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YFeO3 Photocathodes for Hydrogen Evolution
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A B S T R A C T

The behavior of YFeO3 thin-film electrodes under illumination is investigated for the first time. YFeO3

thin films on F-doped SnO2 (FTO) electrodes were prepared by two different methods (A) deposition of
nanoparticles synthesized by the so-called ionic liquid route at 1000� C followed by sintering at 400� C
and (B) spin coating of a sol-gel precursor followed by a heat treatment at 640� C. Method A provides
highly texture films with exquisite orthorhombic phase purity and a direct band gap transition at 2.45 eV.
On the other hand, method B results in very compact and amorphous films. XPS confirmed a Fe3+

oxidation state in both films, with a surface composition ratio of 70:30 Y:Fe. Both materials exhibit
cathodic photocurrent responses arising from hydrogen evolution in alkaline solutions with an onset
potential of 1.05 V vs. RHE. The complex behavior of the photoresponses is rationalized in terms of
recombination losses, band edge energy tails and hindered transport across the oxide thin film.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Photoelectrochemical (PEC) water splitting can potentially offer
a viable and scalable approach for solar energy conversion into
fuels. This approach is commonly seen in competition with
integrating photovoltaic modules to water electrolyzers (PC-EC);
two mature technologies which can deliver solar-to-hydrogen
(STH) efficiencies in the range of 10–12%. Techno-economic
analysis have shown that PEC can be a viable technology only if
STH efficiencies in excess of 15% can be achieved [1,2]. Given the
severe constraints associated with the dynamics of multi-electron
transfer reactions such as oxygen evolution, requiring high energy
carriers, STH efficiencies above 12% cannot be realistically achieved
with a single absorber material [1]. Consequently, tandem devices
featuring dimensionally stable photoanodes and photocathodes
represent the key challenge in this field. Therefore, it is crucial to
extend current research activities beyond conventional oxide
photoanodes (such as TiO2, ZnO, Fe2O3, BiVO4 and WO3) into
materials capable of generating hydrogen under illumination [3–
6].

A number of materials have been reported as photocathodes for
hydrogen evolution, including Si [7,8], Cu2O [9,10], GaP [11], and
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InGaN [12]. In these studies, the stability of the semiconductor
surface under operation conditions is crucially important. A
number of ternary oxides have been investigated as photo-
cathodes, including spinels (CaFe2O4 [13–15], CuFe2O4 [16]),
delafossites (CuFeO2 [17], CuCrO2 [18]) and perovskites (LaFeO3

[19–21]). Ferrite perovskites are a particularly interesting class of
materials featuring band gap values in the range of 2.3–2.4 eV.
Recently, Celorrio et al. investigated the photoelectrochemical
properties of phase-pure LaFeO3 nanoparticles sintered on FTO
electrodes [19], while compact thin films have been fabricated by
pulsed laser deposition [20] and sol-gel methods [21].

In this work, we describe the synthesis and properties of YFeO3

as a photocathode for hydrogen evolution reaction under alkaline
conditions. Despite several reports about YFeO3 as a photocatalyst
for water remediation [22–25] and photochemical H2 production
[26], very little is known about key properties such as band edge
energy positions and charge transport properties. We shall
investigate two different synthesis routes, leading to sintered
nanostructured (NP-Films) and compact films (C-Films) supported
on FTO. The rationale for investigating these two different
morphologies is to assess the effect of grain boundaries and
material disorder on the dynamics of minority charge carrier
transfer, hole collection and carrier recombination. Despite the
different level of crystallinity obtained from both methods, the
films exhibit cathodic photocurrents associated with hydrogen
evolution at potentials as positive as 1.05 V vs RHE under visible
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (A) Powder XRD patterns of YFeO3 particles obtained by the ionic liquid
method at 1000 �C and sol-gel route at 640 �C. (B) Tauc plot, direct transition,
corresponding to NP (red line) and C (blue line) films. A band gap of 2.45 eV was
estimated for the NP film. (For interpretation of the references to colour in this
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light illumination. However, incident-photon-to-current efficiency
are rather modest, suggesting that carrier collection is limited to
those generated near the FTO/YFeO3 boundary. The materials are
characterized by X-ray diffraction, X-ray photoelectron spectros-
copy, diffuse reflectance and electron microscopy.

2. Experimental Section

2.1. YFeO3 nanoparticle thin film electrode (NP)

YFeO3 nanoparticles were synthesized following the ionic
liquid protocol [19]. 1 mL of an aqueous solution of 0.05 M of Y
(NO3)3�6H2O (99.8%, Sigma-Aldrich) and 0.05 M of Fe(NO3)3�9H2O
(99.95%, Sigma) was added to a vial containing 1 mL of 1-ethyl-3-
methylimiamidizolium acetate (97%, Sigma Aldrich). The solution
was dehydrated at 80 �C for 3 h and 100 mg of cellulose was added
before calcination at 1000 �C for 2 h. This method yields phase-
pure YFeO3 nanoparticles.

Approximately 1 mm-thick films were fabricated via the doctor
blade method over FTO (F:SnO2) conductive glass. First, 100 mg of
the YFeO3 powder was suspended in 100 mL of water and sonicated
for 15 min in an ultrasonic bath. Acetylacetone (Sigma Aldrich) and
Triton 100X (Fisher Scientific) were added in order to obtain a
homogeneous and viscous paste. Finally, the paste was spread over
the FTO and sintered at 400 �C for 1 h in air.

2.2. YFeO3 compact thin film electrode (C)

The synthesis is based in a sol-gel method using citric acid as a
chelating agent. Y(NO3)3�6H2O (0.3 M) and Fe(NO3)3�9H2O (0.3 M)
were dissolved in water and the solution was stirred for 1 h. Citric
acid monohydrated (99.8%, Fisher) was added to a concentration of
0.6 M and stirred for 20 h. A gel was obtained by adding 30 mL/mL
of acetylacetone and 30 mL/mL of Triton 100X. A portion of 25 mL of
the sol-gel was spin coated over the FTO substrate at 3000 rpm for
20 s and calcined at 400 �C for 1 h. This procedure was repeated
twice (2-layers), followed by heating at 640 �C for 2 h, leading to
approximately 80 nm-thick films. The same heating procedure was
followed in a crucible to generate powder samples for XRD
analysis.

2.3. Instrumentation

X-ray diffraction (XRD) was recorded using a Bruker AXS D8
Advance diffractometer with a u–u configuration, using a Cu Ka
radiation (l = 0.154 nm). Transmission electron microscopy (TEM)
and high resolution TEM were carried out on a JEOL JEM-1400Plus
and a JEOL JEM-2010 microscopes, respectively. Field emission
scanning electron microscopy (FE-SEM) images were obtained by a
ZEISS Merlin VP Compact microscope. Energy-dispersive X-ray
(EDX) analysis was performed with a SEM instrument JEOL SEM
5600 LV. A Shimadzu UV-2401PC spectrophotometer equipped
with an integrating sphere coated with BaSO4was used to measure
UV-visible diffuse reflectance spectra. Core level photoemission
spectra was collected in normal emission at room temperature
with a K-Alpha Thermo-Scientific X-ray Photoelectron Spectrome-
ter (XPS) using an Al Ka X-ray source. Electrochemical measure-
ments were performed in a three-electrode cell equipped with a
fused silica window using a computer-controlled Ivium Compact-
Stat equipment. A Ag/AgCl/KCl(3 M) electrode was used as a
reference, while a platinum wire was used as a counter electrode.
The electrolyte solution used in all experiment was 0.1 M NaOH
purged with high purity Ar. Measurements under illumination
were carried out using a LED with a narrow emission centered at
404 nm LED (Thorlabs), driven by a waveform generator (Stanford
Research Systems). Photon flux was measured employing a
calibrated silicon photodiode (Newport Corporation).

3. Results and Discussion

Fig. 1A contrasts the XRD patterns of YFeO3 obtained from ionic
liquid and sol-gel routes. Full profile Rietveld refinement on XRD
pattern of the sample resulted from ionic liquid route is performed,
confirming the formation of YFeO3 in orthorhombic phase (Pnma)
with lattice parameters a = 5.5936 Å, b = 7.6023 Å and c = 5.2796 Å.
The unit cell (inset Fig. 1A) is composed of Fe3+ centred octahedra,
with oxygen atoms occupying non-symmetric axial and equatorial
positions. Fe atom is found to be off-centred leading to two
different bond lengths between Fe and equatorial oxygen (Oeq)
atoms: 196.35 and 203.29 pm, while Fe to axial O (Oax) bond
lengths are same and equal to 198.89 pm. Similarly, the bond
angles formed between Oeq and Fe and the Oax-Fe-Oeq angles
deviate from the ideal 90� by up to 2.72� and 11.62�, respectively.
Stabilization of FeO6 polyhedra is brought on the expense of acute
distortion of Y-O bonds. Overall bulk composition is slightly metal
deficient, promoting p-type conductivity. No other peaks due to
secondary phases composing tetrahedrally coordinated Fe, such as
in Y3Fe5O12 garnet frequently formed during the synthesis of
YFeO3, are observed within the measurement limit [27,28].
Structure parameters ascertained from the refinement can be
found in supplementary information.

The C-film shows no clear diffraction peaks, indicating a lack of
crystallinity (Fig. 1A, bottom panel). The key difference in the
synthesis method is the temperature used for promoting the
orthorhombic YFeO3 phase. Zhang et al. [24] reported the
crystallization of YFeO3 powder from 700 �C using a sol-gel route
with citric acid as chelating agent, which is slightly above the
temperature limit set by the stability of the substrate
figure legend, the reader is referred to the web version of this article.)



Fig. 3. SEM micrographs (upper images) and the corresponding elemental mapping
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(approximately 640 �C). The crystallization temperature reflects
the enthalpy of formation of the perovskite phase which is
influenced by the nature of the A and B site [29,30]. For instance,
phase pure LaFeO3 synthesized by the same ionic-liquid approach
can be achieved at 900 �C, while LaMnO3 can be obtained at 700 �C
[31].

Fig. 1B shows Tauc plots corresponding to the NP and C-films
obtained by operating the Kubelka-Munk function (F(R)) on the
reflectance spectra. The spectra (Supporting Information, Fig. S1)
show absorption edges at 600 and 650 nm for the NP and C films,
respectively. The Tauc plot representation shows a direct band gap
transition for the NP-film at 2.45 eV, which is in close agreement
with previous studies in the literature [23,32]. On the other hand,
C-films do not show a clearly defined linear region which is
consistent with the amorphous nature of the material. This
behaviour can be explained in terms of potential fluctuations of the
band edge energies, which lead to the so-called Urbach tails
[33,34]. We shall come back to this point further below.

SEM images in Fig. 2A and B contrast the smooth nature of the
C-films against the nanoscale corrugated NP-films. TEM images in
Fig. 2C show that the particles obtained after calcination at 1000 �C
exhibit a size distribution between 100 and 200 nm. The lattice
fringes displayed in the high-resolution TEM image (Fig. 2D)
correspond to a d-spacing of 0.27 nm associated with the {121}
plane, which is consistent with the most prominent feature in XRD
(Fig. 1A). The structural features of the TEM images further
demonstrate the high crystallinity and phase purity of the particles
obtained by the ionic-liquid method.

Both films are characterized by homogeneous Y and Fe
distributions as shown in Fig. 3. EDX mapping does not show
regions in which a single element is segregated, i.e. the Y/Fe is
constant throughout the surface. This experimental evidence is
particularly important in the case of the C-films, in which XRD and
Fig. 2. FE-SEM images for (A) C-film (B) the NP-film. (C) TEM micrograph of the nanoparticles obtained by the ionic-liquid method at 1000 �C. Inset: Particle size distribution
determined from TEM images (over 100 nanoparticles were counted). (C) HRTEM image highlighting the lattice fringes associated with the {121} plane of the YFeO3

orthorhombic phase.

of Y and Fe for NP (A) and C (B) thin films.



Fig. 4. XPS spectra of the Y 3d, Fe 2p, O 1s orbitals for the NP and C-films. The Y 3d and O 1s spectra were deconvoluted, while interference from the Sn 3p3/2 line in the Fe 2p
region prevented a fully quantitative analysis. Both films exhibited a surface Y:Fe ratio of 70:30.
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reflectance data do not provide fully conclusive evidences of the
formation of YFeO3.

High resolution XPS spectra of both films in the regions of Y 3d,
O 1s and Fe 2p are shown in Fig. 4. The Y 3d spectra contains
contributions from Y 3d3/2 and Y 3d5/2 that can be deconvoluted in
two further components. The main Y 3d5/2 component at 156.5 eV
(labelled as 1) is related to the formation of Y2O3 [35,36] as a
consequence of the Y surface segregation, whereas the component
at 157.6 eV (peak 2) corresponds to Y3+ in the perovskite lattice
[37]. The atomic percentage of Y as Y2O3 is 66.5% and 80% in the C
and NP-film, suggesting a higher extent of A-site segregation at the
surface of the NP-film. Four different components were considered
in the deconvolution of the O 1s line (see Table S1 in the supporting
information). The lower binding energy component at 529.1 eV is
assigned to the oxygen in the perovskite lattice. The second
component at 530.6 eV can be attributed to hydroxyl groups,
whereas the third component at 531.8 eV is linked to carbonyl
groups. The component with the highest binding energy is
associated with adsorbed molecular water. For the NP-YFeO3

sample, a strong contribution of SnO2 from the FTO substrate was
observed. In this case, component 2 of the O 1s line also includes
the contribution from SnO2.

The Fe 2p region of the photoemission spectrum (Fig. 4)
provides further insights into the surface composition of the films.
The Fe 2p3/2 and Fe 2p1/2 peaks are located at 710.2 eV and 724.4 eV,
respectively, which are consistent with the presence of Fe3+. The
satellite peak located at 718.4 eV further confirms this oxidation
state. In the case of the NP-YFeO3 sample, a new component at
715.9 eV is observed which can be linked to the Sn 3p from the FTO.
Based on the contributions of the Fe 2p and Y 3d regions, the Y:Fe
surface ratio can be estimated taking into account the correspond-
ing sensitivity factors. An Y:Fe ratio of 70:30 is found for the C and
NP-films, confirming a Y-surface enrichment in accordance with a
previous report on perovskite oxides [38]. However, it is
interesting that the analysis of the Y 3d region shows a larger
content of the binary (Y2O3) oxide at the surface in the case of the
NP-films, which are synthesized at significantly higher temper-
atures in comparison to C-films. This analysis suggests that,
although XRD shows a remarkable degree of phase purity, the



Fig. 5. Cyclic voltammetry at 5 mV s�1 under transient illumination (404 nm and
photon flux of 1.0�1016 cm�2 s�1) of NP and C-films. Illumination was performed
from the back side.

Fig. 6. Photocurrent transient responses under illumination at 404 nm and photon
flux of 1.0 � 1016 cm�2 s�1 at different potentials for the NP and C-films. Electrolyte
solution is Ar-saturated 0.1 M NaOH. Illumination was performed from the back
side.

Fig. 7. Photostationary current (jSS) obtained for NP and C-films as a function of the
photon flux. Measurements carried out under back and front illumination are
shown in the case of NP-films. Only back illumination is shown for the C-film, as
little difference was observed with respect to front back illumination. The
experiments were performed under potentiostatic conditions at �0.5 V vs Ag/AgCl.
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nanoparticle surface appears to contain a complex mixture of
secondary oxide phases.

Fig. 5 displays the photoelectrochemical responses of the NP-
and C-YFeO3 electrodes under square-wave light perturbation at
5 mV s�1. The voltammograms are characterized by a potential
independent capacitive response at negative potentials and a large
increase of the current towards more positive values. The NP-films
show a substantial increase of the current at potentials above 0.4 V
vs Ag/AgCl (1.35 V vs RHE), which is associated with hole
accumulation at the interface. This behavior suggests that the
potential associated with the valence band edge is located in this
potential range. On the other hand, carrier accumulation can
already be seen from 0.1 V in the case of C-films. This is also a
manifestation of band tails arising from the amorphous nature of
the material. Consequently, there is an effective density of states
spreading from the valence band edge into the gap.

The photocurrent onset potential is located close to 0.1 V vs Ag/
AgCl (1.05 V vs RHE) as seen in Fig. 5, as well as by experiments
recorded under lock-in detection with a higher frequency of light
perturbation (Supporting Information, Fig. S2). This onset potential
is close to values reported for other ternary iron oxides, namely
LaFeO3, CaFe2O4, CuFe2O4 or CuFeO2 [14,16,17,19,20]. Interestingly,
the intensity and potential dependence of the photocurrent is
similar for both films despite the large difference in crystallinity.
Experiments were also carried out in contact with O2 saturated
solutions (see Supporting Information, Fig. S3). No substantial
changes in the photocurrent were observed, although the NP-film
showed larger dark currents at negative potentials. This behavior is
associated with pin-holes in the NP-film, allowing oxygen
reduction to take place at the FTO electrode (this is confirmed
by a voltammetric analysis in the presence of oxygen at a bare FTO
in Fig. S4).

Fig. 6 displays the photocurrent transients at different
potentials for the NP- and C-YFeO3 electrodes under back
illumination. The overall photocurrent increases towards more
negative potentials. NP-films exhibit a photocurrent decay after
the initial response towards a photostationary current value,
followed by a sharp decay to zero upon switching off the light. A
similar behavior is observed for the C-films, although a rather
interesting feature is observed at 0.1 V. This transient exhibits a
positive instantaneous photocurrent, a negative photostationary
value and a negative photocurrent overshoot upon switching off
illumination. Again, this response coincides with the onset of
electron depopulation of tail states from the valence band
observed in the voltammetric measurements (see Fig. 5). In
contrast to the responses at more negative potentials, the transient
at 0.1 V in the case of the C-film shows evidence of surface
recombination [39,40]. Thus, spikes upon illumination and light
interruption indicate electron trapping at the surface, promoting
surface recombination. Furthermore, the decay observed on the
second timescale can be described in terms of a redistribution of
the potential drop across the film/electrolyte interface, leading to a
time dependent recombination. This type of phenomena is
observed in materials with low carrier mobility [41].

Fig. 7 shows the photostationary current after 20 s (jSS) as a
function of photon flux under illumination through the back
contact (back) and the semiconductor-electrolyte boundary
(front). C-films show very similar photocurrent responses under
back and front illumination, thus only the former is shown. The
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photocurrent increases with photon flux in a rather non-linear
relationship. This is a clear indication of a substantial carrier
recombination, which also manifest itself by the rather low IPCE
values (below 0.01%). Despite substantial differences in film
thickness, surface roughness and crystallinity, the photocurrent
magnitude and photon-flux dependence is comparable for NP and
C-films. This behavior provides a clear indication that only carriers
generated close to the back contact (FTO) are effectively collected
at the back contact. This is supported by the fact that photocurrent
responses are higher under back illumination in the case of NP-
films, while not such a contrast is observed in the case of C-films
due to the significantly lower film thickness (80 nm).

The low collection efficiency of carriers can be associated with
two key factors, carrier recombination and hole-capture by water.
As mentioned previously, the potential associated with the valence
band edge is located at approximately 1.35 V vs RHE, which raises
the possibility that the poor hole collection efficiency is due to hole
capture by water to generate oxygen or hydrogen peroxide. This
carrier loss mechanism appears consistent with the photocatalytic
performance reported for YFeO3 [22–26]. On the other hand,
recombination losses can be linked to A-site surface segregation as
shown by our XPS measurements, leading to an insulating yttrium
oxide layer irrespective of the calcination temperature. In the case
of NP-films, this insulating layer will not only affect electron
transfer to evolve hydrogen, but also interparticle carrier transport
in the film. In the case of C-film, Y-segregation may have a weaker
effect on the charge transport in the film. However, the presence of
tail states due to the amorphous nature of the oxide will have a
strong effect on carrier mobility. The fact that the photocurrent
onset potential is close to the valence band edge reveals the
suitability of YFeO3 as photocathode for hydrogen generation. It
should be mentioned that IPCE values for hydrogen evolution
under alkaline conditions are typically lower than in acid solutions
[42], consequently, improvement in photoresponses will require
optimized surface passivation and deposition of co-catalysts as
recently reported for a variety of semiconductors [9,43–45].

4. Conclusions

YFeO3 thin films electrodes were prepared by two different
methodologies, sintering of phase-pure nanoparticles (NP) and
compact (C) films by sol-gel. The former was obtained after
calcination of an ionic-liquid based precursor at 1000 �C, while the
temperature of the C-film thermal treatment was limited to 640 �C.
The NP-films were characterized by an orthorhombic perovskite
structure with no secondary phases, while C-films were essentially
amorphous. The high crystallinity of the NP films manifested itself
by a sharp band gap transition at 2.45 eV and a clear onset potential
for hole-extraction from the valence band edge located at 0.4 V vs
Ag/AgCl (1.35 V vs RHE) estimated from cyclic voltammetry. On the
other hand, the amorphous C-film exhibited a distribution of
density of states tailing into the band gap region as probed by
spectroscopic and electrochemical analysis. XPS indicates that +3 is
the main Fe oxidation state present in both films. Despite the
significant difference in crystallinity, XPS clearly shows that the
surface of both films is Y-rich (70:30 Y:Fe atomic ratio) with a
significant presence of binary Y oxide at the NP-films surface.

Photoelectrochemical studies in Ar-saturated 0.1 M NaOH
solution were characterized by potential dependent responses
with an onset potential close to 0.1 V vs Ag/AgCl (1.05 V vs RHE) in
the absence of any catalysts. The photocurrent responses show
complex dynamic features revealing hindered charge transport
and bulk recombination. Evidence of surface recombination was
observed in the C-films at potentials in which valence band tail
states are partially depopulated. The photocurrent dependence on
photon flux at 404 nm was highly non-linear, with rather low IPCE
values. We postulate that holes generated close to electrolyte
junctions can be lost by the water oxidation itself, leading to a
photochemical water-splitting event and low collection efficiency
of majority carriers at the back contact.
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