be stated more generally as the belief (or knowledge) 

that results follow actions, and that these results are not random, but are consistently linked with causes. 

We have thus formed a very general and precarious concept of causality, but one that appropriately 

reflects the meaning of causality at the level of common sense. 

Design/methodology/approach Mathematical and logical development of the causality in complex 

systems. 

Findings There are three aspects of rationality that give the human mind a unique vision of Reality: a) 

Quantification: reduction of phenomena to quantitative terms. b) Cause and effect: causal relationship, 

which allows predicting. c) The necessary and valid use of (deterministic) mechanical models. This work 

is dedicated to the second aspect, that of causality, but at present leaves aside the discussion of 

possibility-necessity, propose a modification to philosophical synthesis of causality specified by Bunge 

(1959), with contributions made by Patten et al. (1976) and LeShan and Margenau (1982). 

Originality/ Value Causality is an epistemological category, because it concerns the experience and 

knowledge of the human subject, without being necessarily a property of reality. 

 

Keywords: causality, complexity, causal chain, causal link, determination 

 

 

1. INTRODUCTION: THE PRINCIPLE OF CAUSALITY 

 

In Western culture an early treatment of the causal principle appears in the philosophy 

of Democritus: By necessity are foreordained all things that were, are and will be. 

Aristotle (1947) distinguishes four types of causes or explanations: 

 

1) Causa formalis is the essence or essential nature of a thing, what defines it. 

 

2) Causa materialis, is the material from which a thing is made, its properties. 

 

3) Causa efficiens, is the outer compulsion, the cause of a change. 

 

4) Causa finalis, explains how the causa efficiens works: the purpose or goal; for 

this reason it is the summing up of every generative or motivated process. It is 

the principle of finality. 

 

The causal theory of Aristotle involves understanding the production of effects. This 

knowledge chooses the means, i.e.. it governs the occurrence of efficient causes 

directing the process to produce and end. All this is very important to us, since it was 

precisely the superseding of previous knowledge that concealed details of causal 

mechanisms, which is clear in Aristotelian causality, which characterizes modernity 

and postmodernity. As for the precise nature of the causes, Aristotle's view was broad. 

He established three distinctions 

 

1) Things: the seed is the cause of the plant. 

 

2) Events: an accident is the cause of death. 

 

3) States: the current position and velocity of a body determines its future position 

and speed. 
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A common element in experimental science and in much of philosophy in modern times 

is the objectification of the causal link, one consequence of which “de-spiritualises” 

reality. Aristotle's analysis of causality separates knowledge and ethics from the world 

itself. So modernity can be understood in part as the beginning of a culture, which is 

characterized by the separation of wisdom and reality, in which reality is considered as 

a pure object. After the separation knowledge/reality, the separation of subject and 

object follows as an immediate consequence. The division of knower and known, is 

thought to be a real and primary division, rather than just a conventional philosophical 

position as it really is. Since then causality is understood as belonging to one of these 

two poles, the subject or the object. So, one possibility is that causality is objective as a 

scheme of actual effectuation, where the relationship between cause and effect is purely 

external, and so is blind and oblivious to the will and human knowledge (is the kind of 

causality that is modeled on Newtonian physics). Or alternatively, causality is reduced 

to a purely subjective character given only in the mind of the observer but with no 

connection with reality itself (the empiricist conception). Philosophers who consider 

causation as "real", conceived the relationship between cause and effect as a productive 

relationship (ontological effectuation) but face difficulties to account for that 

productivity. Therefore in fact, there is something in the causal link that one cannot 

observe or fully rationalize. The concomitance of cause and effect is observed, and in 

many cases the proof of the causal relationship is demonstrated, but the effectuation or 

production itself remains a conjecture of the researcher. Causation as such is not 

evident, and does not show itself in its phenomenal externality. The attribution of cause 

always involves the intervention of a mind that cuts the real process and interprets it. 

This difficulty seems irreducible to such an extent that the German philosopher N. 

Hartman, who wanted to found a materialist ontology, had to recognize the existing 

"irrational" component in causality. Hartman tried to circumvent that obstacle in the 

materialist theory of causation, stating that such irrationality is not a "real" character but 

is a methodological limitation that probably someday may be remedied (Väyrynen, 

2016).  

Consider any object. Among its many observable attributes in Euclidean three 

dimensional space, we have its mass, size, shape, color, position and speed. Suppose 

that the object is moving as the result of an impact. Important observables are: mass, 

position and current speed and the force acting on the object. The law for these 

observables is Newton's second law, which states that force equals mass multiplied by 

acceleration of the object. Mathematically, this law is a differential equation 2 2d x / dt , 

the solution always requires knowledge of two constants concerning the current 

movement. One is the current position that can be measured directly. The other is its 

current speed. But the current speed is determined by estimating the current position 

and determining its previous position, that is, by the operation of dividing the position 

change by the time interval. We could say that to determine the present speed, we need 

to take a little jump back in the past. If we are to find the current acceleration we should 

know the current speed and its speed a little earlier. But the latter requires knowledge of 

the position at a specific time, a little before that time which gave us the present speed. 

We will have to take two steps back in the past. The resolution of the equation gives the 

position and velocity of the object at any future time. This will be a causal prediction 

because it gives us the knowledge of the future position and speed of present or past. In 

general, a causal prediction involves a law, and a limited and specific set of 

observables, called causal observables (LeShan and Margenau, 1982). So with regard to 

the movement, only the mass, force, acceleration, velocity and position are significant. 

The other observable also comes from valid combinations in other processes that are not 

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

Sy
dn

ey
 L

ib
ra

ry
 A

t 0
5:

02
 1

4 
M

ar
ch

 2
01

7 
(P

T
)



3 
 

moving. In Ecology biomass and population are observable. This allows us to develop 

models of differential equations over time, by a procedure similar to that discussed 

above for the moving object and thus make predictions. 

What we want to establish here it is that the principle of causality allows us to predict 

the future in response to observables relative to the past. All theories that describe or 

reveal physical reality are guided by the principle of causality and, therefore, satisfy it. 

This is not intrinsically necessary and it always has to be that way. It was a question 

debated by philosophers like Kant and Hume. Kant (1950) considers this principle as 

something a priori necessary for thought, while Hume (1784) considered it as a useful 

instrument and incidental. 

Direct and indirect causality in complex systems have been dealt with extensively by 

authors such as Higashi and Patten (1989), Patten et al. (1976), Higashi and Nakajima 

(1995). Lloret-Climent (2002) studied direct and indirect causality in living systems by 

studying cells and analysing relationships such as cellular meiosis and mutation. 

Recently, Fisher (2015), presented a discussion about the construction of mental models 

of causal relationships. 

 

2. BUNGE PRINCIPLE OF CAUSALITY 

 

Galileo (1623 [1953]) defined the efficient cause as a necessary and sufficient condition 

for the emergence of something: that, and nothing else will be called cause, the 

presence of which is always followed by an effect and when it disappears, so does the 

effect. Symbolically ( ) ( )C E C E .→ ∧ ¬ →¬  Bunge (1959) criticizes this concept of 

Galileo’s as: 

 

1) Inclusive, admitting everything as cause, which could possibly influence the 

effect. 

 

2) General given the set of conditions for the occurrence of an event of any kind 

caused by any kind of particular process. 

 

To specify more precisely the causal connection EC → , Bunge (1959) developed a 

logical series of progressively more precise formulations: 

 

1) Constant conjunction: exceptions to the formulation of Galileo are established 

when C and E are recognized as sets. Then a constant conjunction of 

establishing the cause is "If C happens, then E always happens." Symbolically 

we can expressed this as ( ) ( )C E ,C E∀ ∧ ∀ → . The cause as a set is necessary 

but not sufficient for the effect, which is also a set. This formulation of causality 

is legal (If C declares conditions), asymmetrical (C is essentially priority to E, 

however, not necessarily prior in time), and constant (no exceptions, as is set by 

the operator∀ ). But it lacks singularity and productivity. 
 

2) Constant production: The genetic link is outside the logical domain and must be 

entered factually: If C happens then E will always be produced by it. 

symbolically ( ) ( ) ., ECEC →∀∧∀  

 

3) Necessary conjunction: uniqueness can be introduced in the constant 

conjunction to incorporate the need: If C happens, then and only then E always 
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happens. If   is the logical symbol of the need, then ( ) ( ) →∀∧∀ CEC ,  E. The 

cause is now necessary, and only constant and sufficient for the effect. 

 

4) Necessary production: The uniqueness and genetic principle combine to: If C 

happens, then and only then E is always produced by it. That is to say 

( ) ( )C E ,C∀ ∧ ∀ ↔  E. 

 

This Principle of Causality determined by Bunge (1959) will be adopted in the theory 

presented in this paper, and we use it as an expression of the causal link .EC →  

 

3. CHARACTERISTICS OF CAUSALITY 

 

Some of the issues we consider most important for causality are the following (Patten, 

Bosserman, Finn and Cale, 1976): 

 

1) Spatial contiguity: Production of an effect by contact seems necessary for causality. 

However, spatial contiguity and causality are logically different categories, and when 

cause and effect are remote and cannot be empirically tested, causality remains as a 

hypothesis. For our purposes we will say that cause is consistent with contiguity, but it 

is not necessary. 

 

 2) Temporal antecedence: If C and E are spacially separated; they cannot occur 

simultaneously; moreover, they can. Therefore, generally temporal priority is not 

required on the effect, and causality is compatible with the instantaneous link .EC →  

Antecedece and cause are logically independent but consistent categories. The temporal 

precedence of C is not necessary; however, it is a necessary existential priority. The 

cause must exist for the effect to occur. This follows from the nature of the conditional 

"If C ...." in each causal formula.  

 

3) Causality and succession: The cause has been considered a reducible temporal 

succession, or equal to uniform. Comte (1830) observed that human thought does not 

seek to know the root causes of phenomena, but only their effective laws, that is, their 

invariable relations of succession and likeness. Mill (2002) noted that the main pillar of 

inductive science the Law of Causality, corresponded to the thought that invariance of 

succession based on the observation of any act of nature, and some other phenomena 

that preceded it. A causal principle based on temporal antecedence and succession has 

been formulated by Bunge (1959). The state of a closed system unfolds in time in a 

unique and continuous manner and the same initial state is always followed by the same 

final state. Many ecological models represented by homogeneous differential equations, 

including the Lotka-Volterra system nixxba
dt

dx
i

n

j

iiji
i ,...,2,1

1

=







−= ∑

=

 tacitly assume 

successional definition of the cause. The above statements are considered sufficient to 

know any system changing over time. The causes are necessary and sufficient to 

produce the effects and states are only necessary. States have a productive nature in 

themselves, but are also determined from internal and external processes. They are the 

agents of the cause, the cause carriers in effect but not the cause-effect itself. 

 

 4) Externality of the cause: Internal causes and centripetal concepts of causality were 

widely used in earlier times. Bruno (2014) distinguished between the causal principle 
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"that which intrinsically occurs in the constitution of the thing and remains in effect," 

cause or "that which extrinsically occurs in the production of the thing." Self causality, 

causa sui, now occupies a role more and more reduced in modern science, however, it 

appears again as an implicit assumption in homogeneous differential equations, which 

are used to model causal phenomena, such as ecological models. Generally, in modern 

science, intrinsic determinants have been relegated to other categories of determination, 

which are different from causality, or associated with formal and material causes in 

which case they can indicate some state relations. Innatism is not accepted by science, 

and vitalism considered as an inherent life force has been rejected for more than a 

century. Causal determination ensures that the universal operation of the efficient cause 

is taken from the extrinsic. Sustaining a cause to effect link must be maintained, and the 

disappearance of the cause is necessary and sufficient condition for the disappearance of 

the effect. ( ) ( )C E , C E.∀ ∧ ∀ ¬ ↔ ¬  Causa cesante cessat effectus (Aquinas, 1947).  

 

5) Causation and functionalism: The functional point of view of causality leads to the 

idea that the causal link can be replaced by mathematical relationships that express 

functional dependence. Problems may be presented as the functions are syntax, and 

therefore are legitimate; also functions have semantic and therefore genetic quality. 

Functional dependencies are not a priori causal, but may represent causality due to the 

fact that relations expressed are productive. 

 

6) Causal links of a system: The causal link EC →  is the only elementary unit of 

propagation of influence on a system, abstracted from the causal chains (serial 

sequences), and these in turn link to causal networks with convergence, branches and 

feedback. 

 

7) Multiple Causality: If C and E are finite sets of causes and effects, then the necessary 

production of causality, logically ( ) ( )C E ,C E∀ ∧ ∀ ↔ accompanies plurality of causes 

and effects diversity (Figure 1). 

 

 

C

C1

C2

Cn

.

.

.

E C

E1

E2

En

.

.

.

E

 
Figure 1: Multiple causality. 
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This is the reality of the causal link in a particular system. From the standpoint of Bunge 

(1959), multiple causality is not strictly causal in its uniqueness ( ) ( )EC ∀∧∀ and 

applied to sets cannot be analyzed beyond the elements of the set. Same cause, same 

effect says the old dictum and not same causes, same effects. 

 

4. CAUSAL LINK AND CAUSAL CHAIN  

 

"Whatever it is, it has become, and is based on what has been." The state of the system 

is the link between its past and future existence. 

In this section we will outline causal link theory following Lloret-Climent, Villacampa-

Esteve and Usó-Domènech (1998); Lloret-Climent, Usó-Domènech, Patten and Vives-

Maciá (2002); Patten, Bosserman, Finn and Cale (1976); Usó-Domènech, Mateu and 

Patten (2002); Usó-Domènech, Lloret-Climent, Vives-Maciá, Patten and Sastre-

Vazquez (2002) and Usó-Doménech, Nescolarde-Selva and Lloret- Climent (2014, 

2016).  

Let H be a Holon, defined by m variables of the system .,...,, 21 nxxx . These variables can 

be distributed in stimuli, state variables, and responses, based on their contribution to 

relations within the system (Figure 2).  

Z

S

Y

 

Figure 2: The Holon. 

 

The cause is transmitted into the system through dependency paths, which are the causal 

structure. 

Let ( ) nixxxP ni ,...,2,1,,...,, 21 =  be a set of functions that expresses how each 

undifferentiated system variable is produced by others in accordance with the Genetic 

Principle. 

 

Definition 1: A system variable ix  is said to be in direct dependence with another 

system variable jx ,and denoted by j ix x ,→  and we will read " jx  produces ix " or " ix is 

directly dependent of jx  ", iff 0i

j

P
.

x

∂
≠

∂
 

 

Direct dependence is the mathematical expression of the philosophical Genetic 

Principle. The different categories of system variables can be differentiated according to 

the above Definition 1. 
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Definition 2: A variable z of the system is a stimulus iff .00
11

≠










∂

∂
∧














=

∂
∂

∑∑
==

n

j

j
n

j j

z

z

P

x

P
 

 

That is, z is a stimulus, if not directly dependent on any other system variable, and then 

there is at least one state variable that depends directly on it. 

 

Definition 3: A variable s is a state variable iff .00
11











≠

∂

∂
∧














≠

∂
∂

∑∑
==

n

j

j
n

j j

s

s

P

x

P
 

 

The state variable s depends on at least one system variable. And at least one variable of 

the system is directly dependent on the state variable. 

 

Definition 4: A variable y a response iff .00
11











=

∂

∂
∧














≠

∂

∂
∑∑
==

n

j

j
n

j j

y

y

P

x

P
 

 

That is, the response y is directly dependent on at least a system variable, and there is no 

system variable produced by y. In addition to direct dependence, system variables are 

also indirectly dependent on other variables, and the cause and effect, are propagated 

along sequences of serial dependence. Such sequences are known as causal chains. 

 

Definition 5: A system variable ix  is sequentially dependent on another system 

variable jx  iff there is a finite sequence of system variables between ji xx ,  and such 

that ....21 ijjj xxxx →→→→ ++  

 

Definition 6: Each pair ,1,...,,1 −=→ + ijkxx kk  denotes a direct link of dependency. 

 

Definition 7: Sequence ijjj xxxx →→→→ ++ ...21  defines a sequential path of 

dependence from jx to ix  symbolized by .ij xx →−−−  

 

Definition 8: We define the length of a route as the number of links directly dependent 

on that route. 

 

Associations of dependence on a system variable ix can be represented by the following 

groups: 

 

1) The set of direct dependence iD on the system variable ix  is the set of variables 

jx  for which there is a direct dependency link from jx to ix . 

{ } njnixxxD ijji ,...,2,1,...,2,1; ==→=  
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2) The set of sequential dependence iS of the system variable ix is the set of 

variables jx for which there is a sequential path of dependence from jx to ix . 

{ } njnixxxS ijji ,...,2,1,...,2,1; ==→−−−=  

 

THEOREM 1: Given a set of undifferentiated variables ,,...,2,1 nixi =  of the system 

the following statements are true: 

 

1) Each sequential path of dependence ij xx →−−−  contains an element of .iD  

 

2) .ii SD ⊂  

 

Proof: 

 

1) Each route of sequential dependence ij xx →−−−  has the form 

.,... 11 ijiijj Sxxxxx ∈∀→→→→ −+  The penultimate variable of the system 

1−ix  is obviously a member of the set of direct dependence on .ix  

 

2) Let 
ii Dx ∈−1  and ij Sx ∈  be. Each path of sequential dependence originating 

from the set of variables jx ends in one and only one .1−ix  That is, in the 

sequence of dependence  

                             ,,...,,,... 11121 iijjiijjj Sxxxxxxxx ∈→→→→→ −+−++  

          but only .1 ii Dx ∈−  In general, then, ;, 11 iiii SxDx ∈∈∀ −−  but ., ijij DxSx ∉∈∀       

Thus .ii SD ⊂  

 

Corollary 1 The set of sequential dependence zS , of the stimulus z is the empty set. 

 

Proof: 

 

Consider .∅≠ZS  Theorem 1 ensures that each route of sequential dependency from z 

must contain an element of .zD  However, from the definition of stimulus z, we know 

that it has no dependence on any system variable. Thus ,∅=zD  which contradicts 

Theorem 1. Thus .∅=zS  

 

Let ij xx →−−−  be a route of sequential dependency from jx  to .ix  

 

Definition 9: We will call the variable jx  the origin variable, and call the variable ix  

the terminal variable.  

 

Definition 10: We define the route of complete dependence the one whose origin 

variable is a stimulus z and whose terminal variable is a response y. 
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Definition 11: We define a route of incomplete or partial dependence one whose origin 

variable and/or terminal variable is a state variable s. 

 

THEOREM 2: Given a set of undifferentiated system variables ,,...,2,1 nixi = the 

following statements are true: 

 

1) Each stimulus z has caused at least one path of sequential dependence. 

 

2) Each response y is terminal for at least one path of sequential dependence. 

 

3) Each variable system, which exists between the origin and terminal of one path 

variables of sequential dependence, is a state variable s. 

 

Proof: 

 

1) Each stimulus z has at least one system variable that is directly dependent on it. 

Therefore, there is at least one variable jx such that ,0≠
∂

∂

z

Pj
 and therefore jx . It 

is directly dependent on z which causes at least one direct dependency link. 

Following Theorem 1 z is causing at least one path of sequential dependence. 

 

2) Each response y is directly dependent on at least one other system variable. That 

is, at least there is a system variable jx  such that ,0≠
∂

∂

j

y

x

P
 and then there is a 

dependency link yx j →  from jx  to y. Following Theorem 1 there is at least 

one path of sequential dependence yx j →−−−  from jx  to y. Therefore, y is a 

terminal variable with at least one path of sequential dependence. 

 

3) Each system variable jx between the original variable and terminal variable of a 

sequential path dependence should be directly dependent on the preceding 

variable .1−jx  Similarly, the system variable 
1jx + which is directly successor of 

jx  should be directly dependent on the latter. Therefore 

.00
1

1










≠

∂

∂
∧










≠

∂

∂ +

− j

j

j

j

x

P

x

P
 jx will be a state variable s. Therefore, any existing 

variable between the origin and terminal variables of a path of sequential 

dependence will be a state variable. 

 

LEMMA 1: The sequential dependency is transitive: kj xx →−−−  and 

.ijik xxxx →−−−⇒→−−−  

 

Proof: 
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Subsequently 11,...,, ++∃→−−− kjkj xxxx  such that .... 11 kkjj xxxx →→→→ −+  Also, 

subsequently 
11,...,, −+∃→−−− ikik xxxx  such that .... 11 iikk xxxx →→→→ −+  Therefore 

,...... 111 iikkjj xxxxxx →→→→→→→ −++ .ij xx →−−−  

 

THEOREM 3: Given a set of undifferentiated system variables ,,...,2,1 nixi =  the 

following statements are true: 

 

1) Each state variable s is sequentially dependent of a stimulus z. That is to say 

,, sSzs ∈∃∀  sS  being the set of causal dependence of s. 

 

2) Each state variable s is an element of the set of causal dependence yS on a 

response y. 

 

3) Each state variable s is contained in at least one full path of sequential 

dependence. That is to say, yzs ,,∃∀  such that .ysz →−−−→−−−  

 

4) Each response y is sequentially dependent of a z stimulus. That is to say, 

zy ∃∀ , such that .yz →−−−  Each system response is terminal variable terminal 

with at least one full path of sequential dependence. 

 

5) Each stimulus z of the system is within the set of sequential dependency yS of a 

system response y. That is to say, yz ∃∀ , such that .ySz ∈ .  Each system stimulus 

is causing at least one full path of sequential dependence. 

 

Proof: 

 

1) As stated above, the main role of the state in the causal determination is to 

assign stimuli to the responses. A state variable s of a system will not be 

superfluous. Therefore zs ∃∀ ,  such that sSz∈ . Each state variable has at least 

one stimulus in the set of sequential dependence. 

 

2) For the same reason, if a state variable s not used to assign a z stimulus to some 

response y, it will be superfluous in a causally determined system. Therefore, 

ys ∃∀ ,  such that ySs ∈ . Each state variable is in the set of sequential dependence 

on at least one system response. 

 

3) Let s be a state variable. By Theorem 3, s is sequentially dependent on at least 

one stimulus z, that is to say, .sz →−−−  By Theorem 3, s is an element of the 

set of sequential dependence on any response y, that is to say .ys →−−−  

Therefore, by Lemma 1, there is a full path of sequential dependence containing 

s, originating from z, and ending at y, and such that .ysz →−−−→−−−  

 

4) Each response y is directly dependent on at least one state variable s. Therefore, 

there is a state variable s such that .ys →  By Theorem 1, ,yz →−−−  and by 

Theorem 3, s is sequentially dependent on a z stimulus. Therefore, 
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,sz →−−− and Lemma 1 states that the transitivity of sequential dependence 

gives .yz →−−−  The latter is a full path of sequential dependency, then y is the 

variable terminal at least one full sequential dependency. 

 

5) Each stimulus z is an element of the set of direct dependence on a state variable 

s, or a response y. We consider z is an element of the set of direct dependence on 

y.  Then there will be a full path of sequential dependence from z to y such that 

,yz →  which by Theorem 1 implies that .yz →−−−   On the other hand, 

suppose that z is an element of the set of direct dependence on the state variable 

s. Then ,sz →  which, by Theorem 1 implies that .sz →−−−  By Theorem 3, s 

is an element of the set of sequential dependence on y, then .ys →−−−  

Applying Lemma 1 yz →−−− . This is a full path of sequential dependence, 

and therefore z causes at least one full sequential dependence 

 

 

Consequence 1: The Theorem 3 states that: 

 

1) There are no superfluous state variables in a system. 

 

2) It ensures that each state variable is clearly related to some stimulus, illustrating 

the role of stimulus in determining the state space of the system. 

 

3) It provides that each state variable is related to a response, and this result 

corresponds in the context of sequential dependence to the notion that states 

take stimuli and convert them into sequences. 

 

4) Each state variable becomes relevant in the propagation of the cause. 

 

Definition 12: Two undifferentiated system variables ji xx ,  are said to be mutually 

independent iff ( ) ( ).ijji SxSx ∉∧∉ . 

 

Definition 13: Two undifferentiated system variables ji xx ,  are said to be mutually 

dependent iff ( ) ( ).ijji SxSx ∈∧∈  

 

THEOREM 4: Given a set of undifferentiated system variables ,,...,2,1 nixi =  the 

following statements are true: 

 

1) Each set of mutually dependent variables of a system, contains as elements only 

state variables. 

 

2) If two variables of a system are mutually dependent, then their dependence 

sequential sets are identical. 

 

Proof: 
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1) The mutual dependence of two undifferentiated variables ji xx ,  means that 

( ) ( ).ijji SxSx ∈∧∈ . Then, ( ) ( ).ijji xxxx →−−−∧→−−− . Applying Lemma 1 

entails the existence of a path of sequential dependence iji xxx →−−−→−−−  

in which the same variable is both the origin and terminal. By Theorem 2, the 

variable jx within the sequence must be a state variable. For the same reason, 

( ) ( ) ( ),jijijji xxxxxxx →−−−→−−−⇒→−−−∧→−−−  and 
ix  is therefore 

a state variable as a member of a sequence of dependency that originates and 

terminates at .jx  In addition, neither a stimulus nor a response can be mutually 

dependent. 

 

2) Suppose two variables of the system ji xx , , are mutually dependent, and such 

that ( ) ( ).ijji SxSx ∈∧∈  Then, .iji xxx →−−−→−−−  Let 
kx  be a system 

variable such that ,ik Sx ∈  That is to say .ik xx →−−−  When 

( ) ( ),jiik xxxx →−−−∧→−−−  and as a consequence of Lemma 1 then 

.jk xx →−−− Therefore, ., jijk SSSx ⊂∈  By the same reasoning an element of 

jS  is also an element of iS  such that .ij SS ⊂  Therefore ,ji SS =  and sets of 

sequential dependence of mutually dependent variables of the system will be 

identical. 

 

5.  MATRIX OF CAUSAL DEPENDENCY  
 

Definition 14: We define a direct dependency matrix as a binary matrix, a nxn 

dimensional square with the i-th row and i-th column corresponding to the system 

variables, .,...,1, nixi =  

 

The elements of this matrix are binary, with 0 in the ij-th position if ,0=
∂

∂

j

i

x

P
and 1 

if .0≠
∂

∂

j

i

x

P
 Each non-zero element indicates the presence of a direct link of dependence 

between 
j i j ix ,x ,x x .→  Such a matrix is called an incidence matrix in Graph Theory 

(Bondy and Murty, 2008; Busaker and Saaty, 1965)
1
.  

 

Definition 15: We define an adjacency matrix as the result of replacing each non-zero 

element in the matrix of direct dependence with the number of directly dependent links 

between corresponding system variables. 

 

                                                             
1
 An incidence matrix is a matrix that shows the relationship between two classes of objects. If the first 

class is X and the second is Y, the matrix has one row for each element of X and one column for each 

element of Y. The entry in row x and column y is 1 if x and y are related (called incident in this context) 

and 0 if they are not. It can generate a family of matrices from the matrix by direct dependence replacing 

various amounts by binary 1. 
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The adjacency matrix has meaning in other contexts where the number of links of 

dependency has a relevant consideration
2
.  

 

Definition 16: We define as a logical matrix, binary matrix, relation matrix or Boolean 

matrix any adjacency matrix where each direct link of dependence is indicated by the 

Boolean 1, in the appropriate position. 

 

Definition 17: A Jacobian matrix results when a binary 1 of the matrix of direct 

dependence, is replaced by non-zero values of the partial derivatives .
j

i

x

P

∂

∂
  

  

The multiplication of matrices of direct dependence can be used to build routes of 

sequential dependence through interactive networks of complex systems .Σ   
Let ( )ijaA =  be a  nxn adjacency matrix whose elements denote the position and 

number of links of direct dependence from the system variable jx to the variable .ix  

Elements of A
2 
represent the number of 2-links, in routes of sequential dependence from 

the system variable 
jx to the variable ix .  In general, A

l 
indicates the number of routes of 

sequential dependence of length l, where l links direct dependence from jx  to .ix  The 

following property is well known for Linear Algebra and the Theory of Networks: 

 

Property 1: Let A be one adjacency matrix, which describes the position and the 

number of directly dependent links between system variables, then the ∑
=

l

k

kA
1

 series 

converges to the matrix A
(l)

 whose elements describe the position and the number of all 

routes of sequential dependency, of length l≤  between system variables 

1 2j ix ,x ,i , ,...,n.=  

 

Only if the adjacency matrix is Boolean, are the positions B* of routes of sequential 

dependency indicated. Let ( )ijbB =  be a Boolean adjacency matrix nxn, whose zero and 

non-zero elements and are subject to Boolean operations. Then, B
2
 describes positions 

of 2-links routes of sequential dependence and B
l
 describe the positions of l-link routes, 

and ∑
=

=
l

k

kl BB
1

)(  describes the positions of the sequences of dependence of all lengths 

l≤  (Ponstein, 1966).  

 

Definition 18: The infinite series *lim
1

BB
l

k

k

l
=∑

=
∞→

 represents the positions of all possible 

routes of sequential dependence of any length and B* It will be referred to as transitive 

closure matrix (Lidl and Pilz., 1998; Ore, 1962). 

 

                                                             
2
 In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite 

graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. 
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THEOREM 5: The infinite series *lim
1

BB
l

k

k

l
=∑

=
∞→

 converges to the transitive closure 

matrix B * when it has n + 1 terms, where n is the order or number of state variables of 

the system. That is to say ,*
1

1

∑
+

=

=
n

k

kBB  and with *,* Bbij ∈ (1) ,1*

ijij ssb →−−−⇒=  

considering that (2) .,...,2,1,0* nissb ijij =→−↵−⇒=  

 

Proof: 

 

Consider the path of sequential dependency ij ss →−−−  from the state variable js  to 

the state variable .is  By Theorem 2 we know that the variables that propagate the cause 

between js  and is  are state variables. The shortest route 
j imin s s − −− →   between 

js  and is  contain certain intermediate state variables, on the other hand if a loop or 

closed path ( )ikj sss →−−−→−−−  is indicated, the path will not be shorter. 

Considering all possible routes of the state variables in the system, and the longest 

possible and shortest possible route between them, that is to say 

{ }j i j imax min s s , s , s , − −− → ∀ ∀   may contain, therefore, at most n state variables, 

where n is the order of the system. The length of this route would be n-1 links of direct 

dependence. By Theorem 2, each stimulus z of system has a unique link of direct 

dependence, with the closest state variable, that is to say .js Therefore, the longest 

possible and the shortest possible route between the stimulus of origin, is the farthest 

terminal state ,is  that is to say, [ ]{ }i i
max min z s , z, s ,− −− → ∀ ∀ and it shall consist of no 

more than n links of  direct dependency. For the same reason, by Theorem 2, each 

response of the system y has a single link of direct dependence from the nearest state 

variable .is  The longest possible and the shortest possible route between the farthest 

stimulus and response, that is to say [ ]{ } ,,,minmax yzyz ∀∀→−−−  shall be, at most of 

n + 1 links of direct dependence. 

Therefore, the truncated series ∑
+

=

1

1

n

k

kB  is sufficient to identify the positions of all routes 

of sequential dependency of all possible lengths in the system, and therefore 

.lim
1

11

∑∑
+

==
∞→

=
n

k

k
l

k

k

l
BB  

 

The 
*

ijb  elements of the above matrix, that is to say B*, have a value of 1 when a path of 

sequential dependence of any length exists between js  and is , and 0 otherwise. 

 

COROLLARY 2: The set of sequential dependence iS  of a system variable ix  consists 

of variables in row i of the transitive closure matrix B* whose elements are nonzero. 

 

Proof: 

 

It follows from the definitions of iS  and B*. 
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COROLLARY 3: The system variables ix , which are sequentially dependent of ,js  

that is to say, those whose set of sequential dependence 
iS contains ,jx  consists of the 

variables in column j of B* whose elements are non-zero. 

 

Proof: 

 

This follows directly from the definition of B*. 

 

6. CONCLUSION AND REFLECTIONS 

 

Causality is a category, a principle and a doctrine. Today the conception of causality 

that seems to dominate as a mathematical function only expresses the correlation 

between variables, and says nothing about the "effective action" of the causes in reality. 

The category causality refers to the causal link cause → effect .EC →  The principle 

basically says the same cause, same effect. Causality is an epistemological category 

because it concerns the experience and knowledge of the human subject, without being 

necessarily a property of reality. 

Looking at its ontological status, Bunge (1959) argued that the cause is not only a 

category of relationship between ideas, but a category of connection and determination 

corresponding to a current feature of the factual world (external and internal). 

Therefore, the causal link may take the appearance of an ontological category. The 

question we ask is this, why are there precisely the four causes described by Aristotle? 

This question follows the analysis of our representation of causes and raises the search 

for the origin of the idea of a first cause, and leads to the contradiction of the idea of 

original causes. Have not we continually expected that there is always one cause 

superior to the other cause, and that is enshrined as the links of a causal chain? Or do we 

have to wait for a final link, one ultimate cause on which all others depend? 

Three aspects of rationality give to the human mind a unique vision of Reality: 

 

1) Quantification: reduction of phenomena to quantitative terms. 

 

2) Cause and effect: causal relationship that allows prediction. 

 

3) The necessary and valid use of deterministic mathematical models. 

 

We have dedicated this work to the second aspect, causality, but we will not enter into 

the possibility-necessity debate, which we will leave for later. 

We have dedicated this work to making, with modifications, a philosophical and 

mathematical synthesis of causality according to Bunge (1959), with the contributions 

made by Patten et al. (1976) and LeShan and Margenau (1982). We have laid the 

theoretical basis of deterministic mathematical models, so necessary for the 

understanding and prediction of complex dynamic systems such as ecological, social 

and economic. 
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