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ABSTRACT 13 

There are many activities and uses in the coastal environment, which has historically attracted 14 

the humans. This attraction has led to many anthropic actions that have generated imbalances, 15 

more important as the human pressure increases. This research focuses on the effects of these 16 

pressures along of 11 km of the coastline of Guardamar del Segura, a high-value environmental 17 

area where is the Segura River mouth and one of the last dune systems of the southeast of 18 

Spain. The historic evolution of the shoreline position has been analysed using 60 years of 19 

aerial images from 1950s to 2014, the seabed depth changes, the maritime climate, the 20 

distribution of the sediment grain size and the anthropic actions such as urban development or 21 

the channelling of the river. All data were integrated and processed using a Geographic 22 

Information System (GIS). The results show that the lack of sediment supply by Segura River 23 

and the cut-off in the longshore transport due to the breakwaters and others anthropic actions 24 

has led into an increase in the beaches erosion rates, with a loss of more than 3.2 million m
3
 of 25 

sand in the last 58 years (≈ 55200 m
3
/year). The conclusions of this research could be useful to 26 

the coastal managers at the moment of making the decisions of action and/or conservation on a 27 

coastal system to achieve positive results in the medium and long term. 28 

Keywords: beach erosion; GIS; sand; anthropic; shoreline evolution 29 

1 INTRODUCTION 30 

Coastal tourism is one of the most important, and its rapid growth in the last 60 years has 31 

resulted in great urban development in coastal areas (Scott et al., 2012). This development has 32 

led to many anthropic actions that have generated imbalances in the area (Martín-Antón et al., 33 

2016), for example, the change in the type of land cover (Xian et al., 2007), the construction of 34 

harbours (Jiang et al., 2017; Naik and Kunte, 2016), urbanizations, channellings or breakwaters 35 

on the coast (Burak et al., 2004; Newton et al., 2012; Pagán et al., 2016), producing 36 

remarkable changes in the bathymetry and the texture of sediments deposited in depths 37 

where the hydrodynamics of the waves does not affect (Aragonés et al., 2016a; Zhu et al., 38 

2016). All these actions are usually associated with large imbalances of the coastal system, 39 

which is usually translated into a retreat from the coastline causing a vulnerability of any 40 

settlement located around it (Newton et al., 2014). 41 

One of the elements most related to the change in the evolution of the coastline are the 42 

sediments, due to the relation that exists between its size, specific weight and the energy of 43 

the waves (Salazar et al., 2004). Therefore, it is necessary to know both transport, 44 

sedimentation and spatial and temporal sediment distribution. Within the cross-shore 45 

transport to the coast it has shown a tendency to classify them seawards due mainly to the 46 

change in the energy of the waves as they reach the coast and currents in the process of 47 

sediment transport (Guillén and Hoekstra, 1996; Narra et al., 2015; Niedoroda et al., 1985).  48 

All of the above should be added the threat of climate change that predicts an increase in the 49 

intensity and frequency of extreme events, and an increase in sea levels (Arnell and Lloyd-50 
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Hughes, 2014; Jiménez et al., 2017; Oldfield and Steffen, 2014) and the insufficient 51 

contribution of the rivers (Aragonés et al., 2016a; Chaplot and Poesen, 2012; Newton et al., 52 

2012). Therefore, it is necessary to know/understand the physical environment, the 53 

relationship between the agents and processes of each of the involved fields (marine, coastal 54 

and terrestrial), to make decisions aimed at preserving or regenerating the affected areas. 55 

With respect to the insufficient material contributed by the rivers to the beaches, there are 56 

several studies in which the basins and flows of different rivers are analysed, concluding that 57 

there is an increase in the runoff due to the enthronization of the soil (Xian et al., 2007), which 58 

has caused a lower load of suspended sediments in the river currents (Liu et al., 2007; Mutema 59 

et al., 2016; Syvitski et al., 2005). For example, according to Syvitski et al. (2005) less than the 60 

50% of the soil eroded by the rivers reach the world’s coast.  61 

Due to the complex relationships between continental shelf and the agents involved in 62 

sediment transport (waves, tides, currents, sources, benthos, etc.), three-dimensional study is 63 

necessary to understand these relationships and get the ecosystems balance. Nowadays, 64 

three-dimensional studies is possible thanks to the geographic information systems (GIS), 65 

which has been widely used to study coastal risks (Brown, 2006; Budetta et al., 2008), the 66 

evolution of the cliffs topography and seabed (Castedo et al., 2015; Dawson and Smithers, 67 

2010; Mills et al., 2005), or the evolutions of the coastline from aerial images creating 68 

applications such as the Digital Shoreline Mapping System, DSAS (Thieler and William, 1994). 69 

This kind of tools allow the user to represent and analyse complex environmental systems 70 

using spatial and statistical analysis, and thus improve understanding of the behaviour of 71 

coastal systems (Robin and Gourmelon, 2005). 72 

Therefore, the objective of this study is to explore the processes undergone by the study area 73 

(channellings, construction on dune systems, etc.), which have caused the serious problems 74 

presented by this complex biophysical system between land, sea and air. For this purpose, the 75 

evolution of the coastline, the seabed and the maritime climate, and the distribution of 76 

sediment on the seabed will be analysed as a means of predicting future behaviour in the 77 

study area, as well as the consequences that must be taken into account before taking 78 

anthropic actions in any area of the world. 79 

2 STUDY AREA 80 

The area under study corresponds to the beaches both north to south of the Segura river, 81 

(Guardamar del Segura, Alicante, southeast of Spain), with length of 11 km (Figure 1). The 82 

surroundings of these beaches are configured by various ecosystems that results to a unique 83 

landscape. A dune cordon covers the entire littoral of Guardamar del Segura, from north to 84 

south.  A series of human actions have been carried out within the study area, which have 85 

gradually changed its coastal morphology. The beaches studied and their main characteristics 86 

are listed in Table 1. 87 

Table 1. Beach characteristics. 88 

Beach  Length Coast Promenade 

Los Tusales 1.7 km Dunes No 

Los Viveros 1.4 km Dunes No 
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Babilonia 1.0 km Urban Yes 

Centro 1.6 km Urban Yes 

La Roqueta 1.0 km Urban No 

El Moncayo 2.0 km Dunes No 

El Campo 1.2 km Dunes No 

Les Ortigues 1.0 km Dunes No 
 89 

 90 
Figure 1. a) Study area located in Alicante, SE of Spain. b) Detail of the studied area, with the location of 91 

the SIMAR node used for wave data. c) Location of beaches and significant elements on the coast of 92 

Guardamar del Segura. d) Aerial image of Segura river mouth (MAPAMA, 2017). 93 

Sand dune fixation 94 

The anthropic pressure on this area began early XX century. In 1900, a large reforestation work 95 

was carried out with the aim of fixing the dunes, whose movements threatened the town of 96 

Guardamar. This environment, formerly mobile and threatening by the action of the wind, 97 

results in the current coastal forest. The main species that can be found in the area are: P. 98 

Pinea, P. halapensis, Eucalyptus rostrata, occidentalis, robustia, globulus and colossea, and 99 

Phoenix dactylifera (García-Esteban, 2002). 100 

Babilonia houses 101 

Another anthropic pressure that this area suffers is related with the urban development. In 102 

Babilonia beach a series of terraced houses were built in the beachfront as part of the 103 

reforestation project of Ingeniero Mira. Currently, almost 80 houses still occupying the 104 
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beachfront. The administrative concessions date from the decade of 1940, when they were 105 

allowed to occupy the maritime-terrestrial public domain (MTPD) as a way to protect the dune 106 

system. 107 

Protection Plan against Flood in Segura River Basin 108 

One of the areas that has undergone the greatest change due to the action of man has been 109 

the mouth of the Segura River. During the 1980s, the low course of the river suffered some 110 

heavy rains episodes that led to the river overflow and the flooding of much of this area, 111 

causing great human and material loses (Aragonés et al., 2016a). To avoid this hazard, the 112 

Confederación Hidrográfica del Segura improved the drainage capacity of the river mouth. In 113 

1986, a first 300 m long breakwater was built in the north side of the mouth. In 1992, a new 114 

channel and a 400 m long breakwater were executed in the south side of the river mouth, 115 

which increased its width from 100 m to 350 m. All this works are described in detail in the 116 

document “Plan de defensa contra avenidas” (Confederación Hidrográfica del Segura, 2007). 117 

Marina and artificial dune 118 

In 1998, a new marina was built in inland lands near the river mouth. Based on the conviction 119 

that the dredged materials were of a similar nature to those formed by the nearby dunes, 120 

basically composed of sands and silts, the sludge from the dredging of the dock was poured in 121 

the beachfront. A new artificial dune was created, with a length of 500 m and variable height, 122 

which oscillates between the 10 meters of the sector closest to the fluvial channel, to the 123 

scarce two meters of the southern part (Matarredona Coll et al., 2006). The construction of 124 

this marina as well as the artificial dune with the excavated material created a strong 125 

controversy, as it was not been considered suitable for this environment.  126 

 127 

Beach nourishments 128 

Given the evident state of erosion of the Centro beach, in 1988 and 1990 about 150000 m3 and 129 

250000 m3 of sand were dumped from municipal lots (Aldeguer Sánchez, 2008). 130 

3 METHODS 131 

In order to study this complex area, the procedure is as follows: i) historical evolution analysis 132 

of the shoreline, coastal environment and maritime climate, ii) cross-shore sediment position 133 

analysis and iii) study of the flood level. 134 

3.1 Historical evolution of the shoreline 135 

The study of the shoreline evolution was carried out by the vectorization of the shoreline from 136 

aerial images since 1956. The available dates of the images and their formats are shown in 137 

Table 2. The first step was the photogrammetric restitution of those images without spatial 138 

reference (191 scanned photograms), applying the methodology described by Pagán et al. 139 

(2016).  140 

Table 2. Summary of the dates, source and format of the aerial images available. 141 

Date Source Image Format Spatial reference 

1956 American Fly Orthophoto WMS UTM ETRS89 
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H30N 

1969 
GEOFASA Orthophoto WMS 

UTM ETRS89 
H30N 

1981, 1986, 1990, 1992,  
1994, 1996, 1998 

DGC – SPC 
Alicante 

Aerial Color 
(1:10000 – 1:5000)  

ECW None 

2002, 2005, 2007,  
2009, 2012, 2014 

PNOA Orthophoto ECW 
UTM ETRS89 
H30N 

 142 

The georeferencing process (the assignment of coordinates to the photograms raster datasets) 143 

was carried out using ArcGIS 10.1. The target image was the most recent referenced 144 

orthophoto, from 2014. Each photogram was georeferenced identifying a series of ground 145 

control points (GCP) that link locations on the raster dataset with locations in the spatially 146 

referenced data (target data). For each raster between 40 and 60 GCP spread for the entire 147 

image were used. Once the GCP were placed, the transformation of the raster was carried out 148 

using the adjust transformation. This transformation optimizes for both global and local 149 

accuracy. It is built on an algorithm that combines a third order polynomial transformation and 150 

triangulated irregular network (TIN) interpolation techniques. The total error is computed by 151 

taking the root mean square (RMS) sum of all the residuals to compute the RMS error. In this 152 

research, the acceptable RMS was settled in 0.25 m. It should be noted the difficulty of this 153 

work, not only by the high amount of control points used in total (10279), but also because as 154 

a coastal area most of the rasters have half of its area covered by the sea – impossible to use 155 

for ground reference. However, because the frames presented a high degree of overlap (20%-156 

40%) to each other, it was possible to create a mosaic with the central areas of the 157 

photograms, less deformed than the edges, improving the results of the process of 158 

georeferencing (Table 3). 159 

Table 3. Georeferencing results. 160 

Date 1981 1986 1990 1992 1996 1996 1998 TOTAL 

Cell size 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

RMS 0.106 0.115 0.114 0.145 0.171 0.169 0.187 0.144 

Nº Rasters 28 31 13 31 23 31 34 191 

Nº GCP 2034 2774 950 1371 1090 1042 1018 10279 

 161 

Once loaded in the GIS environment the mosaics with the orthohotos of each year, the next 162 

step was the vectorization of the shoreline. The methodology followed was the same as the 163 

applied by Pagán et al. (2016) in their study of the Marineta Cassiana beach (Denia, Spain). It 164 

consists in the visual identification of the higher high water height on the beach, marking this 165 

line as the shoreline. All the aerial images were collected in summer and the state of the sea 166 

was calm, so the shorelines obtained are suitable for its comparative study. The 11 km of 167 

coastline were vectorised for each of the 15 years available (Table 2). 168 

 169 

For the study of the evolution of the shoreline, the fundamentals of the DSAS program for 170 

ArcGIS (Thieler et al., 2009) were used, increasing its capacities calculating the erosion-171 

accretion surfaces. A series of perpendicular transects to the shoreline were created, spatially 172 

separated 100 m. The origin of these transects is located in the baseline, drawn following the 173 
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base of the dunes or the promenade. From its intersection with the previously vectorised 174 

shoreline it can be obtained the beach width in each transect for each studied period, and thus 175 

its evolution in time. For the analysis and interpretation of the results, the study was divided 176 

into time intervals related to the main anthropic actions: 1956-1986 (from the first data to the 177 

date when the north breakwater was built); 1986-1992 (channelling of the Segura River); 1992-178 

1998 (construction of the marina and artificial dune); 1998-2007 (sediment samples 179 

collection); 2007-2014 (last orthophotos available). 180 

3.2 Sedimentological and seabed depth change study 181 

161 sediment samples were available from the Ecolevante (2006) survey, ranging from 182 

backshore to 40 m depth. Using GIS interpolation techniques, described in Aragonés et al. 183 

(2016a); Pagán et al. (2016), the distribution of the sediment grain size along the coast was 184 

obtained. This has allowed to use continuous surface mapping of the sediments, making 185 

possible to obtain cross-shore transects and the analysis of the position of the sediment by 186 

depth. 187 

To evaluate the depth change of the seabed, the digital elevation models (DEM) of the years 188 

1989 and 2006 are available, and together with the procedures described in Aragonés et al. 189 

(2016a) a map of the nearshore depth change is obtained. However, as the DEM from 1989 190 

only reaches the bathymetric -8 m, the beach profile had to be rebuilt from the equilibrium 191 

beach profile (EBP) using the methods described by Aragonés et al. (2016b). 192 

Finally, the volume of the material lost until the depth of closure (DoC) during the whole 193 

period of study (1956-2014) is calculated. The DoC is obtained using the formulation proposed 194 

by Birkemeier (1985), and the volume of the material using CUR (1987). 195 

3.1 Maritime climate 196 

As for the marine dynamics of the area of study, this, like the rest of the Mediterranean, hardly 197 

experiences tidal intensity, where the oscillations due to the atmospheric pressure are even 198 

more influential than the tide itself. In this sense, the importance of the astronomical tides is 199 

very little significant, with values that oscillate around 0.3 m, while the meteorological tides 200 

can reach values of up to 0.45 m (http://www.puertos.es, and Ecolevante (2006)). 201 

The waves in the area are conditioned by the Santa Pola Cape to the north and by Cervera 202 

Cape to the South (Figure 1b); so the range of incidental waves is between N69°E and N180°E. 203 

Wave data (significant wave height, period and direction) were provided by Puertos del 204 

Estado, based on the SIMAR series. Wave data were collected over 56 years, during the period 205 

1958-2014, making it the most complete database for the Mediterranean Sea (Infantes et al., 206 

2009). 207 

For this work, the database of the SIMAR Node 2077097 (0.58°W, 38.08°N), located about 5 208 

km east of the study area (Figure 1b), was used. The data of this point were treated by the 209 

software AMEVA v1.4.3 (IHCantabria, 2013), obtaining for each of the study periods the 210 

significant wave height, the wave height Hs,12 (exceeded twelve hours a year), and their 211 

corresponding periods, directions and probabilities of occurrence. In addition, the curve for 212 

http://www.puertos.es/
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Gumbel maxima was obtained, from which the wave height and the period for a return period 213 

of 5 years were calculated. 214 

3.2 Flood level 215 

This section determines the flood level as the maximum level of the sea on the beach profile 216 

under the action of a storm with a return period of 5 years. The estimation of the flood level 217 

was made as the sum of the Meteorological Tide (MT), the Astronomical Tide (AT), the 218 

consideration of the effects of climate change (CC), set-up (η) and run-up (Ru2%). Thus, the MT, 219 

the AT and the CC were obtained through the web viewer C3E that is part of the project 220 

“Cambio Climático en la Costa de España” (Available: http://www.c3e.ihcantabria.com/), 221 

promoted by the Ministerio de ciencia e Innovación and carried out by the University of 222 

Cantabria. The set-up and run-up due to the great variety of formulations proposed for its 223 

calculation and the wide range of results of the same, seven of the formulations that can be 224 

found in the literature were used (Douglass, 1992; GIOC, 2001; Guza and Thornton, 1982; Guza 225 

and Thornton, 1981; Holman and Sallenger, 1985; Nielsen and Hanslow, 1991; Resio, 1987; 226 

Stockdon et al., 2006). Table 4 shows a summary of the equations used, which are described in 227 

Supplementary data 1. 228 

Table 4. Summary of the formulas used for the analysis of set-up and run-up. 229 

Set-up Run-up 

Guza and Thornton (1981) Guza and Thornton (1982) 

Holman and Sallenger (1985) Holman and Sallenger (1985) 

If tan  <0.1 Guza and Thornton (1981) 
If tan  >0.1 Holman and Sallenger (1985) 

Resio (1987) 

If tan  <0.1 Guza and Thornton (1981) 
If tan  >0.1 Holman and Sallenger (1985) 

Nielsen and Hanslow (1991) 

 Douglass (1992) 

 GIOC (2001) 

 Stockdon (2006) 

 230 

4 RESULTS 231 

4.1 Shoreline evolution 232 

The historic shoreline evolution in the area of study (Figure 2 and Supplementary data 2) 233 

shows that the beaches closest to the Segura river mouth are the ones that have suffered 234 

major changes. For example, in the transect T16, during the period 1956-1969, almost 47 m of 235 

beach width were lost, while during the same time interval but in a southern area (T80-T96) 236 

the beach remains stable or even an accretion of 9 m is detected (Figure 2h). Another 237 

significant change is observed in the transect T20, where after a period of relative stability 238 

(1956-1986), in 1990 the shoreline erodes about 20 m, recovering in the next period (1990-239 

1992) 50 m due to the fill of sand from the dredging of the marina channel (Aldeguer Sánchez, 240 

2008). The sand poured at this point was dredging material (silty/clayey sand; Figure 4 and 241 

Supplementary data 3) so it was quickly displaced by the waves, losing 30 m of beach width in 242 

the next period, 1992-1994. 243 

http://www.c3e.ihcantabria.com/
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 244 
Figure 2. Shoreline evolution, the shoreline change envelope is marked in meters. a) Location of the 245 

beaches. b) Los Tusales beach. c) Viveros beach. d)  Babilonia beach. e) Centro beach. f) Moncayo beach. 246 

g) El Campo beach. h)  Beach width for each period, red for erosion and green for accretion regarding to 247 

the previous period.  248 

Figure 3a shows the net shoreline movement between 1956 and 2014 for each transect. It is 249 

easy to appreciate the great regression that have suffered the beaches of Los Tusales, Viveros 250 

and Babilonia, being in this last the beach width null today. These changes show a strong 251 

relationship with the different human actions carried out in this area. Thus, the analysis of the 252 

linear regression rate-of-change (LRR) for the first time interval (1956-1986, prior to the first 253 

main anthropic action) (Figure 3b) shows that to the south of the river mouth the annual rates-254 

of-change were almost null, whilst the north beach of Los Tusales suffered an erosion rate of 255 

2.5 m/yr. However, before to the river mouth works (1986-1992) and the marina construction 256 

(1998) it can be observed that Los Viveros and Babilonia beaches began to increase its erosion 257 

rates, passing from a beach width of 90 m and 24 m to 54 m and 17 respectively.  From the 258 

construction of the marina and the artificial dune in Los Viveros beach (1998-2007), erosion 259 

rates increases up to 3.5 m/yr, affecting also the Babilonia beach (rates of 1.5 m/yr) causing 260 
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that the waves reach the houses of the beachfront. Instead, further to the south the shoreline 261 

change rates remain stable. Finally, it is in the 2007-2014 period when it is observed a general 262 

erosion, with rates that reach the 4 m/yr to the north of the mouth and exceed the 2 m/yr in 263 

practically all the beaches to the south of the Segura River. This has caused the sea to reach 264 

the ridge of dunes during the storms and cause damage to the houses of Babilonia beach 265 

(Figure 4f) 266 

 267 
Figure 3. a) Beach width for each transect, in 1956 and 2014. b, c, d, e y f), Linear regression erosion 268 

rates (LRR) for each period of study in m/yr. 269 
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 271 
Figure 4. a) Transversal profile of the dune in front of the marina. It can be observed the seaside slope 272 

erosion of the artificial dune. b) Photo of this slope in Nov 2015.  c) Detail of the material of the dune 273 

where it can be observed different layers of anthropic fillings as dredging material (silts) and 274 

construction wastes. d) Image of Babilonia beach in 1969. e) Same view in 2015 f) Aerial image of 275 

Babilonia houses affected by the storm of December 2016. It can be observed damages in the houses, 276 

the total disappearance of the beach and the reflexion of the waves.  277 

The loss in beach width means a significant loss in beach area, of whose study it can be 278 

inferred both the longshore and cross-shore sediment transport. Thus, the results show that 279 

from 1956 to 2014 more than 250000 m2 of coastal area have been lost due to erosion (Table 280 

5). Analysing the data by beaches, the greatest erosion has been detected in Los Tusales beach 281 

(128000 m2), followed by Los Viveros (64500 m2) and Babilonia (21000 m2). It can be also 282 

observed the 15000 m2 of area increased due to anthropic actions in Centro beach 283 

nourishment in 1990-1992 or the 14000 m2 of Los Viveros next to the breakwater. However, 284 

this gained area is lost totally in the following time interval, 1992-1994 (See supplementary 285 

data 4 to observe how the changes in the river mouth affected the nearby beaches). The 286 

influence of the breakwater on Los Tusales beach is evident since the sediments accumulate in 287 

that area in all the periods studied since its construction, except 1998-2002 and 2012-2014. 288 

This fact confirms that the breakwaters on the Segura river mouth has stopped the longshore 289 
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transport, causing the accretion of Los Tusales beach but also an increase of the erosion on the 290 

beaches located to the south, specially Los Viveros.  291 

The study of the sediment balance (erosion/accretion) shows clearly an important imbalance. 292 

The lost areas cannot be explained just only by the longshore transport, as the eroded areas 293 

are much greater than the areas in accretion.  Thus, this loss in beach surface can be only 294 

explained by the predominance of the cross-shore sediment transport instead of the longshore 295 

transport.   296 

Table 5. Area balance in square meters for each period. 297 

 298 

4.2 Sediment distribution 299 

It is already know that the cross-shore transport causes a seaward classification of the 300 

sediment grain size (Guillén and Hoekstra, 1996; Niedoroda et al., 1985; Stauble and Cialone, 301 

1997). Our results confirms this idea, since as the depth increases the mean sediment grain 302 

size decreases and the percentage of the fine fractions rises (Figure 5). Moreover, in Babilonia 303 

beach the mean size D50 is higher than the nearby surroundings (the results of each transect 304 

are presented in Supplementary data 5). The wave reflection due to the houses on the 305 

beachfront could explain this phenomenon, causing greater turbulence and the displacement 306 

of the fine particles seaward to deeper locations and, thus, the sediment that stills nearshore 307 

has greater sizes. In this situation, the beach profile becomes steeper, as our results shows 308 

(Figure 6). 309 
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 310 
Figure 5. a) Mean sediment grain size distribution map and cross-shore transects. b) Detail of Babilonia 311 

beach. c) Example of the evolution of grain size distribution with depth. 312 

From the study of the beach profiles and the seabed depth change, it can be noticed that in 313 

front of the Segura River mouth a significant increase in depth has occurred (Figure 6a). This 314 

increase has affected the profile morphology, becoming steeper in this area (Figure 6b and c). 315 

Comparing the profiles of the north area with the profiles of the south area, the first ones are 316 

steeper. This represents a greater volume of material lost. In the case of Los Tusales beach, for 317 

the period 1956-2014, means 1.7 million m3 of eroded material, considering only up to the 318 

DoC. As it can be observed in its profile, a decrease of almost 1 m is detected in its extension.  319 

This has its influence on the position of the shoreline, corresponding to the area where the 320 

greater erosion has occurred. However, observing the beach profile in a stable area, such as El 321 

Moncayo beach, no significant differences in the depth seaward the DoC has been founded. 322 

The sediment transport matches the normal values of the nearshore active zone, with its 323 

erosion/accretion cycles.  324 
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 325 
Figure 6. Depth change map and profile comparison. The table shows the estimated values of sediment 326 

balance for each period of study. 327 

4.3 Influence of maritime climate on the coast 328 

The erosion of the coast is often related to the action of the waves. In the study area, the most 329 

frequent waves come from the East with a significant wave height of 1.5 m and a probability of 330 

occurrence (frequency) of 42%. However, in the last period of time (2007-2014) there has been 331 

an increase in NE and ENE waves, with extreme events (waves exceeded twelve hours a year) 332 

that have reached 4.2 m of wave height (Figure 7c).  333 

The direction of the average flow is N90.3°E, while the coast has an orientation of 8° with 334 

respect to North. This causes the direction of longshore sediment transport to be N-S (Figure 335 

7a). Before 1992, the study area behaved as a unique beach 11 km long with the pivot point 336 

approximately on Centro beach. However, the construction of the new mouth of the Segura 337 

River generated a second pivot point (Figure 7b) and subsequently, after the disappearance of 338 

the beach width in Babilonia beach (2007), the houses also act as a pivot point of the 339 

shoreline. Moreover, the piers at the mouth of the Segura reach the DoC, which, together with 340 

the orientation of its mouth, causes: i) The longshore transport introduces the sediments 341 

inside the mouth, burying the entrance of the marina; and ii) The sediment is supported in the 342 

north dike, so the width of beach grows in that point, displacing the profile offshore. At 343 

present, this profile has reached its maximum support, and the new material that arrives is 344 
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expelled outside the limits of the DoC, impeding its return to the coast. This interruption of 345 

longshore transport causes cross-shore transport to become more relevant. This transport is 346 

closely related to sediment size and causes the material to be ejected out of the active zone 347 

causing a further retreat in the shoreline. 348 

 349 
Figure 7. Wave evolution in the study area. 350 

Finally, an estimation of the future situation (year 2020) is proposed in the study area (Figure 351 

8), assuming: i) Demolition of the houses located on the MTPD (Babilonia beach); and ii) the 352 

same regression ratio LRR as the current one (2.5 m/yr). With these assumptions, it is observed 353 

that in the area of Tusales and Viveros the water would reach and eventually exceed the 354 

dunes, while in the area of Babilonia beach (Figure 8c) water would reach half the position 355 

currently occupied by the houses. In addition, in the current situation, there is a serious 356 

problem of flooding of the littoral zone during extreme waves. Thus, in the most unfavourable 357 

scenario (more than 5 m of flood level), the water would exceed the dunes in the area of 358 

Tusales and Viveros, penetrating much in the interior (380 m in Tusales, 60 m in Viveros, 200 m 359 

in Babilonia and 120 m in Centro). While in the most favourable case, the flood level reaches 360 

the beginning of the dune in Tusales and Viveros, and overpasses the houses and the 361 

promenade in the beaches of Babilonia and Centro. 362 
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 363 
Figure 8. The red line represents the coastline in 2014, and the dashed line represents the estimated 364 

coastline in 2020. The dark blue zone shows the most favourable scenario (lower flood level), and the 365 

light blue zone is the most unfavourable scenario. a) Viveros beach, b) Tusales beach, c) Babilonia beach, 366 

and d) Centro beach. 367 

5 DISCUSSION 368 

Sedimentation and erosion are common problems in coastal engineering, and to understand 369 

how a beach evolves and respond to environmental changes in the study area, it is necessary 370 

to establish a historical record of the volume of material lost or gained in a relatively long 371 

period of time (Norcross et al., 2002). From the analysis of the results in the study area, one of 372 

the main problems is the so-called "river-basin syndrome", which is very common all over the 373 

world (Aragonés et al., 2016a; Li et al., 2007; Meybeck, 2003), Which is caused by the lack of 374 

sediment supply by the Segura River as a consequence of the actions took in its channel 375 

(channelling, construction of dams, weirs, etc.). In this way, the works of the defence plan 376 

against avenues in the Segura River have caused a significant change in the dynamic behaviour 377 
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of the whole coast. As can be observed (Figure 2 and Figure 3), since 1992 (last action on the 378 

riverbed), the beaches north of the mouth are much destabilized and suffer a process of 379 

permanent erosion. The area south of the mouth is characterized by a rhythmic pattern of 380 

annual alternation between erosion and accretion (Figure 2), but with a clear erosion trend 381 

except for El Campo beach (Table 5).  382 

The greater erosion of northern beaches together with the analysis of surface variation and 383 

wave study shows a predominance of cross-shore versus longshore transport. Although there 384 

is a small longshore sediment transport to the southern beaches, looking for the balance 385 

between the coastline and the average flow (Miller and Dean, 2004), the southernmost 386 

beaches (Moncayo, El Campo and Les Ortigues) also have an erosive tendency (Table 5). The 387 

grain size is the one that promotes that the sediment moves shoreward or seaward in function 388 

of the infiltration/exfiltration respectively (for example Butt et al. (2001); Horn (2006); 389 

Masselink and Li (2001)). Thus, for a constant wave height, the smaller the slope of the 390 

beachface, the smaller the grain size, which indicates that the equilibrium profile is reached 391 

due to the transport of sediments seaward (Carvalho et al., 2012; Reis and Gama, 2010). This 392 

fact is verified with the results obtained in this study where it is observed that the finer 393 

materials (0.125 mm and 0.063 mm) are positioned near and beyond the depth of closure 394 

(Figure 5) obtained according to Birkemeier (1985). 395 

Moreover, urbanization on dune systems involves their complete destruction, reducing the 396 

sand reservoir of the beach (García-Mora et al., 2001). In the study area, several actions were 397 

carried out in the dune system environment and ended up affecting the coastal littoral: i) The 398 

construction of physical barriers that interrupt the natural sedimentary cycle (piers at the 399 

mouth of the river), such as occurred at Cua Die Beach (Vietnam), where 30 m of beach width 400 

was lost in 5 years due to the reduction in sediment input due to the mining activities 401 

occurring in the channel (Viet et al., 2015). ii) The settlement of buildings above the dunes, 402 

which agrees with that observed by Amaro et al. (2015) according to which the erosion rate in 403 

the study beach increased in the last period due to the high density of public constructions and 404 

infrastructures built on the dune zone. iii) The construction of the marina within the dune 405 

system. The impact of all these actions is not visible at first, but with the passage of time, the 406 

dune system loses its structure and disintegrates, as is happening in the dune system located 407 

on the Viveros beach (Figure 4). These changes have been corroborated from the cross-shore 408 

profiles obtained from the topographic and LIDAR data (Figure 4a), which show a partial 409 

disappearance of the dune front. This erosion is aggravated by the incidence of waves on the 410 

dune, partially composed of sandy loam from the dredging of the marina (Figure 4c), which 411 

implies a greater ease in cross-shore transport and no return to the coast, as is observed 412 

between the 1990-1992 and 1992-1996 periods (Figure 2). 413 

Regarding the submerged profile of the beach, it is modified as a function of those coastal 414 

processes that occur over time, however, these changes vary around an average profile, which 415 

is remarkably constant over time (Aragonés et al., 2016b; Dean, 1977). This homeostatic 416 

behaviour is characteristic of an equilibrium system; however, in the northern area of the 417 

study area (Tusales, Viveros and Babilonia) there has been an increase in the verticality of the 418 

profiles between the elevation 0 and -2 m (Figure 6). This increase in slope may be due to the 419 

reflection of the waves on the houses and the dunes, which has also caused a greater 420 
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sediment cross-shore transport in that area increasing the thicker sizes compared to the rest of 421 

beaches (Figure 5). The increase in the verticality of the profile leads to a higher erosion ratio, 422 

which may also be due to a significant increase in depth of the seabed (Figure 6), which may be 423 

due to the presence of the Alicante Canyon that drags the material seawards to the bottom 424 

(Aragonés et al., 2016a).  425 

The presence of urbanizations very close to the coast is another important problem in the area 426 

of study, since the low altitude of these constructions causes that they are flooded and 427 

affected by the waves (Figure 4). This same problem has been observed in other areas of the 428 

world such as the Netherlands, Venice or New Orleans (Dawson and Smithers, 2010). 429 

Nevertheless, even being a problem, the houses along with the previously commented dune 430 

front are avoiding the flood of all the low zones behind them and the coastline recoil (Figure 431 

8). The problem of these constructions currently located within the TMPD can be worsened by 432 

climate change. As can be seen in Figure 7, in the last decade there has been a significant 433 

increase in the energy of the incident wave passing from 2.5 m to 4 m of extreme wave height 434 

(NE direction). It has resulted in an increase in erosive process in the area of study  (Figure 3), 435 

as it is known that the most extreme waves cause a greater erosion in the beach (Harray and 436 

Healy, 1978). Although it has not been possible to quantify the rise in sea level given the 437 

variability of results obtained by the scientific community (increase in the next 100 years from 438 

3-9 mm/yr according to Crawford and Thomson (1999); 2-6 mm/yr according to Douglas et al. 439 

(2000); 5 mm/yr according to Vilibić et al. (2000)), it is clear that this will have serious 440 

consequences for low-lying coastal environments. 441 

Often the solution chosen by the managers of the beaches consists of the contribution of 442 

material with the objective of recovering a given beach width. However, making these kinds of 443 

decisions without adequate technical background may generate a conflict of interest between 444 

immediate economic and tourist development and the environmental component of the area. 445 

This may lead to disappointments regarding the long-term benefit of a nourishment project, 446 

especially when visible sand losses in the restored area are much larger than the expected 447 

because of the lack of detailed studies required for interventions in environments as complex 448 

as the coastal. An example of this situation is found in the nourishment carried out in the 449 

1990s at Centro Beach, which has not had the expected effect. Thus, if we perform an 450 

evaluation of the approximate net loss of sand produced in the study area, we find values 451 

around 3.2 million m3 during the period from 1956 to 2014. In addition, the contribution of 452 

400000 m3 made in the nourishments of the Centro beach in 1988 (149836 m3 and 7.2 m of 453 

beach width) and 1990 (247417 m3 and 12 m of beach width) should be added. This sand 454 

dumping generated certain stability in the later periods (Figure 3). This result could have been 455 

avoided if the necessary studies had been carried out, since if the regeneration was analysed 456 

by the Abacus of James (1974) it is clearly observed that the granulometry of the borrowed 457 

sand (D50 = 0.228 mm) versus the native sand (D50 = 0.320 mm) was too thin and the 458 

nourishment will be unstable. This is corroborated by the results obtained in this study (Figure 459 

2 and Figure 3), according to which the width gained by regeneration was lost in less than 10 460 

years. Then, taking into account the volume of material lost in the period analysed, the cost of 461 

maintaining the position of the coastline on these beaches would have been approximately 35 462 

M€ (assuming a cost of 10.8 €/m3). If the anthropogenic changes were not carried out in the 463 
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study area, this cost could have been 24.7 M€ if the erosion rate had been maintained at pre-464 

1990 levels.  465 

Therefore, it becomes clear that Integrated Coastal Zone Management is needed to solve 466 

coastal problems (Rodríguez et al., 2009). Although there are tools and protocols for this, it is 467 

necessary to improve the communication of scientific information to decision makers and 468 

coastal managers (Murawski, 2007). On the one hand, scientists should seek dialogue with 469 

other actors and not only with their peers, disseminating the results of their research to 470 

identify the multiple stressors in the coastal system and provide useful and necessary 471 

information for society and decision makers. On the other hand, the scale and complexity of 472 

the studies to be carried out requires the commitment of the managers to provide the means 473 

to sustain the investigations in the medium and long term. In this sense, the technological 474 

tools like GIS can be of great help in the visualization, the understanding, the communication 475 

and the solution of the coastal problems. 476 

6 CONCLUSIONS 477 

Coastal erosion is dominated by three main factors: sediment supply, wave energy and the rise 478 

of the sea level. Thus, the classical analysis from the approaches of sediment transport and 479 

morphological changes made on a large scale, as simply integration in time and/or space from 480 

approaches made at a smaller scale is not valid. This work has taken into account all these 481 

factors and the influence of the anthropic actions in the study of the causes that have led to 482 

the evolution of the coast and in anticipation of the erosive potential of future storms, 483 

obtaining the following conclusions: 484 

1. The main cause of the shoreline retreat is the lack of sediment supply of the Segura 485 

River, due to the channelization works against floods in the 1990s. 486 

2. The erosion is not uniform along the 11 km of coastline, being more intense in the 487 

beaches located around the Segura river mouth, caused possibly by the increase in the 488 

offshore depth because of point 1. 489 

3. Within the coastal system, beach-dunes, sediment flows can be extraordinarily large 490 

and fast. The annual loss rates of the studied area are about 0.8 m/yr, but erosion 491 

rates in the most affected areas are greater than 3.5 m/yr. 492 

4. The littoral drift is clearly oriented towards the south, which makes the beaches 493 

farther away from the river mouth in this direction being the least eroded. 494 

Breakwaters built to protect the Segura river mouth stopped the longshore sediment 495 

transport that fed these beaches, increasing the erosion of the ones immediately 496 

located to the south of the mouth (Los Viveros and Babilonia). 497 

5. There is a net loss of sediment related to the cross-shore transport. These sediments 498 

pass through the depth of closure and are lost offshore. 499 

6. The grain size of the sediments decreases with the depth, noting that the dumping of 500 

fine material to the beach makes that it disappears in a relatively short time. 501 

7. The houses of Babilonia beach and the dunes are acting as a dike, which has prevented 502 

the sea from flooding inland areas, so avoiding a further retreat of the shoreline. 503 
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8. Beach erosion is an expensive problem, aggravated by the continued invasion of the 504 

urbanised areas. Currently, about 80 houses are located within the maritime-505 

terrestrial public domain, already destroyed or at high risk of being in the near future. 506 

9. The wave height in the study area has increased in the last analysed period from 2.5 m 507 

to 4 m for NE direction. Higher waves cause more erosion on the beach. 508 

This research reveals the complexity of the study area located in a place with a high 509 

environmental value, which has been affected by multiple pressures, both natural (waves, 510 

coastal dynamics) and human (tourism, buildings, breakwaters). Therefore, in order to make 511 

the appropriate decisions for the conservation and/or actuation within the coastal system, it is 512 

necessary a complete an historical knowledge of all those factors. This knowledge, as well as 513 

an adequate communication between the decision-makers and the coastal engineers, are key 514 

elements to achieve positive results in the medium and long term. 515 
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