A predictive tool for determining patient-specific mechanical properties of human corneal tissue

Miguel Ángel Ariza-Gracia, Santiago Redondo, David Piñero Llorens, Begoña Calvo, José Felix Rodríguez Matas

PII: S0045-7825(16)30463-7
DOI: http://dx.doi.org/10.1016/j.cma.2016.12.013
Reference: CMA 11259

Received date: 30 May 2016
Revised date: 14 October 2016
Accepted date: 9 December 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Predictive Tool for Determining Patient-Specific Mechanical Properties of Human Corneal Tissue

Miguel Ángel Ariza-Graciaa,b, Santiago Redondoa, David Piñero Llorensc,d, Begoña Calvoa,f, José Felix Rodriguez Matase

aDepartment of Mechanical Engineering, Aragón Institute of Engineering Research –i3A–, Zaragoza, Spain
bInstitute for Surgical Technology and Biomechanics, University of Bern, Switzerland
cOphthalmology Department –OFTALMAR–, Medimar International Hospital, Alicante, Spain
dOptics, Pharmacologist and Anatomy Department, University of Alicante, Alicante, Spain
eLaBS, Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milano, Italy
fCIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Aragon Health Sciences Institute, Spain

Abstract

A computational predictive tool for assessing patient-specific corneal tissue properties is developed. This predictive tool considers as input variables the corneal central thickness (CCT), the intraocular pressure (IOP), and the maximum deformation amplitude of the corneal apex (U) when subjected to a non-contact tonometry test. The proposed methodology consists of two main steps. First, an extensive dataset is generated using Monte Carlo (MC) simulations based on finite element models with patient-specific geometric features that simulate the non-contact tonometry test. The cornea is assumed to be an anisotropic tissue to reproduce the experimentally observed mechanical behavior. A clinical database of 130 patients (53 healthy, 63 keratoconic and 14 post-LASIK surgery) is used to generate a dataset of more than 9,000 cases by permuting the material properties. The second step consists of constructing predictive models for the material parameters of the constitutive model as a function of the input variables. Four different approximations are explored: quadratic response surface (QRS) approximation, multiple layer perceptron (MLP), support vector regressor (SVR), and K-nn search. The models are validated against data from five real patients. The material properties obtained with the predicted models lead to a simulated corneal displacement that is within 10% error of the measured value in the worst case scenario of a patient with very advanced keratoconus disease. These results demonstrate the potential and soundness of the proposed methodology.
Keywords: Corneal Biomechanics, Finite Element Modeling, Monte Carlo Analysis, Patient-Specific Material

1. Introduction

Corneal biomechanics is an open topic in ophthalmology. Precise knowledge about the underlying factors that affect the corneal mechanical response will allow establishing better clinical diagnoses, monitoring the progression of different diseases (e.g., keratoconus, a non-inflammatory disease that causes disruption of the collagen fibers) or designing a priori patient-specific surgical plans that may reduce the occurrence of unexpected outcomes.

Non-contact tonometry has recently gained interest as a diagnostic tool in ophthalmology and as an alternative method for characterizing the mechanical behavior of the cornea. In a non-contact tonometry test, a high-velocity air jet is applied to the cornea for a very short time (less than 30 ms), causing the cornea to deform, while the corneal motion is recorded by a high-speed camera. A number of biomarkers associated with the motion of the cornea, i.e., maximum corneal displacement and time between first and second applanations, among others, have been proposed to characterize pre- and post-operative biomechanical changes [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, this response is the result of the interplay between the geometry of the cornea, the intraocular pressure (IOP), and the mechanical behavior of the corneal tissue, as has been demonstrated by recent experimental and numerical studies [2, 10]. These studies suggest that this interplay could be the reason for some unexpected clinical results (i.e., a softer cornea with a higher IOP could show the same behavior as a stiffer cornea with a lower IOP). Although the geometry and the IOP can be measured using corneal topographers and Goldmann tonometry applanation tests (GATs), the mechanical behavior of the cornea cannot be directly characterized in vivo.

The human cornea is composed of an almost incompressible layered base material (matrix), mainly composed of water, where two families of orthogonal collagen fibers are embedded [11,
Due to this structure, the tissue behaves as an anisotropic solid that has two preferential directions corresponding to the direction of the collagen fibers. A number of material models have been proposed to reproduce the behavior of the cornea, ranging from simply hyperelastic isotropic materials [13] to more complex models coupling the hyperelastic isotropic response for the matrix (neo-Hookean models) with the anisotropic response of the collagen fibers of the eye [12, 14, 15, 16, 17, 18, 23, 24]. These material models have been incorporated into computer models of the eye to simulate surgical interventions and tonometry tests in an effort to demonstrate the potential of these in silico models [3, 4, 17, 25, 26, 27, 28, 54, 55, 56].

However, numerical studies have found that the contribution of the fibers to load bearing during a tonometry test is highly reduced due to the bending mode of deformation imposed by the test. Under this particular loading condition, other factors such as the IOP or the central corneal thickness (CCT) were found to be more significant in the response of the cornea to the air puff [2, 4]. Moreover, in the physiological range of IOP (from 10 to 15 mmHg) and CCT (from 500 to 600 microns), the corneal tissue is not subjected to large stresses, with the fibers bearing relatively low loads [4]. In addition, experimental studies in porcine and human eyes have demonstrated that fibers play a major role only when the IOP increases to values above the physiological range [24, 29]. Therefore, it appears that the mechanical behavior of the matrix will play a significant role in reproducing the corneal response during a tonometry test. Furthermore, some authors have suggested that only one in vivo technique may not be sufficiently accurate for properly characterizing the material properties, such as Kok et al. [19, 4]. However, at present, it is the only clinical device that permits a non-invasive analysis of the human cornea, as biaxial or inflation tests can only be performed ex vivo.

Over the past decade, with the development of large and extensive datasets, the use of artificial neural networks (ANNs) has returned to the spotlight. Essentially, an ANN intends to model the human brain by mathematically reproducing the neural architecture to learn and recognize patterns or to adjust functional responses. In ophthalmology, commercial topographers implement different types of ANNs to establish a classification between healthy eyes and diseased eyes (e.g., keratoconus eyes, KTC, or ectasias post-LASIK) [30, 31, 32, 33, 34]. Unfortunately,
these ANNs are primarily based on the geometrical features of the cornea (e.g., radii, thickness, diopters, shape factors, and so forth), and it is not common to consider mechanical variables such as the intraocular pressure (IOP). In addition to ANNs, response surface methods have also been used in biomedical sciences for predicting the effects of different model parameters on a set of biomarkers associated with a particular pathology [35, 36, 37]. The great interest in these mathematical methods relies on the immediateness of their response, which is a key factor for clinical applications. However, they suffer from an important weakness: the extension of the training dataset. These methods are based on precisely learning a considerable amount of data under different conditions to lead to a proper and accurate response of the system. Otherwise, a poor prediction or an overfitting in the solution could be reached with catastrophic results. Unfortunately, the higher the complexity of the applied neural network, the higher the number of cases that are needed for both training and validating the training. Therefore, this is a clear limiting factor when dealing with patient data. Apart from the aforementioned mathematical tools, another optimization approach has been used for determining the material properties of the human cornea: the inverse finite element method (henceforth IFEM) [3, 20, 21, 22]. This method uses an iterative optimization procedure that changes a set of unknown parameters to match the numerical response with the experimental response. Thus, it requires a highly accurate definition of the problem and sufficiently reliable boundary conditions. Moreover, each case of interest must be evaluated ad hoc, resulting in a time-consuming process that is not real time and hence not interesting for real clinical applications.

The present work aims to construct predictors for real-time clinical applications based on ANN and quadratic response surface (QRS) approximations to obtain the parameters of the constitutive model of a patient’s cornea using 3 clinical biomarkers as inputs: the maximum corneal displacement measured during a non-contact tonometry test (U), the patient’s IOP, and geometrical features of the cornea. The predictive tool relies on a dataset generated by the results of finite element simulations of the non-contact tonometry test. The simulations are based on combinations of patients of a real clinical database (the patient-specific corneal geometry and the Goldmann IOP[4]) and of corneal material properties of the numerical model to predict the corneal apical
displacement. In brief, the finite element model is used to perform a Monte Carlo (MC) simulation in which the material parameters and the IOP are uniformly varied within an established range. The range for the material parameters was determined by considering the experimental results from an inflation test reported in the literature[24, 38] and the physiological response of the cornea to an air-puff device (i.e., displacement of the cornea using a CorVis device). First, the inflation tests were used to initially screen the model parameters, to constrain the search space of the optimization and in an attempt to avoid an ill-posed solution [19]. Second, the range of each material parameter was then determined such that the in silico inflation curve was within the experimental window. In this way, both physiological behaviors of the cornea are simultaneously fulfilled: the response to an inflation test (biaxial stress) and the response to an air-puff test (bending stress). Subsequently, the generated dataset was used to implement different predictors for the mechanical properties of the patient’s corneal model in terms of variables that are identified in a standard non-contact tonometry test. Eventually, the resulting models were tested on five different, new and unknown patients to demonstrate the potential and soundness of the proposed methodology in terms of predicting corneal tissue properties.

2. Materials and Methods

2.1. Patient data

Topographical data of the cornea and IOP from 130 patients (53 healthy, 63 keratoconic and 14 post-LASIK surgery)[2, 4] were collected prospectively, i.e., an ongoing measuring process without posterior revision of the patient’s medical history, at the Department of Ophthalmology (OFTALMAR) of the Vithas Medimar International Hospital (Alicante, Spain). A comprehensive ophthalmologic examination was performed in all cases, including Goldmann tonometry and analysis of the corneal anterior and posterior segments using a Scheimplug photography-based topography system (Pentacam system, Oculus, Germany). The inclusion criteria were as follows: healthy eyes, eyes diagnosed with keratoconus according to the Rabinowitz criteria [39], and eyes that had undergone previous laser in situ keratomileusis (post-LASIK) for the correction of myopia (range -0.50 to -8.00 D). The exclusion criteria were patients with active ocular diseases
or patients with other types of previous ocular surgeries. Clinical validation data were collected prospectively at the Qvision Ophthalmic Unit of the Vithas Virgen del Mar Hospital (Almeria, Spain). A comprehensive ophthalmologic examination was performed in all cases, including Goldmann tonometry, corneal and anterior segment analysis using a Scheimpflug photography-based topography system (Pentacam, Oculus, Germany) and corneal dynamics analysis (CorVis, Oculus, Germany). This study adhered to the guidelines of the Declaration of Helsinki and was approved by the ethics committee of the University of Alicante (Alicante, Spain).

Figure 1: Graphical Outline of the Developed Methodology.

2.2. Construction of the predictive model

Figure 1 shows the main steps of the proposed methodology. As stated in the introduction, the methodology relies on the use of a previously developed algorithm for the patient-specific geometrical reconstruction of the cornea and the simulation of a non-contact tonometry test [4]. To generate the dataset, two main steps have to be differentiated. In the first step, an initial screening over the constitutive model parameters is performed using the inflation experiments reported in the literature [24, 38]. There are two benefits associated with this step: constraining the space of solutions for the subsequent step and restraining the space of solutions to those that behave physiologically on the inflation range. The second step corresponds to the generation of the training dataset using a Monte Carlo analysis. The in silico simulations of the non-contact tonometry test using the clinical patient-specific corneal topography and the clinical Goldmann IOP are used to obtain the bending behavior of the cornea. By filtering with the clinical ranges of maximum deformation amplitude [1], the space of material parameters that behave physiologically in both experiments (inflation and air puff) is obtained. Following the Monte Carlo simulation, an analysis of variance (ANOVA, using a second-order linear model for the sum of squares and accounting for the interaction between the parameters) is performed to identify the impact of the variables on the maximum displacement of the corneal apex, thereby defining the main inputs of the predictors. The resulting dataset is then used to train a set of 4 different predictors in terms of the material model parameters (D_1, D_2, k_1, and k_2) and the main variables identified through
ANOVA. Finally, the predictors are tested with clinical results from a non-contact tonometry test on five patients to validate the methodology using unknown patient data.

2.3. Finite Element Model

The FE model consists of the patient-specific corneal geometric data, which are provided by the topographer, the limbus and half of the sclera [4]. The geometry is meshed using quadratic hexahedral elements (62,276 nodes and 13,425 elements). The limbus and the cornea are considered to be anisotropic solids described by the same strain energy function but with different preferential directions (the cornea is assumed to be orthotropic with two orthogonal families of fibers, whereas the limbus is assumed to be transversely isotropic with only one family of fibers). The limbus is assumed to have the same material properties as the cornea since a proper in vivo characterization has not yet been reported and because it is considered to be a more compliant boundary condition for the cornea [56] far from the zone of influence of the air jet. Material models are described in detail in the following section. Conversely, the sclera is assumed to be an isotropic solid since the region of interest is far from the optic nerve insertion. Symmetry boundary conditions are defined on the scleral symmetry plane, and the intraocular pressure is assumed to be an equally distributed internal pressure determined by the Goldmann tonometry test.

To properly simulate the profile of pressure over the cornea of the non-contact tonometry from a purely structural perspective, a computational fluid dynamics simulation using ANSYS was conducted to determine the pressure pattern over the cornea due to the air puff. Although it is an approximation since the cornea is considered to be a rigid wall interface for the sake of the fluid analysis, a bell-shaped profile with a peak pressure set to 15 kPa is obtained (commercial devices range between 10 and 15 kPa), following a 30 ms temporal load profile provided by Oculus (only the load phase is considered). In addition, a zero-pressure algorithm is performed as a step prior to the air-puff simulation and is necessary for determining the corneal tissue pre-stress due to the IOP. Briefly, a fixed-point iterative optimization is applied, where an initial model of the eyeball is subjected to an internal pressure to deform. Subsequently, the error between the measured configuration (i.e., topographer geometry) and the deformed configuration is computed. If the
error is greater than a tolerance, a new initial model is computed by subtracting the point-to-point error. Eventually, the algorithm stops once the measured reference is achieved when pressurizing the initial (usually smaller) model (for further details, see [4]).

2.4. Material Model

The form of the strain energy function for modeling the cornea corresponds to a modified version of that proposed by Gasser–Holzapfel–Ogden [40] for arterial tissue, where the neo-Hookean term has been substituted by an exponential term

\[
\psi(C, n_\alpha) = D_1 \cdot (\exp[D_2 \cdot (\bar{I}_1 - 3)] - 1) + \frac{k_1}{2} \cdot k_2 \cdot \sum_{\alpha=1}^{N} \left\{ \exp[k_2 (\bar{E}_\alpha)^2] - 1 \right\} + K_0 \cdot \left(\frac{J_{el}^2}{2} - \ln(J_{el}) \right),
\]

with \(\bar{E}_\alpha \) defined as \(\kappa \cdot (\bar{I}_1 - 3) + (1 - 3\kappa) \cdot (\bar{I}_{d(\alpha)} - 1) \).

(1)

where \(C \) is the right Cauchy–Green tensor; \(J_{el} = \sqrt{\det C} \) is the elastic volume ratio; \(D_1, D_2, k_1 \) and \(k_2 \) are material parameters; \(K_0 \) is the bulk modulus; \(N \) is the number of families of fibers; \(\bar{I}_1 \) is the first invariant of the modified right Cauchy–Green Tensor \(\bar{C} = J_{el}^{-2/3} C \); and \(\bar{I}_{d(\alpha)} = n_\alpha \cdot \bar{C} \cdot n_\alpha \) is the square of the stretch along the fiber's direction \(n_\alpha \). The parameter \(\kappa \) describes the level of dispersion in the fiber’s direction and has been assumed to be zero since it has been reported that a dispersion in the fibers of ±10 deg about the main direction results in a maximum variation of 0.03% on the maximum corneal displacement [4].

The strain-like term \(\bar{E}_\alpha \) in Eq. 1 characterizes the deformation of the family of fibers with preferred direction \(n_\alpha \). The model assumes that collagen fibers bear load only in tension while they buckle under compressive loading. Hence, only when the strain of the fibers is positive, i.e., \(\bar{E}_\alpha > 0 \), do the fibers contribute in the strain energy function. This condition is enforced by the term \(\langle \bar{E}_\alpha \rangle \), where the operator \(\langle \cdot \rangle \) stands for the Macauley bracket defined as \(\langle x \rangle = \frac{1}{2}(|x| + x) \). The model has been implemented in a \textit{UANISOHYPER} user subroutine within the FE software \textit{Abaqus}.

Due to the random distribution of fibers far from the optic nerve insertion, the sclera has been
assumed to be an isotropic hyperelastic material [41] (Eq. 2).

\[\psi_Y = \sum_{i=1}^{3} K_i (J_{el} - 1)^2 \cdot i + \sum_{i=1}^{3} C_{i0} \cdot (\bar{I}_1 - 3)^i, \] (2)

where \(C_{10} = 810 \text{ [kPa]} \), \(C_{20} = 56,050 \text{ [kPa]} \), \(C_{30} = 2,332,260 \text{ [kPa]} \), and \(K_i \text{ [kPa]} \) is automatically set by the finite element solver during execution.

2.5. Monte Carlo Simulation

Due to the large dispersion in the corneal responses to inflation and air-puff tests and because the behavior of the fibers should not be properly characterized by a single experiment, the Monte Carlo simulation was conducted in two steps. First, the inflation experiments were used for screening the range of values of the material model that behaves physiologically in a biaxial stress state and hence constraining the searching space in subsequent steps. A total of 81 combinations of the material parameters were used to simulate an inflation test on an average healthy eye (see Figure 2b). The \textit{in silico} inflation curves were then compared with experiments reported in the literature [24, 38], and the range of material parameters leading to curves within the experimental window was determined. The identified range of parameters was set to \(D_1 \text{[kPa]} \in (0.0492, 0.492) \), \(D_2 \text{[]} \in (70, 144) \), \(k_1 \text{[kPa]} \in (15, 130) \), and \(k_2 \text{[]} \in (10, 1000) \).

The second step was to generate the dataset using the Monte Carlo simulation and considering a uniformly distributed sample of the material parameters within the previously identified range. A uniform distribution was assumed since there are no a priori data on the dispersion of the mechanical parameters in the human cornea, and therefore, total ignorance about the population is assumed. Otherwise, a bias could be introduced on the outcome of the system. Additionally, to account for the physiological diurnal variations in the IOP [42], variations in the IOP ranging from 8 to 30 mmHg along with the patient’s IOP at the moment of the examination were also considered in the Monte Carlo simulation. Hence, for each available geometry in the clinical database, 72 different samples of the material parameters and the IOP, uniformly distributed in their respective ranges, were used to conduct 72 simulations of the non-contact tonometry test. Consequently, a total of 9,360 computations (i.e., 72 combinations times 130 geometries) were
scheduled. The generated dataset consisted of the following variables: classification (healthy, KTC and LASIK), computation exit status (failed or successful), material parameters (D_1, D_2, k_1 and k_2), IOP, CCT, nasal-temporal curvature (R_h), superior-inferior curvature (R_v) and the computed maximum displacement of the cornea (U_{num}).

After the dataset was generated, ANOVA was performed to identify the most influential model parameters (geometry, pressure and material) on the numerical displacement, U_{num}, obtained with the non-contact tonometry simulation. The results from this analysis were used to identify the geometric parameters to be included in the construction of the predictor functions for the material parameters. ANOVA was conducted on the global dataset without differentiation between the populations and for each of the populations (healthy, keratoconus or KTC, and LASIK). Since the dataset is randomly generated, ANOVA cannot be directly conducted on the data. Instead, a quadratic response surface was first fit to U_{num} (e.g., $U_{num} = f(gometry, pressure, material))$.

Then, a Pareto analysis (i.e., it states the most influential parameters on an objective variable, arranging them in decreasing order by taking into account the cumulative sum of the influence until reaching a 95% variation on the objective variable) was used to determine the most influential parameters on the dependent variable, U_{num}.

2.6. Predictive Models

The generated dataset was used to construct predictors for the mechanical properties of the patient’s cornea in terms of variables that are measured with a standard non-contact tonometry test. Two different approaches were implemented (see Fig.1): i) response surface approach and ii) neighborhood-based approach.

2.6.1. Response surface approach

This approach is based on adjusting, or training, a predictor model for each material parameter (D_1, D_2, k_1 and k_2). Individual predictors were constructed using either an ANN or a quadratic response surface. For the ANN approach, two different mathematical models were considered: multiple layer perceptron, MLP, and support vector regressor, SVR. As an alternative to the ANN, a quadratic RS (QRS) was fit for each material parameter.
Artificial Neural Network: Multiple Layer Perceptron (MLP). An MLP is a feedforward ANN whose aim is to map a set of input variables (i.e., parameters that define the problem) into an output, allowing non-linear separable sets to be distinguished. It consists of different layers formed by ‘neurons’ or processing elements with non-linear activation: input layer, hidden layer and output layer. This technique is a supervised back-propagation learning technique for the training [57]. For the present study, an ensemble of 7 independent MLPs has been configured, obtaining the output as the average of the individual outputs (reducing the inherent variability of the method). Each independent MLP has been trained using a Levenberg-Marquardt minimization with early stopping criteria (usual criteria: a maximum of 6 increments of the validation error and a maximum of 1000 training epochs). Each MLP has 10 neurons for the hidden layer.

Support Vector Regressor (SVR). A support vector machine (SVM) is a supervised learning model that is mainly used for analyzing data for classification and regression analysis [58]. Once a set of training data is given, it marks each point for classifying into categories using a non-probabilistic non-linear classifier based on the use of kernels, which allow mapping into higher-dimensional feature spaces to better discern the clustering of categories. When the SVM is used for fitting a response (i.e., regression) rather than classifying, it is called a support vector regressor (SVR)[59]. For the present study, the libSVM C++ library using the epsilon-SVR formulation with a Gaussian kernel (RBF) was used for solving the SVR problem [43]. There are three configuration parameters: the epsilon value (default value 0.001), the algorithm Cost (optimized value) and the kernel’s Gamma (optimized value). The optimization of the parameters was achieved by searching the cross-validation generalized performance of the training data. This method uses a grid search within the maximum expectation range of the parameters (Cost and Gamma), yielding a surface where the minimum corresponds to the optimum.

Regarding the dataset used for both methods (MLP and SVR), it has been split as 80% of the data for the training stage and 20% for the validation stage. In addition, the models have been trained using k-fold techniques (with a k-fold equal to 5) to automatically
optimize their parameters while avoiding overfitting during the training and differencing datasets according to populations (healthy, KTC and LASIK). Furthermore, the data have been normalized using the criterion of null average and the standard deviation equal to one.

Quadratic Response Surface (QRS). The response surface methodology seeks for the relationship between the input variables and the response variables in terms of the optimal response and using a dataset constructed following a sequence of designed experiments [60]. In general, the method fits a multiple order surface (e.g., a second-order polynomial) to minimize the error with respect to the experimental data. In the present study, a multiple linear regression model including crossed and second-order terms was used for predicting the response (D_1, D_2, k_1 and k_2) as a linear function of the predictor variables. The model fitting used a stepwise regression (i.e., terms can be added or removed depending on their influence on the response) based on the Akaike information criterion (AIC) [44]. The AIC provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, they can be compared using this criterion. According to Akaike’s theory, the most accurate model has the smallest AIC.

Independent predictors were fit to the entire dataset and to individual populations to test their classification capabilities. Each predictor was structured as follows. Let j stand for a particular material parameter and χ_j be its predictor. Based on the ANOVA performed on the dataset, the most influential geometric parameters on the corneal displacement, U, are identified and denoted as x. Hence, each predictor χ_j was constructed as a function (inputs) of x, IOP, and the remaining material parameters of the model. Therefore, for parameter D_1, $\chi_{D_1} = \chi_{D_1}(x, IOP, D_2, k_1, k_2)$.

Once the models were trained, identification of the material parameters from the known patient data, i.e., x, IOP, and U, was performed iteratively using a fixed-point iteration algorithm. The search algorithm is detailed in Algorithm 1. In brief, D_1 is evaluated through χ_{D_1} using the material parameters from the previous iteration; D_2 will then be obtained through χ_{D_2} including the previously computed value for D_1, while k_1 and k_2 are kept from the previous iteration, and so on. The cost function controls the changes in the values of the material parameters between two
consecutive iterations: if the change in the material properties between two consecutive iterations
is less than a tolerance, the algorithm stops and the identified material parameters are reported.

Algorithm 1. Fixed-point iteration algorithm to determine material parameters from patient’s
data (clinical biomarkers).

```plaintext
%Initialize Control Values
TOL=1e-6; itemax=5000; k=1; error=1;
%Initialize Random Material Seed
matk=(Dk1, Dk2, k1, k2);
WHILE AND(error>TOL,k<itemax)
%Predict Dk+1
Dk+1:=χDk(x,IOP, U, Dk1, k1, k2);
%Predict Dk+1
lkDk+1:=χDk+1(x,IOP, U, Dk+1, k1, k2);
%Predict k1
lk1k1+1:=χk1(x,IOP, U, Dk1, Dk+1, k1);
%Predict k2
lk2k2+1:=χk2(x,IOP, U, Dk2, Dk+1, k2);
%Check Cost Function
matk+1=(Dk+1, Dk+1, k1+1, k2+1);
error=∑|matk+1−matk|;
%Update Next Iteration
k=k+1;
END

2.6.2. Neighborhood-Based Protocol (K-nn Search)

Due to the coupled effects that geometry, IOP, and material properties have on the corneal
deresponse (i.e., displacement), different combinations of parameters could exist that provide the
same maximum displacement (i.e., less rigid corneas subjected to a large IOP could experience
the same displacement to the air puff as a more rigid cornea subjected to a lower IOP), causing
the response surface approach to be less effective, i.e., Algorithm 1 could identify different sets
of material parameters according to the initial seed (local minima). The K-nn search approach
searches the set of material parameters directly in the raw dataset without the need for an approx-
imation function. This algorithm searches the n closest neighbors to the patient in the dataset and
then interpolates the material model parameters in terms of the distance from the patient’s point
to the neighbors. The distance is calculated as the Euclidean distance in the (x, IOP, U) subspace
of the dataset.
2.7. Validation

To validate the proposed methodology, 5 eyes (1 healthy eye and 4 keratoconus eyes) that were subjected to a non-contact tonometry test (CorVis ST, Oculus, Germany) were considered. For these eyes, the corneal topography, IOP and corneal displacement due to the air puff, $U$, were available (see Table 1). These parameters were used to predict the patient’s material model parameters using the previously described predictors. With the predicted material model parameters and the topographical data of the cornea, an in silico non-contact tonometry test was simulated using the procedure proposed in [4]. The numerical corneal displacement, $U_{num}$, was compared to the clinical displacement $U$.

Table 1: Clinical Validation Data: CorVis Non-Contact Tonometry Test for Validation Patients (5 eyes: 1 healthy eye and 4 keratoconus eyes).

<table>
<thead>
<tr>
<th>L.</th>
<th>Eye</th>
<th>IOP [mmHg]</th>
<th>CCT [µm]</th>
<th>U [mm]</th>
<th>AL1 [mm]</th>
<th>AL2 [mm]</th>
<th>VA1 [mm/s]</th>
<th>VA2 [mm/s]</th>
<th>P. Dist. [mm]</th>
<th>R [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0$</td>
<td>R</td>
<td>12</td>
<td>578</td>
<td>1.00</td>
<td>2.09</td>
<td>1.92</td>
<td>0.19</td>
<td>-0.36</td>
<td>2.38</td>
<td>7.5</td>
</tr>
<tr>
<td>$ktc_0$</td>
<td>R</td>
<td>15</td>
<td>545</td>
<td>1.12</td>
<td>1.81</td>
<td>1.87</td>
<td>0.16</td>
<td>-0.34</td>
<td>5.07</td>
<td>7.58</td>
</tr>
<tr>
<td>$ktc_1$</td>
<td>L</td>
<td>15</td>
<td>544</td>
<td>1.03</td>
<td>1.84</td>
<td>2.06</td>
<td>0.18</td>
<td>-0.38</td>
<td>5.08</td>
<td>7.9</td>
</tr>
<tr>
<td>$ktc_2$</td>
<td>R</td>
<td>15</td>
<td>464</td>
<td>1.05</td>
<td>1.87</td>
<td>1.07</td>
<td>0.16</td>
<td>-0.43</td>
<td>2.53</td>
<td>7.6</td>
</tr>
<tr>
<td>$ktc_3$</td>
<td>L</td>
<td>16</td>
<td>460</td>
<td>1.12</td>
<td>1.84</td>
<td>2.06</td>
<td>0.17</td>
<td>-0.39</td>
<td>5.45</td>
<td>7.81</td>
</tr>
</tbody>
</table>

Table Legend and Units. L.: identification tag (i.e., ‘h’ for healthy eyes and ‘ktc’ for keratoconus eyes); Eye: ocular position; IOP [mmHg]: intraocular pressure; CCT [µm]: central corneal thickness; U [mm]: maximum deformation amplitude at the maximum concavity time; AL1 [mm]: first applanation length; AL2 [mm]: second applanation length; VA1 [mm/s]: velocity at the first applanation time; VA2 [mm/s]: velocity at the second applanation time; P. Dist. [mm]: peak distance; R [mm]: curvature at the maximum concavity time.

2.8. Computations and Statistical Analysis

Finite element simulations were conducted using the commercial finite element software Abaqus 6.11 (Dassault Systèmes Simulia Corp.). All the mathematical computations, algorithms and statistical analysis were developed using MATLAB R2012 v.8.0. software and open source C++ libraries (libSVM C++, [43]).

Data are reported as their mean and standard deviation (mean ± SD). Statistical significance was tested with the two-sample Kolmogorov-Smirnov test, where a two-sided p-value of less than 0.05 indicates significance. The performance of the predictors was measured in terms of the
coefficient of correlation $R^2$ to measure the quality of the fitting, whereas the Akaike information criterion (AIC) [44] was used to directly compare the quality of each model relative to each other.

3. Results

3.1. Monte Carlo Simulation

The Monte Carlo simulation computed 9,360 combinations. Due to technical limitations regarding the number of licenses, computations were performed on two conventional PCs with an 8-core processor and 8 GB RAM, requiring 128 days of computations on double thread. However, the methodology is implemented for a suitable parallel and massive computation on a computational cluster. The failure rate was under 3% of the computations, resulting in an effective dataset of 9,216 cases.

Figure 2: Results of the Monte Carlo simulation. (a) Mechanical corneal response to both experiments: inflation and air puff. The physiological range for the inflation is limited by the inflation real curves reported in the literature [24, 38] (see in black dashed lines and triangles), whereas the physiological range of the air-puff behavior must lie within the ‘searching objective frame’ (i.e., the reported experimental displacement to CorVis [1]). As shown in the ‘upper right area’, a physiological inflation behavior could not represent a physiological air-puff mechanical response, and thus, aiming out of the searching frame (see yellow vs. red lines in the figure); (b) First Monte Carlo analysis for pre-screening the range of the material parameters within the physiological inflation range reported. From all the simulations, the extreme ones were chosen for constraining the search space of the second Monte Carlo analysis. The range of the material parameters is shown in the bottom of the panel; (c) Second Monte Carlo analysis for establishing the range of the corneal mechanical response to an air-puff test. All the mechanical responses (incremental displacement due to the incremental pressure) related to the material range variation are depicted in a lighter color in the figures. Darker zones belong to those combinations of material parameters that numerically behaved as physiological with respect to the maximum deformation amplitude reported in the CorVis diagnosis. (c.1) Results of the Monte Carlo simulation for those eyes classified as healthy in the clinic (i.e., those whose topography and IOP were diagnosed as healthy by an optometrist). Dark red curves belong to the simulations that cast a numerical displacement that is contained within the experimental range ($U_{\text{Healthy}}[\text{mm}] \in (0.8, 1.1)$); (c.2) Results of the Monte Carlo simulation for those eyes classified as keratoconic in the clinic. Dark blue curves belong to the simulations that cast a numerical displacement that is contained within the experimental range ($U_{\text{KTC}}[\text{mm}] \in (0.95, 1.25)$); (c.3) Results of the Monte Carlo simulation for those eyes that were subjected to a LASIK surgery in the clinic. Dark green curves belong to the simulations that cast a numerical displacement that is contained within the experimental range ($U_{\text{LASIK}}[\text{mm}] \in (0.9, 1.15)$).

The simulations show that the proposed material model is adequate to reproduce both the inflation and the bending response of the cornea when subjected to an air puff for different levels of the IOP (see Fig. 2.a). In particular, the range of parameters used for the Monte Carlo simulation is able to accommodate the experimental response to corneal inflation tests reported in the literature (see Fig. 2.b). Note that traditional model development for corneal mechanics has mainly considered inflation tests to identify the model parameters. However, when the response
to an air puff is considered, we found that there are a number of combinations for which the inflation response is within the experimental range but the corneal displacement due to the air puff is not. An example of this situation is given by the red and blue lines in Fig. 2.a. In both cases, the response to the inflation test is identical, but the response to the air puff is not physiological for the red line. Therefore, from the total number of samples in the Monte Carlo simulation, only those samples that reconcile the response to an inflation and to an air puff test to be within the experimental ranges[1, 45, 5] were considered. After including this exclusion criterion, only 29% (1127 of 3855) of the healthy cases, 30.5% (1327 of 4344) of the KTC cases, and 21.5% (219 of 1017) of the LASIK cases were included in the training dataset. The bright areas in Fig.2.c(1–3) (healthy: red; KTC: blue; LASIK: green) show the response to the air puff for the admitted samples.

The empirical distribution of the material parameters related to the matrix ($D_1$ and $D_2$) did not follow a uniform distribution, whereas those related to the fibers ($k_1$ and $k_2$) were found to be uniformly distributed (see A.6 in Appendix A). A Kolmogorov-Smirnov test shows non-significant differences between the material parameters of the healthy-LASIK and the KTC-LASIK populations (see in Table 2). In contrast, significant differences were found for $D_1$ and $D_2$ between the healthy-KTC populations.

### Table 2: Kolmogorov-Smirnov Hypothesis Test between Populations Regarding the Material Parameters.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>$D_1$ p-value</th>
<th>$D_2$ p-value</th>
<th>$k_1$ p-value</th>
<th>$k_2$ p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy–KTC</td>
<td>h</td>
<td>h</td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>Healthy–LASIK</td>
<td>0.869</td>
<td>0.779</td>
<td>0.584</td>
<td>0.482</td>
</tr>
<tr>
<td>KTC–LASIK</td>
<td>0.098</td>
<td>0.161</td>
<td>0.681</td>
<td>0.725</td>
</tr>
</tbody>
</table>

*Table Legend.* $h$: indicates the result of the hypothesis test (i.e., $h=1$ rejects the null hypothesis that both populations come from the same continuous probability distribution); $p$-value: asymptotic $p$-value of the test (i.e., $p$-value < 0.05 means that the null hypothesis can be rejected at a 5% significance level).

When the cornea is under the action of the IOP (i.e., its physiological stress state), the cornea is under a pure traction membrane stress state where the full cornea works in tension (i.e., both extracellular matrix and both families of collagen fibers), and therefore, no bending effects exist.
However, during an air puff, the cornea experiences bending. Whereas the anterior surface goes from a traction state of stress to a compression state of stress, the posterior surface works in tension. Hence, in the anterior corneal stroma, the collagen fibers are not contributing to load bearing since they do not support buckling and the stiffness of the cornea mainly relies on the extracellular matrix. At the same time, the collagen fibers on the posterior stroma suffer from a higher elongation, resulting in an overall non-physiological state of stress. In this regard, due to the action of the IOP, no significant differences in the maximum principal stress and in the maximum principal stretch were observed between the different populations for both the anterior and posterior corneal surfaces. In contrast, when the maximum principal stress and stretch are compared at the instant of maximum corneal displacement, significant statistical differences between all populations were found at the posterior surface (see Table 3). However, at the anterior surface, significant differences were found only for the maximum principal stretch, whereas for the maximum principal stress, differences were found only between the healthy and KTC populations (see Table 3).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Anterior Stretch</th>
<th>Anterior Stress</th>
<th>Posterior Stretch</th>
<th>Posterior Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>p-value</td>
<td>h</td>
<td>p-value</td>
</tr>
<tr>
<td>Healthy–KTC</td>
<td>1</td>
<td>&lt;0.001</td>
<td>1</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Healthy–LASIK</td>
<td>1</td>
<td>&lt;0.001</td>
<td>0</td>
<td>0.073</td>
</tr>
<tr>
<td>KTC–LASIK</td>
<td>1</td>
<td>&lt;0.001</td>
<td>0</td>
<td>0.083</td>
</tr>
</tbody>
</table>

Table Legend. h: indicates the result of the hypothesis test (i.e., h=1 rejects the null hypothesis that both populations come from the same continuous probability distribution); p-value: asymptotic p-value of the test (i.e., p-value < 0.05 means that the null hypothesis can be rejected at a 5% significance level).

3.2. Sensitivity Analysis

The sensitivity analysis and ANOVA conducted on the dataset (with the admitted samples only) demonstrate the predominant role of the material parameters on $U_{num}$ (see Fig.3.a). For the entire population, ANOVA revealed that the most influential parameters are the material parameters ($D_1$ and $D_2$), followed by the IOP and the central corneal thickness (CCT). When the
populations are considered separately (Fig.3.b and Fig.3.c, respectively), the general trends are kept for the healthy and LASIK populations. However, for the KTC population, the IOP appears to play a more important role than the material itself. In addition, the superior-inferior curvature slightly influences the numerical response for the KTC population. The results demonstrate the significant importance of the IOP on $U$ for those cases in which the corneal thickness is lower relative to the healthy case (i.e., KTC and LASIK).

Figure 3: Pareto chart representing the variables responsible for 95% of the mechanical response (displacement). (a) Impact of the main variables on the mechanical response taking the entire dataset into account; (b) Impact of the main variables on the mechanical response taking the healthy cases of the dataset into account; (c) Impact of the main variables on the mechanical response taking the KTC cases of the dataset into account; (d) Impact of the main variables on the mechanical response taking the LASIK cases of the dataset into account. Legend: intraocular pressure (IOP), central corneal thickness (CCT), superior-inferior curvature of the eye ($R_v$), material parameters ($D_1$, $D_2$ and $k_2$) and interaction between material parameter $D_1$ and the intraocular pressure ($D_1$ : IOP).

In general, the sensitivity analysis showed that the most influential parameters on the displacement response ($U_{num}$) were the material parameters ($D_1$, $D_2$ and $k_2$), the intraocular pressure (IOP), and the central corneal thickness (CCT) in all populations. An exception is found for the superior-inferior curvature ($R_v$) for the KTC population. However, the most remarkable result is the negligible impact of the material parameter $k_1$ on the numerical response. Although $k_1$ cannot be removed from the simulations since it is a material parameter of the strain energy function (1), the result from the sensitivity analysis suggests that setting its value to its average (i.e., $k_1 = 19$ [kPa]) appears to be a reasonable choice in terms of developing the material predictors. Henceforth, the parameter $k_1$ is treated as a constant value, thereby avoiding the need to adjust or train a specific model for it, with a consequent reduction in computational cost.

3.3. Response surface predictor models (MLP, SVR and QRS)

According to the results from the sensitivity analysis, the predictive models were constructed considering $D_1$, $D_2$, $k_2$, IOP, CCT, and $U_{num}$, following the methodology described in Materials and Methods. Table 4 presents the main results from the fitting for the three models under consideration.

All response surface methods performed similarly, although the MLP model showed a slightly better performance (see the $R^2$ value in Table 4). All models ($D_1$, $D_2$, and $k_2$) presented a good
Table 4: Accuracy for the four predictors (MLP: multiple layer perceptron; SVR: support vector regressor; SR: surface response) for the different populations (healthy, KTC and LASIK)

<table>
<thead>
<tr>
<th>Var</th>
<th>Healthy</th>
<th>KTC</th>
<th>LASIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^2$</td>
<td>0.967</td>
<td>0.958</td>
<td>0.952</td>
</tr>
<tr>
<td>AIC</td>
<td>-1769</td>
<td>-1661</td>
<td>-1671</td>
</tr>
<tr>
<td>$\mu_{res}$</td>
<td>-0.002</td>
<td>-0.005</td>
<td>-0.002</td>
</tr>
<tr>
<td>$\sigma_{res}$</td>
<td>0.028</td>
<td>0.032</td>
<td>0.032</td>
</tr>
</tbody>
</table>

<p>| D₂   |         |     |       |</p>
<table>
<thead>
<tr>
<th>Var</th>
<th>Healthy</th>
<th>KTC</th>
<th>LASIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>0.962</td>
<td>0.954</td>
<td>0.952</td>
</tr>
<tr>
<td>AIC</td>
<td>2589</td>
<td>2663</td>
<td>2626</td>
</tr>
<tr>
<td>$\mu_{res}$</td>
<td>-0.295</td>
<td>-0.622</td>
<td>-0.312</td>
</tr>
<tr>
<td>$\sigma_{res}$</td>
<td>5.408</td>
<td>5.912</td>
<td>5.653</td>
</tr>
</tbody>
</table>

<p>| k₂   |         |     |       |</p>
<table>
<thead>
<tr>
<th>Var</th>
<th>Healthy</th>
<th>KTC</th>
<th>LASIK</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2$</td>
<td>0.857</td>
<td>0.822</td>
<td>0.781</td>
</tr>
<tr>
<td>AIC</td>
<td>5337</td>
<td>5421</td>
<td>5464</td>
</tr>
<tr>
<td>$\mu_{res}$</td>
<td>-10.970</td>
<td>-23.592</td>
<td>-18.253</td>
</tr>
<tr>
<td>$\sigma_{res}$</td>
<td>148.2</td>
<td>164.0</td>
<td>172.6</td>
</tr>
</tbody>
</table>

### Table Legend
- $R^2$: coefficient of determination; AIC: Akaike information criterion for the final adjusted model; $\mu_{res}$: average of the residuals of the predicted response with respect to the expected response; $\sigma_{res}$: standard deviation of the residuals of the predicted response with respect to the expected response.

Coefficient of determination ($R^2$) and a relatively low dispersion of the residuals (i.e., predicted response minus real response) with their mean around zero, with the exception of $k_2$, which presented a higher dispersion. This result was somewhat expected since $D_1$ and $D_2$ were the material parameters to which the corneal displacement was more sensitive. In general, the best fitting always corresponded to the healthy population, whereas the worst performance was always found for the LASIK population. These results could be thought to be related with the disruption of the collagen fibers due to the corneal flap generated during the surgery and its consequent loss of stiffness. However, since our models are phenomenological and not structural, the dispersion is hypothesized to be mainly associated with the abrupt change of the corneal curvature of the anterior surface due to the resulting flattened area induced by the surgery and the dispersion on the central corneal thickness. As mentioned in the Materials and Methods section, in addition to individual predictors of the material parameters for each of the populations, a predictor was fit for each material parameter but considering the entire dataset. No significant differences in
the results were obtained when compared with the predictors constructed for individual populations (results not shown). Therefore, in the following, only results corresponding to individual populations will be shown.

Regarding the Akaike information criterion, it remains almost constant between the methods (MLP, SVR and QSR) for the same parameter \((D_1, D_2 \text{ and } k_2)\), indicating that all models obtained similar quality on the adjustment. The residual analysis indicates that the best predictions (i.e., mean close to 0) always belong to the \(D_1\) independently of the method and the population. In contrast, the worst predictions were always associated with \(k_2\) independently of the method and the population. However, it is remarkable that the healthy population showed the best accuracy with respect to the rest of the populations, whereas the KTC population showed the worst accuracy. This finding could be explained by the inherent geometrical variability of the keratoconus. For this pathology, the location of the disease is not repeatable among patients, leading to a very heterogeneous distribution of geometrical features among patients. Conversely, the geometrical features of healthy eyes are more repeatable. Furthermore, the better accuracy of the \(D_1\) and the \(D_2\) parameters are directly supported by their importance on the corneal response of the model (see Fig.3).

3.4. Neighborhood-Based Protocol (K-nn Search)

The K-nn search method does not require the fitting of a particular mathematical function to predict the material parameters in terms of the corneal patient’s geometric data and the mechanical response to the air puff since it simply searches for the closest point in the database to the patient’s data (IOP, CCT and \(U\)). However, this method helps to demonstrate the inherent coupling that exists between CCT, IOP and \(U\) that has been demonstrated in previous studies [2].

Figure 4a shows that for a given value of the IOP, different combinations of the material properties and corneal thickness lead to the same corneal displacement, \(U\) (see red dots in Fig. 4a). Similarly, for a given corneal thickness, different combinations of material parameters and IOP provide the same corneal displacement as an air puff (see Fig.4.b). This result shows that different combinations of material parameters, IOP and CCT can lead to the same corneal displace-
Figure 4: Coupled Effect of the Corneal Response (Patient h0, Table 1). All the healthy cases of the dataset are represented as blue dots in the figures. The biomarkers selected for determining the mechanical properties of the eye are shown to outline the coupling between different parameters: different combinations of thickness, material and intraocular pressure could lead to the same displacement. (a) Displacement ($U$) versus thickness (CCT) considering the intraocular pressure to be constant (IOP=12 mmHg). In red dots, all the feasible combinations of CCT that lead to the same displacement (1 mm) when the material properties and the pressure are fixed; (b) Displacement ($U$) versus IOP (IOP) considering the thickness to be constant (CCT=578 microns). In red dots, all the feasible combinations of IOP that lead to the same displacement (1 mm) when the material properties and the CCT are fixed; (c) Intraocular pressure (IOP) versus thickness (CCT) considering the displacement to be constant ($U$=1.00 mm). All tuples of IOP and CCT that can lead to the same displacement (1 mm). The dispersion of the parameters is only influenced by the tissue stiffness, i.e., the lowest pressures and thickness can only behave as the highest pressures and thickness if the material properties are stiffer. In this way, although different corneas could have a similar average tissue stiffness, an increase in IOP or CCT could lead to a less compliant mechanical response.

Table 5 shows the material model parameter predictions for the 5 patients described in Table 1. All the material model parameters obtained with the different predictors were used to simulate a non-contact tonometry test using the patient-specific data available for each case, i.e., topography of the cornea and IOP. For most cases, the predicted displacements ($U_{num}$) were in close proximity to the measured displacement ($U$), with the largest error difference, $\epsilon(\%)$, being 13% for the KTC eye (patient ktc2) and the QRS method. In addition, although local minima exist and we are aware of them, material predictions associated with local minima also lead to a predicted corneal displacement close to the actual measurements (results not shown). For patient ktc2, for which the material predictions led to the worst corneal displacement predictions, it was found that the closest neighbor to the patient’s data was located at a distance that was an order of magnitude larger than for the other patients. This result indicates the need for a larger number.
Table 5: Validation using a priori unknown clinical patient data (Table 1). Application of the former patient-specific geometrical reconstruction algorithm [4] coupled with the present patient-specific material prediction methodology to reproduce the maximum deformation amplitude (displacement) of the corneal apex when subjected to a non-contact tonometry test (clinical values correspond to the CorVis measurement system).

<table>
<thead>
<tr>
<th>L. Meth.</th>
<th>Input</th>
<th>Output</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>h0</td>
<td>K-nn</td>
<td>IOP=12 mmHg</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>CCT=578 µm</td>
<td>0.277</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>U=1.00 mm</td>
<td>0.193</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td></td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.292</td>
</tr>
<tr>
<td>ktc0</td>
<td>K-nn</td>
<td>IOP=15 mmHg</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>CCT=545 µm</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>U=1.12 mm</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td></td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.368</td>
</tr>
<tr>
<td>ktc1</td>
<td>K-nn</td>
<td>IOP=15 mmHg</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>CCT=544 µm</td>
<td>0.330</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>U=1.03 mm</td>
<td>0.320</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td></td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.229</td>
</tr>
<tr>
<td>ktc2</td>
<td>K-nn</td>
<td>IOP=15 mmHg</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>CCT=464 µm</td>
<td>0.385</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>U=1.05 mm</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td></td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.365</td>
</tr>
<tr>
<td>ktc3</td>
<td>K-nn</td>
<td>IOP=16 mmHg</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>CCT=460 µm</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>U=1.12 mm</td>
<td>0.319</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td></td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.330</td>
</tr>
</tbody>
</table>

Table Legend. \( (D_1 \ [kPa] \ | \ D_2 \ [–] \ | \ k_1 \ [kPa] \ | \ k_2 \ [–]): \) Parameters of the Demiray + G–H–O energy strain function; \( U_{\text{num}} \ [\text{mm}]: \) maximum deformation amplitude provided by the numerical simulation of the non-contact tonometer; \( \epsilon(\%) = \frac{|U_{\text{num}} - U|}{U} \cdot 100: \) percentage difference between numerical and clinical displacement.

Note that as the number of patients in the database increases, the prediction capabilities of all models will also generally increase. Further information regarding the performance of each method can be found in Appendix A. Regarding the time required to search a set of material parameters (\( t_{\text{exec}}, \) Table A.6), the fastest method is the K–nn search since it does not require any iterative procedure to find the material properties. In addition, depending on the initial material seed, the iterative procedure may find different minima and take longer execution times. For these reasons, the implementation of the algorithm includes a multiple seed strategy to identify the...
4. Conclusions

A series of mathematical models have been proposed to predict the mechanical properties of corneal tissue from patient-specific data obtained using a non-contact tonometry test. The proposed methodology is based on in silico simulations of the non-contact tonometry tests using patient-specific corneal geometry data [4]. The methodology is amenable for implementation on commercial devices for clinical applications, and it provides acceptable execution times and accuracy.

The computational simulation has different assumptions of the material and the modeling that cannot be neglected. First, we used a phenomenological and macroscopic material model for the cornea that allows to reproduce, within the experimentally reported range, the corneal response to both inflation to increase values of IOP and the corneal displacement induced by a non-contact tonometry test. Regarding the material model, there are some hypotheses that must be addressed, such as the absence of viscoelasticity or the use of a generic orthogonal pattern of fibers following that proposed by Meek et al. (2009) [50]. With respect to the viscoelastic properties of the cornea, the loading of the tissue is fast enough to consider that viscoelastic effects do not play a major role in the corneal response [46]. This assumption has been widely accepted in previous publications (see several publications by Elsheikh, Pandolfi, Lanchares or Studer), and recently, Simonini et al. (2016) [56] have reported a study on the dynamics of the cornea when subjected to an air puff that suggests the great importance of the elastic contribution of the stroma during the loading phase of the air jet but the minor contribution of the inertia and viscoelasticity. However, if the recovery of the cornea during the unloading phase would be addressed, the inclusion of inertia and viscoelasticity would be essential. Concerning the pattern of collagen fibers is not patient specific since it is not yet easily accessible. Although Winkler et al. and others authors have reported a more precise micro-structural distribution of the fibers using SHG optical microscopy [51, 52, 53, 47, 48, 49], the inclusion of the patient-specific micro-structural information of the cornea would not be useful but would rather increase
the computational costs and introduce a new bias since this information was not accessible for
our patients. Nevertheless, the proposed methodology does not prevent the use of more complex
material models that incorporate information of the micro-structure of the cornea, viscoelasticity
or inertia. Second, the boundary condition simulating the air-jet impact has been assumed to be
a constant pressure applied over the cornea. Although a CFD analysis has been applied over a
generic cornea to compute the pressure pattern, a more precise simulation would require a fluid
structure simulation since the corneal geometry and the deformation of the cornea over time may
have an important impact on the pressure transferred during the air puff.

Despite its considerable computational cost, the Monte Carlo simulation has proven to be a
powerful tool for use in real-time estimation of the corneal mechanical properties from a non-
contact tonometry test in the clinic. In addition, the mathematical tools (MLP, SVR and QRS)
have shown good performance in predicting the corneal material parameters, but the inherent
coupling between the IOP, the CCT, and the corneal mechanical properties affecting the corneal
response introduces an unavoidable dispersion in the data that reduces the performance of these
methods. In this regard, the K–nn search has proven to be the most reliable method. Since
it restricts the search to the neighborhood of the patient, the method is not prone to finding
local minima, and it exhibits the best performance in terms of execution time. Furthermore,
the material model parameters predicted by the K-nn search method lead to the most accurate
predictions of the corneal displacement with respect to the clinical value (i.e., less than 3%
difference with respect to the clinical results). Although the main drawback is the considerable
computational cost involved in generating the dataset because it needs a fine resolution on the
data grid for good accuracy, it is still more suitable than other optimization methods, such as
the IFEM, due to its real-time response (i.e., no finite element computation is required for the
diagnosis, but the patient can subsequently be used for updating the dataset).

No significant differences have been found between populations, in general, in terms of the
material parameters. In this regard, only the healthy and KTC populations showed significant
differences in terms of the $D_1$ and $D_2$ parameters but not in terms of $k_1$ and $k_2$. Therefore, these
results indicate that considering differences in the material parameters of the cornea may not
be sufficient to classify healthy and keratoconus eyes using a single air-puff test, pointing to the necessity of having more than a single test for properly characterizing the properties of the eye. However, until now, there has been no additional in vivo test that complements the air-puff diagnosis, and the results should be assessed additionally by, for example, ex vivo inflation tests, as we used for constraining the search of material properties with both physiological behaviors (i.e., inflation and air puff). Moreover, our results suggest that variations in corneal thickness may be a more reliable monitoring variable in terms of classifying the healthy population from the KTC population. In addition, based on the finite element simulations, the maximum principal stretch in the anterior and posterior surfaces of the cornea obtained at the instant of maximum corneal deformation may be used as a discriminant to classify different groups (healthy, KTC and LASIK).

One final limitation regarding the clinical biomarkers used for the prediction must be addressed. For simplicity, only 3 clinical biomarkers have been used for predicting the material properties of the cornea: pressure (i.e., the IOP), geometry (i.e., CCT) and displacement (i.e., the maximum deformation amplitude of the CorVis test). Since our models are mainly phenomenological, macroscopic and are not taking the inertia, viscoelasticity and micro-structural features of the cornea into account, the dynamic parameters provided by the CorVis diagnosis test cannot be trustworthily used. Moreover, ANOVA and the Pareto analysis showed that for the models used in the present study, the most influential parameters were the selected ones. However, there are no problems for easily introducing other corneal parameters in the predictive model, provided that they can be accurately measured in both the experimental and the numerical results.

Although only these 3 biomarkers have been used, the methodology has been tested with actual unknown patient data that did not form a part of the dataset. The predicted material parameters, along with the patient’s corneal geometry and IOP, were used to simulate a non-contact tonometry test to predict the corneal displacement. The numerical results resulted in errors of less than 10% in most cases, with the K-nn search methodology outperforming the response surface-based methods, achieving errors of less than 3%.

The important aspect of the present study is that the proposed methodology, independently of
the complexity of the numerical simulations, is amenable for real-time diagnosis and implement-
tation in commercial devices. Importantly, it allows easily introducing additional elements (e.g.,
viscoelasticity, microstructure, dynamics, and so forth) that could enhance the performance and
accuracy of the results without modifying the underlying methodology. Eventually, the compu-
tational framework will incorporate actual clinical data (corneal topographies, IOP and corneal
apical displacement from a non-contact tonometry test) to predict the mechanical properties of
the cornea. These results could be used for surgical planning or to monitor the evolution of a
given patient by looking at changes in the mechanical properties with time.

Acknowledgments

Special thanks to Dr. Joaquin Fernandez at the Qvision Ophthalmic Unit of the Vithas Virgen
del Mar Hospital (Almeria, Spain) for prospectively collecting the validation data.

Funding

The research leading to these results has received funding from the European
Union’s Seven Framework Program managed by REA Research Executive agency
http://ec.europa.eu/research/rea (FP7/2007-2013) under Grant Agreement FP7-SME-2013
606634, the Spanish Ministry of Economy and Competitiveness under the Grant Agreement
DPI2014-54981R, the Government of Aragón (predoctoral contract of the author), the Ibercaja-
CAI mobility program (mobility funding for research stay of the author) and the Swiss Federal
Department of Economic Affairs, Education and Research (Federal Commission for Scholarships
for Foreign Students).
Appendix A. Additional Results

This appendix contains the extended non-essential results that are needed to understand the complete scope of the outcomes. The extensions are related to the following:

- **Sensitivity analysis:** The response surface \( U = f(\text{geometry, pressure, material}) \) used for analyzing the impact of the different variables (geometry, pressure and material) to the numerical variable under analysis in the FE computation (displacement) is depicted in Fig.A.5.

- **Statistical distribution of the mechanical properties of the cornea for the Monte Carlo simulation:** All the Monte Carlo combinations of material that fulfill both physiological responses (inflation and air puff) are presented in Fig.A.6 (green histogram). Whereas the parameters related to the fibers are uniformly distributed \((k_1 \text{ and } k_2)\), the matrix parameters \((D_1 \text{ and } D_2)\) stack around 0.4–0.45 [kPa] and [130–140].

- **Accuracy of the prediction after the training phase for the SVR and MLP:** The accuracy of the predictions of both methods after the training phase is depicted in Fig.A.7. Support vector regressor does not present a blue shaded zone since only one SVR is used. Conversely, the MLP uses 7 different assemblies and subsequently computes the average. Therefore, the confidence intervals (blue shaded zones) can be established.

- **Goodness of the fits for the SVR, MLP and QRS models:** The correlation plot of the predicted property versus the actual value in the dataset is depicted in Fig.A.8. The material properties \(D_1\) and \(D_2\) show the best model fitting, whereas \(k_2\) shows a higher dispersion \((k_1\) is not shown since it was discarded after the sensitivity analysis).

- **Additional performance of the methodology:** The results of supplementary performance variables (execution time, distance of the nearest neighbor and initial tangent modulus) are depicted in Table A.6.
Figure A.5: Slice plots of the quadratic response surface for each population (healthy–red, KTC–blue, LASIK–green). The slice plots show the individual contribution of the different model parameters on the numerical displacement. The higher the slope, the higher the contribution (shaded zones represent the standard deviation of the parameter, whereas solid lines represent the mean response). (a) Impact of the model parameters on the numerical displacement of the healthy population; (b) Impact of the model parameters on the numerical displacement of the KTC population; (c) Impact of the model parameters on the numerical displacement of the LASIK population.

Figure A.6: Statistical distribution of the mechanical properties of the cornea for the Monte Carlo simulation. The empirical distribution (green histogram) due to all the combinations of material parameters that fulfill both physiological behaviors (inflation and air puff) shows that the fiber’s parameters are uniformly distributed.

Figure A.7: MLP (right panel) and SVR (left panel) predictions for validating the training phase (only healthy response is shown). a. (1–3): $D_1$, $D_2$ and $k_2$ predictions depending on the patient case for the MLP method. Blue intervals correspond to the confidence interval (95% light blue and 99% dark blue) of the prediction since the method is composed of an ensemble of 7 independent MLPs and the response is the average of each independent MLP; b. (1–3): $D_1$, $D_2$ and $k_2$ predictions depending on the patient case for the SVR method. $k_1$ predictor is not computed since it was discarded after the sensitivity analysis.
Figure A.8: Correlation plot of the predicted parameter (y-axis) vs expected parameter (x-axis) for the healthy group. a.(1–3): QRS; b.(1–3): MLP; c.(1–3): SVR. $D_1$ and $D_2$ show a good prediction of the values, whereas $k_2$ presents a higher dispersion. $k_1$ predictor is not computed since it was discarded after the sensitivity analysis.

Table A.6: Performance of the Prediction of the Patient-Specific Material Properties for the Clinical Patients (Table 1) Applying the Prediction Models (K-nn Search: Neighbor-based Prediction Model; QRS: Quadratic Response Surface Model; MLP: Multiple Layer Perceptron; SVR: Support Vector Regressor)

<table>
<thead>
<tr>
<th>L.</th>
<th>Meth.</th>
<th>$t_{exec}$ [s]</th>
<th>Dist. [-]</th>
<th>E       [kPa]</th>
<th>E (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0$</td>
<td>K-nn</td>
<td>0.060 ± 0.023</td>
<td>0.003</td>
<td>283.637</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>1.996 ± 0.562</td>
<td>–</td>
<td>236.15</td>
<td>-16.7</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>19.282 ± 9.551</td>
<td>–</td>
<td>305.333</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>75.304 ± 4.469</td>
<td>–</td>
<td>291.146</td>
<td>2.7</td>
</tr>
<tr>
<td>$ktc_0$</td>
<td>K-nn</td>
<td>0.036 ± 0.002</td>
<td>0.006</td>
<td>237.407</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>1.145 ± 0.101</td>
<td>–</td>
<td>245.760</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>14.473 ± 1.458</td>
<td>–</td>
<td>259.284</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>7.833 ± 4.724</td>
<td>–</td>
<td>255.510</td>
<td>7.6</td>
</tr>
<tr>
<td>$ktc_1$</td>
<td>K-nn</td>
<td>0.036 ± 0.003</td>
<td>0.005</td>
<td>286.22</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>0.781 ± 0.028</td>
<td>–</td>
<td>279.328</td>
<td>-2.4</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>17.861 ± 2.922</td>
<td>–</td>
<td>222.531</td>
<td>-22.3</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>10.130 ± 2.168</td>
<td>–</td>
<td>250.773</td>
<td>-12.4</td>
</tr>
<tr>
<td>$ktc_2$</td>
<td>K-nn</td>
<td>0.0336 ± 0.003</td>
<td>0.025</td>
<td>375.877</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>0.460 ± 0.015</td>
<td>–</td>
<td>341.716</td>
<td>-9.1</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>4.962 ± 0.238</td>
<td>–</td>
<td>367.299</td>
<td>-2.3</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>2.284 ± 0.187</td>
<td>–</td>
<td>352.159</td>
<td>-6.3</td>
</tr>
<tr>
<td>$ktc_3$</td>
<td>K-nn</td>
<td>0.035 ± 0.003</td>
<td>0.006</td>
<td>354.524</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>QRS</td>
<td>0.519 ± 0.018</td>
<td>–</td>
<td>296.684</td>
<td>-16.3</td>
</tr>
<tr>
<td></td>
<td>MLP</td>
<td>7.892 ± 0.160</td>
<td>–</td>
<td>322.154</td>
<td>-9.1</td>
</tr>
<tr>
<td></td>
<td>SVR</td>
<td>4.091 ± 0.269</td>
<td>–</td>
<td>306.076</td>
<td>-13.7</td>
</tr>
</tbody>
</table>

Table Legend. $t_{exec}$ [s]: execution time for prediction; Dist. [-]: minimum distance of the neighborhood (only for K-nn search); $E = 6 \cdot D_1D_2 + 4 \cdot k_1$ [kPa]: Equivalent initial tangent modulus ($\lambda = 1$); $E(\%) = 100 \cdot (1 - E_j/E_{K-nn})$: initial slope difference between the equivalent initial tangent modulus of the ‘$j$’ method ($E_j$), where ‘$j$’ are QRS, MLP, and SVR, with respect to the equivalent initial tangent modulus of the K-nn search method ($E_{K-nn}$).
17. H. P. Studer, H. Riedwyl, C. A. Amstutz, J. V. M. Hanson, P. Büchler, Patient-specific finite-element simulation of


Benoit, Aurélie and Latour, Gaël and Marie-Claire, Schanne-Klein and Allain, Jean-Marc. Simultaneous mi-


Figure A.10: Figure 2

Figure A.11: Figure 3
Figure A.12: Figure 4

(a) Values of CCT (U=1,000)

(b) Values of IOP (U=1,000)

(c) Stiffness diagram with Neighbours and Patient points.
Figure A.13: Figure A5
Figure A.14: Figure A6
Figure A.16: Figure A8