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Finding an appropriate image representation is a crucial problem in robotics. This problem has
been classically addressed by means of computer vision techniques, where local and global features
are used. The selection or/and combination of different features is carried out taking into account
repeatability and distinctiveness, but also the specific problem to solve. In this article, we pro-
pose the generation of image descriptors from general purpose semantic annotations.
This approach has been evaluated as source of information for a scene classifier, and specifically
using Clarifai as semantic annotation tool. The experimentation has been carried out using
the ViDRILO toolbox as benchmark, which includes a companion of state-of-the-art global features
and tools to make comparisons among them. According to the experimental results, the proposed
descriptor performs similarly as well-known image descriptors based on global features in a scene
classification task. Moreover, the proposed descriptor is based on generalist annotations without any
type of problem-oriented parameter tuning.
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1. Introduction

The scene classification or indoor place categorization problem could be defined as the problem
of classifying an image as belonging to a scene category from a set of predefined labels [1]. This
problem is closely related to the semantic localization one, and it helps to identify the surrounding
of an agent, like a mobile robot, by means of scene categories like corridor or kitchen. Scene
classifiers are also helpful for specific robotic tasks [2] like autonomous navigation, high-level
planning, simultaneous location and mapping (SLAM), or human-robot interaction.

Scene classification is commonly addressed as a supervised classification process [3], where in-
put data correspond to perceptions, and classes to semantic scene categories. Current approaches
are based in a two-stage building process: a) select the appropriate descriptors to be extracted
from perceptions, and b) choose a classification model to be able to deal with the extracted
descriptors.

Relying on the use of images as the main perception mechanism, the descriptor generation
problem is tackled with computer vision techniques. In this process, the organization of the data
extracted from the images plays an important role. This is clearly exposed in two of the most
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widely-used approaches: the Bag-of-Words (BoW) [4, 5] and the spatial pyramid [6]. This two
approaches allow for the generation of fixed-dimensionality descriptors, required for most of the
state-of-the-art classification models, built from any type of local features.

There exist, however, novel approaches proposing the use of categorical information instead of
numeric image descriptors. For instance, Fei et al. propose in [7] the use of an Object Filter Bank
for scene recognition, where the bank is built upon image responses to object detectors previously
trained. Lampert et al. present in [8] an object recognizer based on attribute classification. This
proposal relies on a high-level description that is phrased in terms of semantic attributes, such
as the shape or the color of the object. The novel approach proposed in [9] represents images
by using the objects appearing in them. This high-level representation encodes both object
appearances and spatial information.

The use of Deep Learning (DL) is considered a remarkable milestone in the research areas
of computer vision and robotics [10]. DL provides classifiers capable not only to classify data
but also to automatically extract intermediate features. This technique has been applied to
image tagging with surprising results. For instance, the Clarifai team won the 2013 Imagenet
competition [11] by using Convolutional Neural Networks [12]. In addition to very large amounts
of annotated data for training, DL requires high processing capabilities for classification. While
these two requirements are not always met, we can take advantage of some existing solutions
that provide the DL capabilities through application programming interfaces (APIs). Clarifai 1

is one of the well-known systems offering remote image tagging. Specifically, any input image is
labeled with the semantic categories better describing the image content.

This article proposes a general framework to generate image descriptor from semantic labels.
Namely, we rely on the use of the annotation scheme provided by Clarifai, and then use this
labels to build image descriptors. The obtained descriptors are evaluated as input for the scene
classification problem. We have performed an exhaustive comparison with state-of-the-art global
descriptors in the ViDRILO dataset [13]. The first goal of this paper is then to determi-
nate whether Clarifai descriptors are competitive with other state-of-the-art image
descriptors suitable for scene classification. It should be pointed out that Clarifai de-
scriptors are generated from a general purpose labeling system. On the other hand,
the rest of image descriptors included in the experimentation have been specifically
selected by their scene representation capabilities. This work also aims at discover-
ing (and discussing) the novel capabilities offered with the use of general purpose
annotations.

The rest of the paper is organized as follow: in Section 2, we introduce and formulate the scene
classification problem. Section 3 describes the different descriptors used in this study and presents
a detailed explanation of the Clarifai system and its performance. In Section 4, the experimental
results are presented, and a discussion is carried out in Section 5. Finally, in Section 6 the main
conclusions and future works are outlined.

2. Scene classification from semantic labels

The scene classification problem can be formulated as a classical statistical pattern recognition
problem as follows. Let I be a perception (commonly an image), d(I) a function that generates
a specific descriptor given I, and M a classification model that provides the class posterior
probability PM (c|d(I)), where c is a class label from a set of predefined scene categories C. Then,
this problem can be established as the problem of finding the optimal label ĉ according to:

ĉ = arg max
c∈C

PM (c|d(I))

1http://www.clarifai.com
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In our case, I corresponds to a RGB image. The problem then involves two main stages: a)
designing the descriptor generation process to obtain an appropriate representation of I (d(I)),
and b) selecting a classification model capable of discriminating among the set of predefined
scene categories.

This work is focused on the first stage: descriptor generation, and we propose representing
every image Ii as a sequence of semantic annotations obtained from an external labeling system,
namely Clarifai. That is, d(·) is designed as a black box procedure where every image is translated
into a set of N labels L = {l1, . . . , lN} corresponding to the semantic annotations obtained
from the Clarifai system. While some labels can partially represent an input image Ii, a set of
probabilities Wi = {wi1 . . . wiN} is obtained in conjunction to L. Each entry wi,j represents the
likelihood of describing the image Ii using the label lj . Thanks to the use of a predefined set of
semantic labels, we can obtain fixed-dimensionality image descriptors as explained in Section 3.

There exist some similarities between this approach and the classical Bag-of-Words [4] one. In
both representations, image descriptors consist of a set of terms describing the input perception.
However, the main difference comes for the semantic component of our approach. That is, the
dictionary of words (or codebook) in the BoW approach does not fully represents semantic
concepts, as it is computed from a set of numeric local features in an unsupervised way, usually
through a k-means clustering algorithm.

3. Descriptors generation and description

This work proposes the use of Clarifai labels as input for a scene classifier. To evaluate this
proposal, we carry out a comparison with classical approaches where descriptors are directly
computed from images. This two alternatives are shown in Fig. 1. The classical approach relies on
computer vision techniques to extract image descriptors. This stage should be carefully designed
to select the appropriate features. In this design, we should also take into account aspects as
efficiency, the programming language or the requirements of external libraries dependencies.

Figure 1. Methodology overall pipeline

On the other hand, the generation of descriptors from Clarifai labels is performed delegating
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this step to an external system whose internal details do not need to be known. As it is shown in
Fig. 1, the descriptors obtained are used as input for further classification tasks independently
from the way they are generated.

In order to validate this approach in the ViDRILO (Visual and Depth Robot Indoor Local-
ization with Objects information) dataset, we compare it against the baseline results obtained
with state-of-the-art descriptors presented in [13]. The feature extractions techniques, as well as
the use of the Clarifai system, are detailed in the following.

3.1 Descriptor generation from visual and depth features

Three baseline descriptors are proposed and released in conjunction with ViDRILO. These base-
line descriptors are: Pyramid Histogram of Oriented Gradients [14] (PHOG), GIST [15], and
Ensemble of Shape Functions [16] (ESF). Both PHOG and ESF are computed from perspective
images, while ESF relies on the use of depth information.

3.1.1 Pyramid Histogram of Oriented Gradients

PHOG descriptors are histogram-based global features that combine structural and statisti-
cal approaches. This descriptor takes advantage of the spatial pyramid approach [6] and the
Histogram of Gradients Orientation [17].

The generation of PHOG descriptors is shown in Fig. 2, and it depends on two parameters:
the number of bins of each histogram B, and the number of pyramid levels L. At each pyramid
level li in [0 . . . L], this process produces 4li histograms with B bins. According to the baseline
ViDRILO experimentation, we opt for using B = 30 and L = 2, which results in a descriptor
size of 630 ((40 + 41 + 42)× 30).

Output
PHOG

Descriptor

Figure 2. Generation of the PHOG Descriptor.

3.1.2 GIST

The GIST descriptor is intended to model the shape of a scene by using a holistic representation
of the spatial envelope. In the GIST generation process, S × O transformations are performed,
with scales(S) and orientations(O), over N ×N patches in the image, as it is presented in
Fig. 3. This transformations allow to represent each path by a low-dimensional (S ×O) vector,
which encodes the distribution of O orientations and S scales in the image along with a coarse
description of the spatial layout. Using the standard implementation, the dimensionality of the
GIST descriptors is 512 (N = 4, O = 8, S = 4).

3.1.3 Ensemble of Shape Functions

The Ensemble of Shape Functions (ESF) is a 3D point cloud descriptor that consists of
a combination of 3 different shape functions that result in 10 different histograms. It encodes
relationships between the points in the cloud. These functions encode the distance, the
area and the angle between a set of random points in the cloud using 3 histograms
for each function. These histograms are: in (inside the space), out (outside the
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Output
GIST

Descriptor

Figure 3. Generation of the GIST Descriptor.

space) or mixed (a combination of them). An additional histogram encoding the
lying distance of the cloud is also integrated in the ESF descriptor. On the contrary
to other 3D descriptors, ESF does not require normal information, which makes it robust to
noise and partial occlusions. Each histogram contains 64 bins, and the final dimension of the
descriptor is 640. Fig. 4 shows the three histograms (in, out and mixed) obtained for
the specific distance function.

Figure 4. Generation of the ESF Descriptor.

3.2 Descriptor generation from the Clarifai system

Clarifai [18] is a research project aiming at developing a high-level image (and video) processing
system by means of Convolutional Neural Networks (CNNs [12]). CNNs are hierarchical machine
learning models that learn a complex representation of images using vast amounts of data. They
are inspired by the human visual system and learn multiple layers of transformations, which
extract a progressively more sophisticated representation of the input. Clarifai’s working scheme
is shown in Fig. 5. Clarifai started as a research group that presented a solution to the
image classification problem using the ImageNet dataset [11]. However, the Clarifai
service is now a closed system whose details about the datasets used for training
(which determine the dimension of the decision layer) and internal architecture are
not provided. Therefore, we state the maximum number of the dimension for the
extracted descriptors in a preliminary stage where we discover all the annotations
that are extracted from the dataset. This is similar to the codebook identification
when applying a Bag-of-Words approach.

We propose the use of the Clarifai labeling system as a black box procedure through its
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Figure 5. Processing Scheme of the Clarifai API.

application programming interface (API1). From this API, we can automatically tag perspective
images based on its content. It also provides with the presence probability of each label in the
image.

There exists a commercial version of the Clarifai API with non-restricted access to advanced
features of the system. However, we use a free trial version that presents some limitations, like
the number of requests by hour. This version tags each input image with the 20 most feasible
semantic labels, as well as their associated probabilities. This information is used to generate
the image descriptors in this proposal.

The dimensionality-fixed descriptor generation process is carried out as follows. We firstly
discover the total number of labels representing our dataset by: a) submitting all the images
from our dataset to Clarifai, and b) identifying the unique values in the output label list. Then,
we encode each image Ii using a sparse representation whose dimension corresponds to the length
of the entire list N = |L|. The descriptor consists of a set of entries Wi = {wi,1, ..., wi,N}. Each
entry wi,j contains the probability of representing Ii with label lj only when the Clarifai response
to this image request includes information for lj . Otherwise, the entry wi,j encodes the lack of
information about lj using a zero value.

Using ViDRILO as dataset we obtain N = 793 different labels. Therefore, each Clarifai de-
scriptor has a dimensionality of 793, even when it contains information only about 20 different
labels. An example of this process (using 4 instead of 20 labels by service request, for clarity) is
shown in Table 1. The semantic labels used in the Clarifai system represent meaningful concepts
and the majority of them (≈ 80%) are nouns. Some exemplar labels are: animal, flower, plant,
sport, structure, vehicle or person.

Table 1. Clarifai descriptor generation from sparse semantic labeling

l1 l2 l3 l4 l5 l6 l7 ... l793

0.97 0.95 0.93 0.91 0 0 0 ... 0

0 0.94 0 0.92 0.93 0.94 0 ... 0

0.91 0 0 0 0.94 0.97 0.93 ... 0

... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 0 0 ... 0.91

1http://www.clarifai.com/api
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4. Experimental framework

All the experiments included in this work have been carried out using the ViDRILO dataset [13]1.
The main characteristics of this dataset are shown in Table 2, which provides five different
sequences of RGB-D images captured by a mobile robot within an indoor office environment.
The dataset was acquired during a span of twelve months in order to provide inter
sequence variability.

Table 2. Overall ViDRILO sequences distribution.

Sequence Number of Frames Floors imaged Dark Rooms Time Span Building
Sequence 1 2389 1st,2nd 0/18 0 months A
Sequence 2 4579 1st,2nd 0/18 0 months A
Sequence 3 2248 2nd 4/13 3 months A
Sequence 4 4826 1st,2nd 6/18 6 months A
Sequence 5 8412 1st,2nd 0/20 12 months B

Each RGB-D image is annotated with the semantic category of the scene it was acquired,
from a set of ten different room categories. In Fig. 6, representative images for all the ten
room categories are shown. Different sequences from ViDRILO dataset were used as
benchmark in the RobotVision challenge at ImageCLEF competition [19] during its
last editions.

Corridor Elevator Area Hall Professor Office Secretary Office

Student Office Toilet Technical Room Video Conf. Room Warehouse

Figure 6. Exemplar visual images for the 10 room categories in ViDRILO .

In the experimentation, several combinations of descriptors and classification models are eval-
uated in different scenarios. The main goal of the experiments is to determine the discrimination
capabilities of Clarifai descriptors. Each scenario includes a training and a test sequence used to
generate and evaluate the scene classifier, respectively. This evaluation computes the accuracy as
the percentage of test images correctly classified with their ground truth category. Based on the
five ViDRILO sequences, we are faced with 25 different scenarios (from Sequence 1 vs Sequence
1 to Sequence 5 vs Sequence 5). In addition to Clarifai, the 3 baseline descriptors previously
described are evaluated: PHOG, GIST, and ESF. Regarding the classification model, we opted
for three well-known alternatives: Random Forests (RFs) [20], k-Nearest Neighbor (kNN) [21],
and chi-squared kernel SVM [22]; as proposed in the ViDRILO baseline experimentation.

Regarding the efficiency of the experimentation, any combination of baseline de-
scriptor generation (PHOG, GIST, and ESF) and classification model (RFs, kNN
and SVMs) allows for real-time processing. They were successfully evaluated under

1The ViDRILO dataset can be freely download from http://www.rovit.ua.es/dataset/vidrilo/
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a 30fps frame rate on a Microsoft Kinect device in a preliminary stage. However,
the running time for the Clarifai labeling highly depends on the internet connection
and the overload of the system. This resulted in large time variations (in the range
[0.15 − 1.25] seconds per image), and it comes from the fact that there is no offline
alternative to the online Clarifai labeling system.

4.1 Evaluation of Clarifai as visual descriptor

In the first experiment, we generated a Clarifai descriptor from all the images in the ViDRILO
dataset. This process was carried out by following the methodology proposed in Section 3. Then,
we integrated the Clarifai descriptors in the experimentation stage proposed by the dataset au-
thors. This experimentation proposed the evaluation of the five sequences available in
the dataset, using them to firstly train a classifier and then, using another sequence
to test the classifier. We followed this process using the combination of baseline
classifiers and descriptors. The integration of Clarifai descriptors in the experimen-
tation was performed by using them as input for the classifiers, as it was done for
the PHOG, GIST, and ESF.

S1vsS1 S1vsS2 S1vsS3 S1vsS4 S1vsS5

S2vsS1 S2vsS2 S2vsS3 S2vsS4 S2vsS5

S3vsS1 S3vsS2 S3vsS3 S3vsS4 S3vsS5
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Figure 7. Accuracy obtained for all the classifiers, descriptors and training/test combinations.

The obtained results are shown in Fig. 7, where each chart title denotes the sequences
used for the experiment. That is, SAvsSB, means that the sequence A has been used
to train the model, whereas the sequence B has been used to test such model. The
large amount of data avoids from extracting conclusions without a posterior analysis. Therefore,
we post-processed the data to obtain the mean accuracy over the training/test combinations.
Fig. 8 graphically presents these results grouping them accordingly to the sequences
combination. Fig. 8 left shows the mean accuracy obtained when using the same
sequence for training and test. Fig. 8 right shows the mean accuracy for every
combination of different training and test sequences.
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Figure 8. Accuracy averaged over the training/test combinations, using the same sequence(left) and using different se-
quences(right).

In order to carry out a fair comparison, we performed a Friedman test [23] with a 0.05 confi-
dence level. The null hypothesis established all the descriptor/classifier combinations as equiv-
alent when facing the scene classification problem. This hypothesis was rejected, which
encouraged us to follow a post-hoc statistical analysis as described in [24] to find
out which of these combinations outperformed the rest. The comparison was done
against the best combination, namely ESF with RFs, and obtained the values that
are shown in Table 3. In view of these results, we can state that using Clarifai as
descriptor, we can generate scene classifiers (using RFs as classifier) as competitive
as those generated with ESF and GIST. It has been also exposed how Clarifai allows
for results significant better than those obtained with PHOG.

Table 3. Post-hoc analysis comparison for all descriptors/classifiers combination against the best combination(ESF/RFs)

Descriptor,Classifier p-value Rejected Rank Win Tie Loss
RFs,ESF - No 2.70 - - -
SVM,GIST 2.2433e-01 No 4.22 19 0 6
RFs,Clarifai 2.2433e-01 No 4.32 14 0 11
SVM,ESF 1.5541e-03 Yes 6.24 23 0 2
RFs,PHOG 7.6841e-04 Yes 6.54 20 5 0
RFs,GIST 7.6841e-04 Yes 6.56 20 4 1
kNN,GIST 6.7068e-04 Yes 6.64 19 0 6
SVM,Clarifai 4.5236e-05 Yes 7.30 21 0 4
SVM,PHOG 2.4383e-05 Yes 7.46 22 0 3
kNN,Clarifai 9.3896e-06 Yes 7.68 20 0 5
kNN,ESF 2.7732e-06 Yes 7.94 25 0 0
kNN,PHOG 4.7705e-13 Yes 10.40 25 0 0

4.2 Coping with domain adaptation

If we review the specifications of the sequences included in ViDRILO, we find out the Sequence
5 as the only one that has been acquired in a different building. Evaluating a scene classifier in
an environment not seen previously makes the problem even more challenging. This has been
exposed in Fig. 7, where the poorest results are obtained using Sequence 5 for training or test,
while when using Sequence 5 for both training and test the results are good.

These scenarios (where Sequence 5 appears) evaluate the generalization capabilities of a
scene classification system. Namely, the knowledge acquired during training should be generalist
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enough to be applied to different environments. Therefore, we decided to perform an additional
comparison between all the descriptors and classifiers in the 8 scenarios where Sequence 5 is used
for training or test. The results obtained are presented in Fig. 9, where we can extract some
interesting remarks. Firstly, all the methods ranking first by scenario use Clarifai as descriptor.

Moreover, these methods use a SVM classifier when using Sequence 5 for training (Fig. 9
left), and a Random Forest classifier when this sequence is used for test (Fig. 9 right). This
figure share the same notation that one used in the Fig 7. The difference between
the classification models can be explained by the number of images included in the ViDRILO
sequences (see Table 2 for details). That is, SVMs require more training instances than Random
Forests to achieve proper discrimination capabilities. Consequently, SVM perform better when
trained from Sequence 5, which has 8412 images in contrast to the rest of sequences (3510 images
on average).
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Figure 9. Accuracy obtained for all the classifiers and descriptors combinations in those scenarios involving Sequence 5 as
test (left) or training (right).

From these scenarios, we also carried out a Friedman test (0.05 confidence level)
and a post-hoc statistical analysis. The null hypothesis that all descriptor/classifier
combinations are equivalent was rejected. The post-hoc analysis was carried out
against the best combination, Clarifai/RFs, and obtained the raking distribution
shown in Fig. 10. This comparison stated that just ESF (in conjunction with RFs and
SVM) and the combinations of GIST and Clarifai with SVMs are not significantly
different from Clarifai/RFs. Fig. 10 illustrates the average rank position achieved
with each combination of descriptor and classifier in the eight scenarios involving
Sequence 5. It can be observed how the best combination always ranked between the
first and fourth positions. This figure also helped us discover the low discriminating
capabilities of the kNN classifier.

5. Discussion

Clarifai descriptor have been shown as an appropriate representation for the scene classification
problem, with no significant differences with respect to global features like GIST or ESF. How-
ever, two remarks can be obtained if we review the semantic labels generated from ViDRILO
images using the Clarifai system. These labels are ranked by their distribution and graphically
presented in Fig. 11. It is exposed how a small set of labels concentrates most of the presence
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Figure 10. Average ranking for all classifiers and descriptors combinations.

in the images. The frequency distribution shows that 50% of the annotations correspond to just
the 0.026% of the labels (21/793). This fact makes these labels to play a very important
role in the generation of the descriptor, in detriment of the rest of labels provided
by the Clarifai annotation system.

0 200 400 600 800

0

5000

10000

15000

20000

Figure 11. Frequency obtained by the labels in ViDRILO .

A second point to be taken into account is the discrimination capabilities of this
set of labels. To do so, we firstly selected only the 10 most frequent labels. From
these labels, and taking advantage of another Clarifai capability, we obtained some
representative images of these concepts. Both the labels and the representative
images are shown in Fig. 12, and we can observe how these labels are too general-
ist. Concretely, these labels may be helpful for other computer vision tasks, such
as to determine whether an image represents an indoor or outdoor environment.
However, these labels are not discriminative when facing the scene classification
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problem. That is, the presence of label ”floor” does not help to resolve the type of
scene where the image was acquired.

Indoors Room Window House Door

Dwelling Nobody Architecture Contemporary Floor

Figure 12. Exemplar visual images for the tags in the Clarifai Descriptor.

In summary, the Clarifai-based proposed descriptor provides a very high balance between
simplicity and performance against well-known complex image descriptors in the context of
scene classification problems.

Also, the lexical nature of this descriptor, namely a set of labels describing the
scene, allows for its direct human understanding. This interpretation of the descrip-
tor can be used to integrate expert knowledge in the scene classification pipeline,
such as expert-driven feature/label selection techniques, or high-order linguistic
feature combinations using NLP techniques among others.

6. Conclusions and future work

We have proposed and evaluated the use of Clarifai labels as a valid descriptor for the scene
classification problem. These descriptors are generated from the semantic annotations obtained
thought an external API. The trial version of this Clarifai API obtains the most feasible 20 labels
representing the input visual image. Thanks to this approach, researchers can focus on selecting
the appropriate classification model as the image descriptors are automatically generated.

In view of the results obtained, we can conclude that Clarifai descriptors are as competitive
as state-of-the-art ones, which are computed with computer vision (GIST), or 3D processing
techniques (ESF). Moreover, Clarifai is exposed as the most outstanding descriptor when gener-
alization capabilities are requested. This situation has been evaluated by training scene classifiers
from sequences acquired in a building, and then test these classifiers in sequences acquired in a
different building.

We have also reviewed the distribution, as well as the description, of the semantic labels
obtained with Clarifai from ViDRILO images. In this review, it has been exposed that we are
facing a specific problem (scene classification) from generalist information. That is, Clarifai
annotations are not focused on describing scenes but, general concepts. Despite this fact, a
competitive image descriptor has been proposed, developed and evaluated.

As future work, we plan to select a set of relevant semantic labels in a preliminary step, and
then perform a problem-oriented labeling by asking Clarifai about the probabilities of this labels
in the image. We also have in mind the use of classifiers capable of working with missing values.
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Besides, we are using only the Clarifai responses, namely the final layer in the
CNN architecture. This is made because Clarifai does not provide internal CNN
values. We pretend to change our system to other open framework like Caffe with
which we are able to use internal layers. Thus we plan to use the last two layers for
classification purposes.
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